Objetivo
- Visualizar la tendencia del puntaje ranking fifa de Peru y Chile previo al mundial 2018
- Usar Python para la importación y manejo de data, y R para visualizar
Python
import pandas as pd
import os
os.getcwd()
## 'C:\\Users\\consultor01\\Desktop\\R+Python'
fifa = pd.read_csv('fifa_ranking.csv')
fifa.head()
# Seleccionando a Peru y Chile
## rank country_full ... confederation rank_date
## 0 1 Germany ... UEFA 1993-08-08
## 1 2 Italy ... UEFA 1993-08-08
## 2 3 Switzerland ... UEFA 1993-08-08
## 3 4 Sweden ... UEFA 1993-08-08
## 4 5 Argentina ... CONMEBOL 1993-08-08
##
## [5 rows x 16 columns]
fifa = fifa[(fifa['country_abrv'] == 'PER')|(fifa['country_abrv'] == 'CHI')]
fifa.head()
# ... con total_points > 0
## rank country_full ... confederation rank_date
## 48 49 Chile ... CONMEBOL 1993-08-08
## 69 70 Peru ... CONMEBOL 1993-08-08
## 218 52 Chile ... CONMEBOL 1993-09-23
## 239 73 Peru ... CONMEBOL 1993-09-23
## 385 52 Chile ... CONMEBOL 1993-10-22
##
## [5 rows x 16 columns]
fifa = fifa[fifa.total_points > 0]
fifa.describe()
# considerar solo las columnas rank, country_abrv, total_points, rank_change, cur_year_avg,
# last_year_avg, rank_date
## rank total_points ... three_year_ago_avg three_year_ago_weighted
## count 166.000000 166.000000 ... 166.000000 166.000000
## mean 23.614458 928.766386 ... 396.037048 79.207289
## std 16.389820 247.555503 ... 140.252879 28.050459
## min 3.000000 486.820000 ... 68.420000 13.680000
## 25% 11.000000 703.145000 ... 257.802500 51.560000
## 50% 16.000000 965.370000 ... 418.865000 83.775000
## 75% 36.750000 1124.925000 ... 488.625000 97.727500
## max 64.000000 1422.140000 ... 673.710000 134.740000
##
## [8 rows x 12 columns]
fifa = fifa[['rank', 'country_abrv', 'total_points', 'rank_change',
'cur_year_avg', 'last_year_avg', 'rank_date']]
fifa.head()
## rank country_abrv total_points ... cur_year_avg last_year_avg rank_date
## 40389 11 CHI 959.85 ... 447.07 572.30 2011-08-24
## 40404 26 PER 805.72 ... 448.07 550.70 2011-08-24
## 40598 14 CHI 932.15 ... 417.26 586.12 2011-09-21
## 40619 35 PER 723.80 ... 422.61 420.24 2011-09-21
## 40807 16 CHI 941.48 ... 459.03 472.01 2011-10-19
##
## [5 rows x 7 columns]
R
# Visualizar la tendencia del puntaje Fifa de Perú
library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
g = ggplot(py$fifa, aes(x=rank_date, y=total_points, group=country_abrv,color=country_abrv)) + geom_point() + geom_line(aes(color=country_abrv))+
theme(axis.text.x = element_text(angle = 90, hjust = 1),legend.position = "top")
ggplotly(g)