载入hubgene数据

Sys.setlocale('LC_ALL','C')
## [1] "C"
require(tidyverse)
## Loading required package: tidyverse
## -- Attaching packages ------------------------------------------- tidyverse 1.2.1 --
## <U+221A> ggplot2 3.2.0     <U+221A> purrr   0.3.2
## <U+221A> tibble  2.1.3     <U+221A> dplyr   0.8.3
## <U+221A> tidyr   0.8.3     <U+221A> stringr 1.4.0
## <U+221A> readr   1.3.1     <U+221A> forcats 0.4.0
## Warning: package 'dplyr' was built under R version 3.6.1
## -- Conflicts ---------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
load(file = "F:/Bioinfor_project/Breast/AS_research/AS/result/hubgene.Rdata")
head(data)
## # A tibble: 6 x 22
##   ID    group CCL14  HBA1 CCL16 TUBB3 PAM50 Os_time OS_event RFS_time
##   <chr> <chr> <dbl> <dbl> <dbl> <dbl> <fct>   <int>    <int>    <int>
## 1 TCGA~ TNBC   3.37  0     0     5.94 Basal     967        1       NA
## 2 TCGA~ TNBC   4.97  3.39  0     6.00 Basal     584        0       NA
## 3 TCGA~ TNBC   4.77  0     0     5.04 Basal    2654        0       NA
## 4 TCGA~ TNBC   4.19  3.74  2.84  5.13 Basal     754        1       NA
## 5 TCGA~ TNBC   0     0     0     5.65 Basal    2048        0     2048
## 6 TCGA~ TNBC   5.34  0     4.07  6.04 Basal    1027        0     1027
## # ... with 12 more variables: RFS_event <int>, age <int>, ER <fct>,
## #   PR <fct>, gender <fct>, HER2 <fct>, Margin_status <fct>, Node <int>,
## #   M_stage <fct>, N_stage <fct>, T_stage <fct>, `Pathologic stage` <fct>
dim(data)
## [1] 228  22
## 筛选出TNBC
mydata<-data %>% 
  rename(OS_time=Os_time) %>% 
  filter(group=="TNBC")  

批量绘制生存曲线

library(survival)
library(survminer)
## Loading required package: ggpubr
## Loading required package: magrittr
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
mysurv<-Surv(mydata$OS_time,mydata$OS_event)
p<-list()
## 索引因为这里的基因是3:6,可调整格式固定下来
for(i in colnames(mydata)[3:6]){
  ## 分组
  gene<-as.numeric(as.matrix(mydata[,i]))
  grouplist<-factor(ifelse(gene>median(gene),"high","low"))
  fit <- survfit(mysurv ~ grouplist, data = mydata)
  ## 分组比较
  data.survdiff <- survdiff(mysurv ~ grouplist)
  p.val = 1 - pchisq(data.survdiff$chisq, length(data.survdiff$n) - 1)
  HR = (data.survdiff$obs[2]/data.survdiff$exp[2])/(data.survdiff$obs[1]/data.survdiff$exp[1])
  up95 = exp(log(HR)+qnorm(0.975)*sqrt(1/data.survdiff$exp[2]+1/data.survdiff$exp[1]))
  low95 = exp(log(HR)-qnorm(0.975)*sqrt(1/data.survdiff$exp[2]+1/data.survdiff$exp[1]))
  ## 计算HR CI
  HR <- paste("Hazard Ratio = ", round(HR,2), sep = "")
  CI <- paste("95% CI: ", paste(round(low95,2), round(up95,2), sep = " - "), sep = "")

### 批量绘图
p[[i]]<-ggsurvplot(fit, data = mydata ,
           #ggtheme = theme_bw(), #想要网格就运行这行
           conf.int = F, #不画置信区间,想画置信区间就把F改成T
           #conf.int.style = "step",#置信区间的类型,还可改为ribbon
           censor = F, #不显示观察值所在的位置
           palette = c("#00468BFF","#ED0000FF"), #线的颜色对应高、低
#pal_lancet("lanonc")(9)
#[1] "#00468BFF" "#ED0000FF" "#42B540FF" "#0099B4FF" "#925E9FFF" "#FDAF91FF"
#[7] "#AD002AFF" "#ADB6B6FF" "#1B1919FF"            
           legend.title = i,#基因名写在图例题目的位置
           font.legend = 11,#图例的字体大小
           #font.title = 12,font.x = 10,font.y = 10,#设置其他字体大小
           legend.labs = c("high", "low"),
           
           #在左下角标出pvalue、HR、95% CI
           #太小的p value标为p < 0.001
           pval = paste(pval = ifelse(p.val < 0.001, "p < 0.001", 
                                             paste("p = ",round(p.val,3), sep = "")),
                        HR, CI, sep = "\n"))
    
  #如果想要一个图保存为一个pdf文件,就把下面这行前面的“#”删掉
  #ggsave(paste0(i,".pdf"),width = 4,height = 4)
}
### 组图并保存
res <- arrange_ggsurvplots(p, 
                           print = T,
                           ncol = 2,nrow = 2)#每页纸画几列几行

#保存到pdf文件
ggsave("SurvPlot.pdf",res,width = 12,height = 8)

包装为批量绘制基因生存曲线的函数

可将数据清洗调整好,为OS_time, OS_event tibble格式第一列为TCGA id, 第三列开始为gene-到之后的gene名

head(mydata)
## # A tibble: 6 x 22
##   ID    group CCL14  HBA1 CCL16 TUBB3 PAM50 OS_time OS_event RFS_time
##   <chr> <chr> <dbl> <dbl> <dbl> <dbl> <fct>   <int>    <int>    <int>
## 1 TCGA~ TNBC   3.37  0     0     5.94 Basal     967        1       NA
## 2 TCGA~ TNBC   4.97  3.39  0     6.00 Basal     584        0       NA
## 3 TCGA~ TNBC   4.77  0     0     5.04 Basal    2654        0       NA
## 4 TCGA~ TNBC   4.19  3.74  2.84  5.13 Basal     754        1       NA
## 5 TCGA~ TNBC   0     0     0     5.65 Basal    2048        0     2048
## 6 TCGA~ TNBC   5.34  0     4.07  6.04 Basal    1027        0     1027
## # ... with 12 more variables: RFS_event <int>, age <int>, ER <fct>,
## #   PR <fct>, gender <fct>, HER2 <fct>, Margin_status <fct>, Node <int>,
## #   M_stage <fct>, N_stage <fct>, T_stage <fct>, `Pathologic stage` <fct>
genesurv<-function(mydata){
  library(survival)
  library(survminer)
  mysurv<-Surv(mydata$OS_time,mydata$OS_event)
  p<-list()
## 索引因为这里的基因是3:6,可调整格式固定下来
  for(i in colnames(mydata)[3:6]){
    ## 分组
    gene<-as.numeric(as.matrix(mydata[,i]))
    grouplist<-factor(ifelse(gene>median(gene),"high","low"))
    fit <- survfit(mysurv ~ grouplist, data = mydata)
    ## 分组比较
    data.survdiff <- survdiff(mysurv ~ grouplist)
    p.val = 1 - pchisq(data.survdiff$chisq, length(data.survdiff$n) - 1)
    HR = (data.survdiff$obs[2]/data.survdiff$exp[2])/(data.survdiff$obs[1]/data.survdiff$exp[1])
    up95 = exp(log(HR)+qnorm(0.975)*sqrt(1/data.survdiff$exp[2]+1/data.survdiff$exp[1]))
    low95 = exp(log(HR)-qnorm(0.975)*sqrt(1/data.survdiff$exp[2]+1/data.survdiff$exp[1]))
   ## 计算HR CI
    HR <- paste("Hazard Ratio = ", round(HR,2), sep = "")
    CI <- paste("95% CI: ", paste(round(low95,2), round(up95,2), sep = " - "), sep = "")

  ### 批量绘图
  p[[i]]<-ggsurvplot(fit, data = mydata ,
           #ggtheme = theme_bw(), #想要网格就运行这行
           conf.int = F, #不画置信区间,想画置信区间就把F改成T
           #conf.int.style = "step",#置信区间的类型,还可改为ribbon
           censor = F, #不显示观察值所在的位置
           palette = c("#00468BFF","#ED0000FF"), #线的颜色对应高、低
#pal_lancet("lanonc")(9)
#[1] "#00468BFF" "#ED0000FF" "#42B540FF" "#0099B4FF" "#925E9FFF" "#FDAF91FF"
#[7] "#AD002AFF" "#ADB6B6FF" "#1B1919FF"            
           legend.title = i,#基因名写在图例题目的位置
           font.legend = 11,#图例的字体大小
           #font.title = 12,font.x = 10,font.y = 10,#设置其他字体大小
           legend.labs = c("high", "low"),
           
           #在左下角标出pvalue、HR、95% CI
           #太小的p value标为p < 0.001
           pval = paste(pval = ifelse(p.val < 0.001, "p < 0.001", 
                                             paste("p = ",round(p.val,3), sep = "")),
                        HR, CI, sep = "\n"))
    
  #如果想要一个图保存为一个pdf文件,就把下面这行前面的“#”删掉
  #ggsave(paste0(i,".pdf"),width = 4,height = 4)
}
### 组图并保存
res <- arrange_ggsurvplots(p, 
                           print = T,
                           ncol = 2,nrow = 2)#每页纸画几列几行

#保存到pdf文件
#ggsave("SurvPlot.pdf",res,width = 12,height = 8)

}
## 输入数据mydata-mydata需调整好格式
genesurv(mydata)

#ggsave("SurvPlot.pdf",res,width = 12,height = 8)

包装可以绘制感兴趣的基因的函数

## 封装函数
## 参数1:genename
## 参数2:mydata,默认为mydata
genename_surv<-function(genename,data=mydata){
library(survival)
library(survminer)
mydata<-data
mysurv<-Surv(mydata$OS_time,mydata$OS_event)
    gene<-as.numeric(as.matrix(mydata[,genename]))
    grouplist<-factor(ifelse(gene>median(gene),"high","low"))
    fit <- survfit(mysurv ~ grouplist, data = mydata)
    ## 分组比较
    data.survdiff <- survdiff(mysurv ~ grouplist)
    p.val = 1 - pchisq(data.survdiff$chisq, length(data.survdiff$n) - 1)
    HR = (data.survdiff$obs[2]/data.survdiff$exp[2])/(data.survdiff$obs[1]/data.survdiff$exp[1])
    up95 = exp(log(HR)+qnorm(0.975)*sqrt(1/data.survdiff$exp[2]+1/data.survdiff$exp[1]))
    low95 = exp(log(HR)-qnorm(0.975)*sqrt(1/data.survdiff$exp[2]+1/data.survdiff$exp[1]))
   ## 计算HR CI
    HR <- paste("Hazard Ratio = ", round(HR,2), sep = "")
    CI <- paste("95% CI: ", paste(round(low95,2), round(up95,2), sep = " - "), sep = "")

  ### 批量绘图
  ggsurvplot(fit, data = mydata ,
           #ggtheme = theme_bw(), #想要网格就运行这行
           conf.int = F, #不画置信区间,想画置信区间就把F改成T
           #conf.int.style = "step",#置信区间的类型,还可改为ribbon
           censor = F, #不显示观察值所在的位置
           palette = c("#00468BFF","#ED0000FF"), #线的颜色对应高、低
#pal_lancet("lanonc")(9)
#[1] "#00468BFF" "#ED0000FF" "#42B540FF" "#0099B4FF" "#925E9FFF" "#FDAF91FF"
#[7] "#AD002AFF" "#ADB6B6FF" "#1B1919FF"            
           legend.title = i,#基因名写在图例题目的位置
           font.legend = 11,#图例的字体大小
           #font.title = 12,font.x = 10,font.y = 10,#设置其他字体大小
           legend.labs = c("high", "low"),
           
           #在左下角标出pvalue、HR、95% CI
           #太小的p value标为p < 0.001
           pval = paste(pval = ifelse(p.val < 0.001, "p < 0.001", 
                                             paste("p = ",round(p.val,3), sep = "")),
                        HR, CI, sep = "\n"))
}
### 输入获取感兴趣的基因
genename_surv("CCL14",mydata)

### 有了绘图函数可以批量绘制了
name<-colnames(mydata)[3:6]
p<-lapply(name,genename_surv)

## ggsurvplots组图
arrange_ggsurvplots(p, 
                    print = T,
                    ncol = 2,nrow = 2)#每页纸画几列几行