This is my attempt to duplicate this economist plot.

bp <- read.csv("Blood_Pressure.csv",header = F)
bp<-bp[1:200,]
names(bp)<- c("Country","ISO","Man_prevalence","Woman_prevalence","Text","Category")
bp$Man_prevalence<-bp$Man_prevalence*100
bp$Woman_prevalence<-bp$Woman_prevalence*100
bp$Category<-factor(bp$Category, levels=c("Central and Eastern Europe","High-Income Western","Sub-Saharan Africa","Other"))

head(bp,30)
##                   Country ISO Man_prevalence Woman_prevalence     Text
## 1                 Albania ALB        33.0165          25.0051         
## 2  Bosnia and Herzegovina BIH        33.9592          27.5857         
## 3                Bulgaria BGR        33.6334          22.9666         
## 4                 Croatia HRV        38.4052          26.3309 Croatian
## 5          Czech Republic CZE        34.4005          21.1890         
## 6                 Estonia EST        34.2512          20.8743         
## 7                 Hungary HUN        36.0937          23.9852         
## 8                  Latvia LVA        36.4342          22.9443         
## 9               Lithuania LTU        36.1294          23.0609         
## 10       Macedonia (TFYR) MKD        32.7202          24.0737         
## 11             Montenegro MNE        34.3683          23.8256         
## 12                 Poland POL        34.5629          22.9717         
## 13                Romania ROU        34.7345          25.1701         
## 14                 Serbia SRB        33.7858          25.1538         
## 15               Slovakia SVK        34.2575          22.8467         
## 16               Slovenia SVN        35.7978          24.9390         
## 17                Andorra AND        23.1990          14.1659         
## 18    Antigua and Barbuda ATG        26.4043          20.3508         
## 19              Argentina ARG        27.5787          17.6478         
## 20              Australia AUS        18.0209          12.3193         
## 21                Austria AUT        25.1695          16.8004         
## 22                Bahamas BHS        25.2054          16.8495         
## 23               Barbados BRB        26.9746          21.6732         
## 24                Belgium BEL        22.3969          12.5584         
## 25                 Canada CAN        15.5854          10.7832   Canada
## 26                  Chile CHL        25.3772          16.5205         
## 27             Costa Rica CRI        21.0475          16.3033         
## 28                 Cyprus CYP        23.8914          15.4575         
## 29                Denmark DNK        26.4563          14.7673         
## 30                Finland FIN        23.9947          14.6599         
##                      Category
## 1  Central and Eastern Europe
## 2  Central and Eastern Europe
## 3  Central and Eastern Europe
## 4  Central and Eastern Europe
## 5  Central and Eastern Europe
## 6  Central and Eastern Europe
## 7  Central and Eastern Europe
## 8  Central and Eastern Europe
## 9  Central and Eastern Europe
## 10 Central and Eastern Europe
## 11 Central and Eastern Europe
## 12 Central and Eastern Europe
## 13 Central and Eastern Europe
## 14 Central and Eastern Europe
## 15 Central and Eastern Europe
## 16 Central and Eastern Europe
## 17        High-Income Western
## 18                      Other
## 19                      Other
## 20        High-Income Western
## 21        High-Income Western
## 22        High-Income Western
## 23                      Other
## 24        High-Income Western
## 25        High-Income Western
## 26                      Other
## 27                      Other
## 28        High-Income Western
## 29        High-Income Western
## 30        High-Income Western
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
library(ggrepel)
result <- ggplot(bp,aes(x=Woman_prevalence,y=Man_prevalence,col=bp$Category,legend.title=NULL))+ geom_ribbon(aes(x=luas,ymin=0,ymax=luas), fill="#E9F2F7",alpha=0.4,show.legend=FALSE,inherit.aes = FALSE)+
  geom_point(size=2.5)+geom_text_repel(data=bp,aes(label=Text),color="black")
result<- result + theme_minimal()+
  labs(
    title="Matters of the heart",
    subtitle="Prevalance of raised blood pressure*,by sex,2015,%",
    caption="Source: MCD Risk Factor Collaboration",
    x="Woman",
    y="Man"
  )

result<-result+scale_x_continuous(breaks=seq(0,40,by=10))+scale_y_continuous(breaks=seq(0,40,by=10))
result<-result+expand_limits(y=c(0,40),x=c(0,40))+theme(panel.grid.minor=element_blank(),panel.grid.major=element_line(colour="#dbe2e7",size=0.5),legend.position="top",legend.title=element_blank())
result<-result+geom_abline(intercept=0,slope=1,linetype="dashed",color="#95acb8")
result<-result+scale_color_manual(values=c("#f15b40","#eca221","#00526d","#b0c6d2"))
#result<-result+geom_text(aes(x=x1,y=y1,label=texthere),data.frame(x1=30,y1=10,texthere="Woman more likely to have high blood pressure"))

library(grid)
grob = grobTree(textGrob("Women more likely \n to have high blood \n pressure \n", x=0.75, y=0.25, just = "centre", gp=gpar(col="#628495", fontsize=12)))
grob1 = grobTree(textGrob("Men more likely \n to have high blood \n pressure \n", x=0.25, y=0.875, just = "centre", gp=gpar(col="#628495", fontsize=12)))
luas <- seq(0.2,40, by=0.2)

result+ annotation_custom(grob1) + annotation_custom(grob)