Our purpose is to analyse the results of 2019 European Parliament election in Italy by using a Pivot Table. We focus our attention to the 4 provinces of Abruzzo region.
setwd("~/Coursera/Data_Science")
fileloc <- "./datasets/Italia/europee2019_scrutini_area_italia.csv"
itdata <- read.csv(fileloc, header = TRUE, sep = ";",
strip.white = TRUE, stringsAsFactors = FALSE)
names(itdata)[c(3,4,5,6)] <- c("Provincia", "Comune", "Lista", "Voti")
You can also embed plots, for example:
abruzzo <- itdata[itdata$REGIONE == "ABRUZZO", -1]
head(abruzzo, 5)
## REGIONE Provincia Comune Lista Voti
## 86251 ABRUZZO CHIETI ALTINO LEGA SALVINI PREMIER 618
## 86252 ABRUZZO CHIETI ALTINO MOVIMENTO 5 STELLE 413
## 86253 ABRUZZO CHIETI ALTINO PARTITO DEMOCRATICO 232
## 86254 ABRUZZO CHIETI ALTINO FORZA ITALIA 183
## 86255 ABRUZZO CHIETI ALTINO FRATELLI D'ITALIA 80
## we are interested to the 5 main parties
parties <- head(abruzzo$Lista, 5)
abruzzo$Party <- ifelse(test = abruzzo$Lista %in% parties, yes = abruzzo$Lista, no = "Altro")
Use a Pivot Table to display the vote percentages of the 5 parties by province:
library(rpivotTable)
rpivotTable(data = abruzzo, rows = "Provincia", cols = "Party", aggregatorName = "Sum as Fraction of Rows",
vals = "Voti", rendererName = "Heatmap")