commonstates = c("Labrador","ME","Newfoundland","Nova Scotia","West Greenland")
Lat ~ (Days at Sea, by = river or distant) + Type (river or distant)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Lat ~ s(DaysatSea, by = Type) + Type
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.0021 0.1393 387.58 <0.0000000000000002 ***
## Typeriver -9.4922 0.1644 -57.74 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(DaysatSea):Typedistant 8.964 8.999 1315 <0.0000000000000002 ***
## s(DaysatSea):Typeriver 1.001 1.002 0 0.995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.836 Deviance explained = 83.6%
## -REML = 18809 Scale est. = 11.391 n = 7124
Panel 1 represents northward journey (<500 days at sea) Panel 2 represents the southward journey (>500 days at sea)
Keep data for “river returns” and “distant recaps” seperate, but let distant recaps be informed by release data
Lat ~ s(Days at sea) for river recaptures only
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Lat ~ s(DaysatSea)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.31577 0.02753 1719 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(DaysatSea) 8.973 9 4640 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.75 Deviance explained = 75%
## -REML = 36293 Scale est. = 10.575 n = 13955
Predicted lat values for river recaptures only
Keep data for “river returns” and “distant recaps” seperate, but let distant recaps be informed by release data
Lat ~ s(Days at sea) for distant recaptures only
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Lat ~ s(DaysatSea)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.25154 0.03639 1326 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(DaysatSea) 8.941 8.999 3208 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.727 Deviance explained = 72.7%
## -REML = 29917 Scale est. = 14.383 n = 10860
Predicted lat values for distant recaptures only
Days at sea ~ s(Lat,Long) + Type
##
## Family: gaussian
## Link function: identity
##
## Formula:
## DaysatSea ~ s(Long, Lat) + Type
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 473.792 9.383 50.50 <0.0000000000000002 ***
## Typerelease -477.269 12.148 -39.29 <0.0000000000000002 ***
## Typeriver 280.747 12.171 23.07 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Long,Lat) 27.31 28.77 134 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.944 Deviance explained = 94.4%
## -REML = 82109 Scale est. = 6420.3 n = 14143
Predicted values for days at sea based on lat/long model
Model prediction in 3D