Week 1 Math Homework (1)
Derivatives
q1. F(x|x≥0)=1−e^(−λx)
#x[x>=0]
q1<- expression(1-exp^(lambda*x))
q1_a<-D(q1,'x')
print (q1_a)
## -(exp^(lambda * x) * (log(exp) * lambda))
Q2. F(x|b>a)=(x−a)/(b−a)
#x[b>a]
q2 = expression((x−a)/(b−a))
q2_a <- D(q2, "x")
print (q2_a)
## 1/(b - a)
Q3: F(x|a<x≤c≤b)=(x−a)2/(b−a)(c−a)
#x[a<x<=c<=b]
q3 = expression((x-a)^2/(b-a)*(c-a))
q3_a <- D(q3,'x')
print (q3_a)
## 2 * (x - a)/(b - a) * (c - a)
Q4: F(x|a≤c<x<b)=1−(b−x)^2/(b−a)(c−a)
q4 = expression(1-(b-x)^2/(b-a)*(c-a))
q4_a <- D(q4,'x')
print (q4_a)
## 2 * (b - x)/(b - a) * (c - a)
Q5: ∫0/10 3x^3 dx
q5 <- function (x) {3*x^3}
integrate(q5, lower = 0, upper = 10)
## 7500 with absolute error < 8.3e-11
Q6: ∫o/x xλe−λx dx
Let u=x and dv=e^-x
du= 1dx and v= intg of e^-x du - (intg of vdu)
1 - (-e^-x +c) = 1 + e^-x +c
lambda <- 1
q6<- function (x) x*lambda
q6_a <- Deriv(q6)
print (q6_a)
## function (x)
## lambda
Q7:∫0/.5 1/b−a dx
antiDeriv = x/(b-a)+c
q7<- antiD(1/(b-a)~x)
print (q7)
## function (x, C = 0, b, a)
## 1/(b - a) * x + C
q8<- ∫0/x x(1/Γ(α)β^α * x^α−1*exp(−βx) dx
rewritten as: (1/RhoalphaBetaalpha)(x^alpha-1)e-Beta(x) AntiDeriv = x{alpha+1}/alphabetagamma{alpha}e^{beta}
q8 = antiD(x^{alpha+1}/alpha*beta*gamma^{alpha}*e^{beta}~x)
print (q8)
## function (x, alpha, beta, gamma, e, C = 0)
## {
## numerical_integration(.newf, .wrt, as.list(match.call())[-1],
## formals(), from, ciName = intC, .tol)
## }
## <environment: 0x000000001e092de0>
Linear Algebra
Create Matrix [123] x=[331] [468]
LA_matrix <- matrix (c(1,2,3,3,3,1,4,6,8), nrow =3, byrow = TRUE)
Prep work creating the Identity Matrix
LA_I <- cbind(LA_matrix, diag (3))
print (LA_I)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 1 0 0
## [2,] 3 3 1 0 1 0
## [3,] 4 6 8 0 0 1
Q9: Invert it using Gaussian row reduction (Gaussian Elimination)
LA_I[2,] <- -3 * LA_I[1,] + LA_I[2,]
LA_I[3,] <- -4 * LA_I[1,] + LA_I[3,]
LA_I[2,] <- -(1/3) * LA_I[2,]
LA_I[1,] <- -2 * LA_I[2,] + LA_I[1,]
LA_I[3,] <- 2 * LA_I[2,] + LA_I[3,]
LA_I[3,] <- (3/4) * LA_I[3,]
LA_I[1,] <- (7/3) * LA_I[3,] + LA_I[1,]
LA_I[2,] <- -(8/3) * LA_I[3,] + LA_I[2,]
inverseLA <- LA_I[,-(1:3)]
print(inverseLA)
## [,1] [,2] [,3]
## [1,] -4.5 -0.5 1.75
## [2,] 5.0 1.0 -2.00
## [3,] -1.5 -0.5 0.75
Q10: Find the determinant.
q10 <- det(LA_matrix)
print (q10)
## [1] -4
Q11. Conduct LU decomposition
LU_matrix <- lu(LA_matrix)
expandLU_matrix <- expand (LU_matrix)
expandLU_matrix$L
## 3 x 3 Matrix of class "dtrMatrix" (unitriangular)
## [,1] [,2] [,3]
## [1,] 1.0000000 . .
## [2,] 0.7500000 1.0000000 .
## [3,] 0.2500000 -0.3333333 1.0000000
expandLU_matrix$U
## 3 x 3 Matrix of class "dtrMatrix"
## [,1] [,2] [,3]
## [1,] 4.0000000 6.0000000 8.0000000
## [2,] . -1.5000000 -5.0000000
## [3,] . . -0.6666667
Q12. Multiply the matrix by it’s inverse
inverseLA %*% LA_matrix
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1