| Homework 1 |
| Derivatives |
| Find the derivatives with the respect to x of the following. |
library(mosaic)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: lattice
## Loading required package: ggformula
## Loading required package: ggplot2
## Loading required package: ggstance
##
## Attaching package: 'ggstance'
## The following objects are masked from 'package:ggplot2':
##
## geom_errorbarh, GeomErrorbarh
##
## New to ggformula? Try the tutorials:
## learnr::run_tutorial("introduction", package = "ggformula")
## learnr::run_tutorial("refining", package = "ggformula")
## Loading required package: mosaicData
## Loading required package: Matrix
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median,
## prop.test, quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(matrixcalc)
f = expression(1-log(x)^(-λx))
D(f,'x')
## -(log(x)^((-λx) - 1) * ((-λx) * (1/x)))
Ans2 = expression(x-a/b-a)
D(Ans2,'x')
## [1] 1
Ans3 = expression((x-a)^2/(b-a)*(c-a))
D(Ans3,'x')
## 2 * (x - a)/(b - a) * (c - a)
Ans4 = expression(1-((b-x)^2/(b-a)*(c-a)))
D(Ans4,'x')
## 2 * (b - x)/(b - a) * (c - a)
Integrals Solve the following definite and indefinite integrals
Ans5 <- function(x) {3*x^3}
integrate(Ans5, lower = 0, upper = 10000)
## 7.5e+15 with absolute error < 83
# lambda replaced by constant for any rate of change
#Greek symbol of sigma and others seemed to be in library but can't find #lambda
Ans6 <- function(x) {x*.05*log(x)^-.05*x}
integrate(Ans6, lower = 0, upper = 10000)
## 14943504082 with absolute error < 27
#Ans7 <- function(x) {1 / (b-a) dx}
#Ans7
Ans7 <- function(x) {2*x}
Ans7
## function(x) {2*x}
integrate(Ans7, lower = 0, upper = 5)
## 25 with absolute error < 2.8e-13
#Ans8 <- function(x) {x*(1/ r * alpha * B^alpha * (x^alpha-1) #ln(x)^beta*x }
AnsB <- function(x) {2*x}
AnsB
## function(x) {2*x}
integrate(AnsB, lower = 0, upper = 5)
## 25 with absolute error < 2.8e-13
Hint: the last part of the equation is beginning with the gamma function is a Gamma probability distribution function. Try rearranging the terms to integrate another Gamma distribution out of the integral, as pdfs must integrate to 1.
Linear Algebra With the following matrix, X=⎡⎣⎢134236318⎤⎦⎥
A <- matrix(c(1,3,4,2,3,6,3,1,8), ncol= 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 3 3 1
## [3,] 4 6 8
I <- matrix(c(1,0,0,0,1,0,0,0,1), ncol=3)
I
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
A <- matrix(c(1,3,4,2,3,6,3,1,8), ncol= 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 3 3 1
## [3,] 4 6 8
solve(A)
## [,1] [,2] [,3]
## [1,] -4.5 -0.5 1.75
## [2,] 5.0 1.0 -2.00
## [3,] -1.5 -0.5 0.75
A <- matrix(c(1,3,4,2,3,6,3,1,8), ncol= 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 3 3 1
## [3,] 4 6 8
det(A)
## [1] -4
A <- matrix(c(1,3,4,2,3,6,3,1,8), ncol= 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 3 3 1
## [3,] 4 6 8
Ans11 <- lu.decomposition(A)
Ans11
## $L
## [,1] [,2] [,3]
## [1,] 1 0.0000000 0
## [2,] 3 1.0000000 0
## [3,] 4 0.6666667 1
##
## $U
## [,1] [,2] [,3]
## [1,] 1 2 3.000000
## [2,] 0 -3 -8.000000
## [3,] 0 0 1.333333
A <- matrix(c(1,3,4,2,3,6,3,1,8), ncol= 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 3 3 1
## [3,] 4 6 8
B <-solve(A)
B
## [,1] [,2] [,3]
## [1,] -4.5 -0.5 1.75
## [2,] 5.0 1.0 -2.00
## [3,] -1.5 -0.5 0.75
A %*% B
## [,1] [,2] [,3]
## [1,] 1.000000e+00 -1.110223e-16 2.220446e-16
## [2,] -1.332268e-15 1.000000e+00 6.661338e-16
## [3,] -1.776357e-15 -8.881784e-16 1.000000e+00
#Answer of 12
##
##
Ans12 <- matrix(c(1,0,0,0,1,0,0,0,1), ncol =3)
Ans12
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
is the answer to the matrix by it’s inverse