Derivatives

# Question 1

myf1=expression(1-exp(-lambda*x))
D(myf1,'x')
## exp(-lambda * x) * lambda
# Question 2

myf2=expression((x-a)/(b-a))
D(myf2, 'x')
## 1/(b - a)
# Question 3

myf3=expression((x-a)^2/((b-a)*(c-a)))
D(myf3,'x')
## 2 * (x - a)/((b - a) * (c - a))
# Question 4

myf4=expression(1-((b-x)^2/(b-a)*(c-a)))
D(myf4, 'x')               
## 2 * (b - x)/(b - a) * (c - a)

Integrals

# Question 5

fx=function(x){3*(x^3)}
integrate(fx,lower=0,upper=10)
## 7500 with absolute error < 8.3e-11
# Question 6

library(mosaicCalc)
## Warning: package 'mosaicCalc' was built under R version 3.6.1
## Loading required package: mosaicCore
## Warning: package 'mosaicCore' was built under R version 3.6.1
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
antiD((x*lambda*exp(-lambda*x))~x)
## function (x, lambda, C = 0) 
## {
##     numerical_integration(.newf, .wrt, as.list(match.call())[-1], 
##         formals(), from, ciName = intC, .tol)
## }
## <environment: 0x0000000012cd8228>

Linear Algebra

# Question 9

# Create 3x3 matrix
A=matrix(c(1,2,3,3,3,1,4,6,8),nrow = 3, byrow=TRUE)
# Join an identity matrix to A

(AI<- cbind(A, diag(3)))
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    2    3    1    0    0
## [2,]    3    3    1    0    1    0
## [3,]    4    6    8    0    0    1
#inverse of the matrix A
library(matlib)
## Warning: package 'matlib' was built under R version 3.6.1
echelon(cbind(A, diag(3)),verbose=TRUE, fractions=TRUE)
## 
## Initial matrix:
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1    2    3    1    0    0   
## [2,] 3    3    1    0    1    0   
## [3,] 4    6    8    0    0    1   
## 
## row: 1 
## 
##  exchange rows 1 and 3 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4    6    8    0    0    1   
## [2,] 3    3    1    0    1    0   
## [3,] 1    2    3    1    0    0   
## 
##  multiply row 1 by 1/4 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]   1  3/2    2    0    0  1/4 
## [2,]   3    3    1    0    1    0 
## [3,]   1    2    3    1    0    0 
## 
##  multiply row 1 by 3 and subtract from row 2 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1  3/2    2    0    0  1/4
## [2,]    0 -3/2   -5    0    1 -3/4
## [3,]    1    2    3    1    0    0
## 
##  subtract row 1 from row 3 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1  3/2    2    0    0  1/4
## [2,]    0 -3/2   -5    0    1 -3/4
## [3,]    0  1/2    1    1    0 -1/4
## 
## row: 2 
## 
##  multiply row 2 by -2/3 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1  3/2    2    0    0  1/4
## [2,]    0    1 10/3    0 -2/3  1/2
## [3,]    0  1/2    1    1    0 -1/4
## 
##  multiply row 2 by 3/2 and subtract from row 1 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    0   -3    0    1 -1/2
## [2,]    0    1 10/3    0 -2/3  1/2
## [3,]    0  1/2    1    1    0 -1/4
## 
##  multiply row 2 by 1/2 and subtract from row 3 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    0   -3    0    1 -1/2
## [2,]    0    1 10/3    0 -2/3  1/2
## [3,]    0    0 -2/3    1  1/3 -1/2
## 
## row: 3 
## 
##  multiply row 3 by -3/2 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    0   -3    0    1 -1/2
## [2,]    0    1 10/3    0 -2/3  1/2
## [3,]    0    0    1 -3/2 -1/2  3/4
## 
##  multiply row 3 by 3 and add to row 1 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    0    0 -9/2 -1/2  7/4
## [2,]    0    1 10/3    0 -2/3  1/2
## [3,]    0    0    1 -3/2 -1/2  3/4
## 
##  multiply row 3 by 10/3 and subtract from row 2 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    0    0 -9/2 -1/2  7/4
## [2,]    0    1    0    5    1   -2
## [3,]    0    0    1 -3/2 -1/2  3/4
# Question 10
# Determinant of matrix A
det(A)
## [1] -4
# Question 11
# LU decomposition
A=matrix(c(1,2,3,3,3,1,4,6,8),nrow = 3, byrow=TRUE)
LU(A)
## $P
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1
## 
## $L
##      [,1]      [,2] [,3]
## [1,]    1 0.0000000    0
## [2,]    3 1.0000000    0
## [3,]    4 0.6666667    1
## 
## $U
##      [,1] [,2]      [,3]
## [1,]    1    2  3.000000
## [2,]    0   -3 -8.000000
## [3,]    0    0  1.333333
# Question 12
# Multiply the matix A by its inverse (I)
I<-solve(A) # find the inverse using slove
I
##      [,1] [,2]  [,3]
## [1,] -4.5 -0.5  1.75
## [2,]  5.0  1.0 -2.00
## [3,] -1.5 -0.5  0.75
A%*%I # multiply matrix A and inverse I
##               [,1]          [,2]         [,3]
## [1,]  1.000000e+00 -2.220446e-16 4.440892e-16
## [2,] -4.440892e-16  1.000000e+00 2.220446e-16
## [3,]  0.000000e+00  0.000000e+00 1.000000e+00