for (i in 1:6){
  print(paste("********** Trial",i,"**********"))
suppressMessages({

raw <- read_csv(as.character(z[i,3]))
key <- read_csv(as.character(z[i,2]))

 
flagged.good <- start_fire(raw, key,start=as.data.frame(z)[i,4]%>%ymd())%>%power_flag()
flagged.good %>% meta_fire()
# 1.1. File records filter by unit
flagged.fil<-flagged.good%>%filter(!is.na(unit))
flagged.fil%>%pyro_plot()

flagged.fil<-arrange(flagged.fil,Location,Date,Entry)%>%
  filter(Ear_Tag!="000000000000000")%>%
  mutate(follower=lead(Ear_Tag), follower_loc=lead(Location), follower_Date=lead(Date),
         follower_Entry=lead(as.numeric(Entry)))%>%
  mutate(to_next=as.numeric(follower_Entry)-as.numeric(Exit))%>%
  mutate(to_next=to_next+(to_next<0)*86400)%>%
  filter(Location==follower_loc,follower_Date-Date<=1)%>%
  select(Location,Date,Entry,Exit, Consumed,Weight,Ear_Tag,visit.length,
         intake.rate,barcode,trial.day,follower:to_next)

})

# 1.3. Hour of first entry to feeder
h1<-flagged.fil%>%
  group_by(Ear_Tag)%>%arrange(Location,Date,Entry,Exit,Ear_Tag)%>%
  distinct(Ear_Tag, .keep_all = T)%>%ungroup(h1)%>%
  select(Location,Date,Entry,Exit,Ear_Tag,Consumed,trial.day)

# 2. Hour to first food, minimun consumed it 0.100 gr
l1<-flagged.fil%>%filter(Consumed>=0.100)%>%
  group_by(Ear_Tag)%>%arrange(Location,Date,Entry,Exit,Ear_Tag)%>%
  distinct(Ear_Tag, .keep_all = T)%>%ungroup(l1)%>%
  select(Location,Date,Entry,Exit,Ear_Tag,Consumed,trial.day)

if(!exists("event_log")){
  event_log<-mutate(flagged.fil,trial=i)
} else { 
  event_log<-rbind(event_log,mutate(flagged.fil,trial=i))
}

if(!exists("first.visit")){
  first.visit<-mutate(h1,trial=i,visit.type="V")
} else { 
  first.visit<-rbind(first.visit,mutate(h1,trial=i,visit.type="V"))
}
first.visit<-rbind(first.visit,mutate(l1,trial=i,visit.type="M"))
print("end of trial----------")
plot(0,0,"n")
}
## [1] "********** Trial 1 **********"
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning: Removed 130 rows containing missing values (geom_point).

## Warning: Removed 130 rows containing missing values (geom_point).

## [1] "end of trial----------"
## [1] "********** Trial 2 **********"
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning: Removed 1395 rows containing missing values (geom_point).

## Warning: Removed 1395 rows containing missing values (geom_point).

## [1] "end of trial----------"

## [1] "********** Trial 3 **********"
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning: Removed 756 rows containing missing values (geom_point).

## Warning: Removed 756 rows containing missing values (geom_point).

## [1] "end of trial----------"
## [1] "********** Trial 4 **********"
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in is.na(unit): is.na() applied to non-(list or vector) of type
## 'closure'

## Warning: Removed 647 rows containing missing values (geom_point).

## Warning: Removed 647 rows containing missing values (geom_point).

## [1] "end of trial----------"
## [1] "********** Trial 5 **********"
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in is.na(unit): is.na() applied to non-(list or vector) of type
## 'closure'

## Warning: Removed 130 rows containing missing values (geom_point).

## Warning: Removed 130 rows containing missing values (geom_point).

## [1] "end of trial----------"
## [1] "********** Trial 6 **********"
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in is.na(unit): is.na() applied to non-(list or vector) of type
## 'closure'

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning: Removed 158 rows containing missing values (geom_point).

## Warning: Removed 158 rows containing missing values (geom_point).

## [1] "end of trial----------"

Time of first visit to the feeder, and time to first food, minimun consumed it 0.100 gr

table(first.visit$trial.day)
## 
##   0   1   2   3   4   5   6 
## 132  65  11  10  14   3   1
first.visit<-mutate(first.visit,hfm=Entry%>%as.numeric()/3600,trial.hour=24*trial.day+hfm)

first_visit_hours<-first.visit%>%filter(trial.hour<=72)
earliest<-first_visit_hours%>%group_by(trial,Location)%>%summarise(earliest=min(trial.hour))
first_visit_hours<-left_join(first_visit_hours,earliest,by=c("Location","trial"))%>%mutate(trial.hour=trial.hour-earliest)

by(first_visit_hours$trial.hour,INDICES = first_visit_hours$visit.type,summary)
## first_visit_hours$visit.type: M
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   3.854   7.692  13.134  20.734  57.346 
## -------------------------------------------------------- 
## first_visit_hours$visit.type: V
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.5708  4.6342 10.1679 18.0017 50.0731
by(first_visit_hours$trial.hour,INDICES = first_visit_hours$visit.type,sd)
## first_visit_hours$visit.type: M
## [1] 12.68536
## -------------------------------------------------------- 
## first_visit_hours$visit.type: V
## [1] 12.15547
by(first_visit_hours$trial.hour,INDICES = first_visit_hours$visit.type,IQR)
## first_visit_hours$visit.type: M
## [1] 16.87944
## -------------------------------------------------------- 
## first_visit_hours$visit.type: V
## [1] 17.43083
ggplot(first_visit_hours,aes(x=trial.hour))+geom_density()+facet_wrap(.~visit.type)

ggplot(first_visit_hours,aes(y=trial.hour,x=visit.type))+geom_boxplot()

Eventlog Analysis and Interaction matrices by trial and location

interaction_table<-event_log%>%select(Ear_Tag,follower)%>%by(data = .,INDICES = list (event_log$Location,event_log$trial),FUN = table)
print(interaction_table)
## : 1
## : 1
##         follower
## Ear_Tag  Y64-16 Y64-17 Y66-12 Y66-14 Y67-14 Y68-11 Y68-12 Y69-12 Y70-13
##   Y64-16      0     12     13     14      9     23     27     12     27
##   Y64-17     19      2     21     16      9     14     12     11     22
##   Y66-12     13     15      5      9     18     13     17      6     18
##   Y66-14     10     20      6      3     14     12     21     12     21
##   Y67-14     14     15     13     16      5     15     27     15     17
##   Y68-11     15     18     17     16     12      8     16     12     18
##   Y68-12     16     23     22     26     16     19      4     16     27
##   Y69-12     10     14     10     12     14     13      9      4     19
##   Y70-13     27     20     14     13     30     20     35     16      9
##   Y71-12     18     14     11     22     39     15     21     26     34
##   Y77-10     24     12     12     12     19      9     23     15     16
##   Y77-11     14     17     14      8      8     19     26      5     14
##         follower
## Ear_Tag  Y71-12 Y77-10 Y77-11
##   Y64-16     18     15     10
##   Y64-17     23     12     21
##   Y66-12     16     16     12
##   Y66-14     18     17     12
##   Y67-14     32     12     11
##   Y68-11     23     16      9
##   Y68-12     27     19     23
##   Y69-12     19     17     10
##   Y70-13     22     19     17
##   Y71-12      6     21     18
##   Y77-10     25      2     11
##   Y77-11     15     14      1
## -------------------------------------------------------- 
## : 2
## : 1
##         follower
## Ear_Tag  Y64-14 Y65-10 Y66-10 Y67-11 Y68-14 Y70-11 Y70-12 Y74-14 Y76-13
##   Y64-14      4     18      9     22     18     13     25      7     38
##   Y65-10     21      5     17     18     12      7     14     12     24
##   Y66-10     14      8      5     31     25     13     26     26     75
##   Y67-11     21     25     28     12     25     24     29     29     34
##   Y68-14     11     20     26     20      1     11     19     14     50
##   Y70-11     17      8     15     25     15      2     12     21     18
##   Y70-12     19     17     22     31     15     16      7     19     47
##   Y74-14     14     18     21     23     19     18     28      1     41
##   Y76-13     29     18     61     54     48     26     38     48      5
##   Y76-15     29     23     19     38     17     16     24     34     50
##   Y77-12     11     13     23     26     10     14     15     10     44
##   Y77-13      9      7     18     15     17     18     10     11     17
##         follower
## Ear_Tag  Y76-15 Y77-12 Y77-13
##   Y64-14     27      7     11
##   Y65-10     17     20     14
##   Y66-10     19     13      8
##   Y67-11     46     27     14
##   Y68-14     21     14     15
##   Y70-11     21      9     15
##   Y70-12     28     14     12
##   Y74-14     27     13      9
##   Y76-13     61     28     27
##   Y76-15      1     19     16
##   Y77-12     11      2      7
##   Y77-13      7     19      0
## -------------------------------------------------------- 
## : 1
## : 2
##        follower
## Ear_Tag 1353 1354 1355 1356 1357 1358 1359 1360 1361 1365 1367
##    1353   47   76   62   62   84   72   72   97   93  169   86
##    1354   70   31   67   59   43   67   79   55   64   75   56
##    1355   65   75   97   87   85   56   85   55   88   69   56
##    1356   62   67   88   36   73   53  103   60   60   91   65
##    1357   89   63   68   71   30   54   59   76   85   76   72
##    1358   84   46   68   59   71   11   98   58   80   86   63
##    1359   92   61   92  102   68   91   46   76   78   92   77
##    1360   83   44   67   65   74   86   85   27   81   74   58
##    1361   89   71   80   82   69   78   68   70   55  129  105
##    1365  135   69   72   76   75  100  105  103  125   59   95
##    1367  104   63   57   59   71   57   74   67   87   94   21
## -------------------------------------------------------- 
## : 2
## : 2
##        follower
## Ear_Tag 1302 1304 1305 1306 1307 1310 1311 1312 1313 1314 1316
##    1302   23   46   55   41   45   53   69   49   51   62   60
##    1304   40   59   78   66   40   77  102   67   50   58   89
##    1305   62   66   25   81   81   71   94   77   77   59   66
##    1306   54   82   96   73   53   53   90   85   59   53   64
##    1307   50   70   58   48   21   83   75   80  116   63   44
##    1310   43   74   54   78   81   88   87   67   71   54   68
##    1311   53   69   85   89   87   89   65   84  134   79   99
##    1312   66   72   81   76   59   70   85   18   83   45   65
##    1313   60   65   86   76   99   57  112   74   39   76   82
##    1314   51   64   66   53   76   53   75   55   70   34   42
##    1316   51   59   75   82   66   71   79   64   76   56  100
## -------------------------------------------------------- 
## : 1
## : 3
##        follower
## Ear_Tag 1102 1413 1415 1418 1419 1598 1653 1666 1668 1672 1691
##    1102    0   28   40   35   34   31   49   59   54   79   44
##    1413   27    8   27   44   43   70   67   67   54   78   72
##    1415   45   32    9   52   33   60   72   72   90   73   78
##    1418   37   44   54    6   51   56   84   58   91   88   76
##    1419   42   35   55   41    2   55   70   64   73   92   69
##    1598   51   56   39   56   45    7  102   67  129   94   80
##    1653   57   76   77   73   75   84   40   92  194  181  119
##    1666   45   89   72   62   61  106   84    5  117   92   83
##    1668   43   68   84   93   85  102  194  152   31  131  121
##    1672   58   55  107   88   99   89  183   97  144   19  132
##    1691   48   66   52   95   70   66  124   82  127  144    8
## -------------------------------------------------------- 
## : 2
## : 3
##        follower
## Ear_Tag 1106 1129 1132 1200 1371 1421 1688 1689 1699 2034 2346
##    1106    8   61   61  138   70   95   96   50   64   67   77
##    1129   64   10   30   72   62   74   57   20   24   42   49
##    1132   52   29   22   44   54   54   63   32   32   57   45
##    1200  127   71   62   37   85  186  102   57   63   65   90
##    1371   74   54   71   79   17   72   45   45   33   58   43
##    1421   72   69   61  190   82    3  105   51   63   44   48
##    1688   96   57   38  137   41   95    2   48   57   35   58
##    1689   50   37   36   48   38   51   38    2   27   36   33
##    1699   71   39   28   50   40   63   56   21    6   36   38
##    2034   65   29   45   61   56   47   53   46   40    7   29
##    2346  108   48   30   89   46   49   47   24   39   31    6
## -------------------------------------------------------- 
## : 1
## : 4
##        follower
## Ear_Tag 1127 1408 1412 1416 2337 2338 2339 2342
##    1127    3   54   82   45   85   81  105   76
##    1408   53   24  108   48   87   88   93   69
##    1412  101   93   10   85  100  103  169  109
##    1416   50   52   76    6   85   76   88   76
##    2337   89   74  136   71   18  120  140  109
##    2338   69   82   98   68  116   38  144  110
##    2339   94  113  149  105  136  121   34  148
##    2342   72   78  111   81  130   98  127   18
## -------------------------------------------------------- 
## : 2
## : 4
##        follower
## Ear_Tag 1376 1378 1379 1403 1410 2336 2340 2341
##    1376   75  166  102   97   86   99   88  109
##    1378  125   20  146  235  110  123   90  142
##    1379  119  136   13  125  120  174  131  157
##    1403  119  154  151   37  118  163   93  107
##    1410   94  122  160   80   30   68   96   89
##    2336  105  136  160  135   82   40   90  143
##    2340   87  107  117   76   78   99   79   92
##    2341   98  150  126  156  115  125   68   34
## -------------------------------------------------------- 
## : 1
## : 5
##        follower
## Ear_Tag 2084 2111 2129 2138 2146 2345 2347 2349
##    2084   11   28   42   40   73   41   27   34
##    2111   53    6   50   39   87   98   55   39
##    2129   42   53    7   41  113   52   40   46
##    2138   27   52   36    9   58   68   26   30
##    2146   46  154  107   59   22   94   66   79
##    2345   41   48   72   37  132    2   57   51
##    2347   26   53   40   31   73   40    1   28
##    2349   51   33   40   49   69   45   20    2
## -------------------------------------------------------- 
## : 2
## : 5
##        follower
## Ear_Tag 2082 2089 2134 2144 2343 2344 2348 2350
##    2082   32   49   63   53   56   52   55   27
##    2089   37    7   73   63   47   26   55   26
##    2134   82   52   18   85   61   45   63   37
##    2144   73   59   65   22   50   49   82   55
##    2343   47   46   70   65   10   32   49   39
##    2344   20   38   46   43   52    7   31   31
##    2348   60   50   64   75   49   31   11   31
##    2350   36   33   44   50   33   25   25    3
## -------------------------------------------------------- 
## : 1
## : 6
##        follower
## Ear_Tag 1317 1318 1319 1320 1321 1322 2005 2097 2098
##    1317    1   21    9   21   14   20   14    5   23
##    1318   20    9   25   14   13   14    9   11   19
##    1319   25   14    0    9   22   12    8    7   19
##    1320   12   23   15    1   15   21   13   16   21
##    1321   11   12   16   22    2   23   14   19   13
##    1322   16   22   11   20   18    0   17   13   23
##    2005   12    9    6   12   13   11    1    7   24
##    2097   11   14   16   14    8   13    8    2   18
##    2098   20   10   18   24   26   26   12   24    2
## -------------------------------------------------------- 
## : 2
## : 6
##        follower
## Ear_Tag 1323 1324 1325 1368 1369 1370 1371 1372 1373
##    1323    0   10   18   25    7   11   23   14   23
##    1324   12    1   11   14    9    8   11   11   11
##    1325   11   10    8   18   14   14   16   16   14
##    1368   21   20   17    4   13   11   28   21   27
##    1369   11    6    8   11    1   12    5   10   13
##    1370   13    9    9   17    9    0   18   15    5
##    1371   26    7   17   30    6   10    9   18   17
##    1372   14   12   20   15    6   15   13    4   20
##    1373   23   13   13   28   12   14   17   10    1

Linear fixed effects models for length of visit variable

Length visit < 600 seconds

Linear regression of length of visit on ID pig and follower pig ID

tr<-600
close_visit<-event_log%>%filter(to_next<tr)
dim(close_visit)
## [1] 51855    17
lmf<-close_visit%>%by(data=.,INDICES=close_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     23  178747682 7771638 31.8940 < 2.2e-16 ***
## follower    22   29756917 1352587  5.5509 1.255e-15 ***
## Residuals 4594 1119425539  243671                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag      21  102383514 4875405 28.3820 < 2.2e-16 ***
## follower     20   30907221 1545361  8.9963 < 2.2e-16 ***
## Residuals 15292 2626831216  171778                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      21  880573711 41932081 173.364 < 2.2e-16 ***
## follower     20   72317364  3615868  14.949 < 2.2e-16 ***
## Residuals 13951 3374379504   241874                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      15  208620904 13908060  93.481 < 2.2e-16 ***
## follower     14   28291915  2020851  13.583 < 2.2e-16 ***
## Residuals 10904 1622297374   148780                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  77078776 5138585 29.8988 < 2.2e-16 ***
## follower    14  10758980  768499  4.4715 4.642e-08 ***
## Residuals 4993 858125448  171866                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     17  20363601 1197859  9.1150 < 2.2e-16 ***
## follower    16  10900902  681306  5.1843 8.974e-11 ***
## Residuals 1897 249296946  131416                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=close_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: close_visit
## 
## REML criterion at convergence: 778374.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0784 -0.6959 -0.1553  0.5406  8.3411 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  39187   198.0   
##  follower:trial (Intercept)   3820    61.8   
##  Residual                   190778   436.8   
## Number of obs: 51855, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   601.74      19.26   31.24

Length visit >= 600 seconds

Linear regression of length of visit on ID pig and follower pig ID

distant_visit<-event_log%>%filter(to_next>=tr)
dim(distant_visit)
## [1] 6146   17
lmf<-distant_visit%>%by(data=.,INDICES=distant_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df    Sum Sq Mean Sq F value Pr(>F)    
## Ear_Tag    23  40014964 1739781  6.3447 <2e-16 ***
## follower   22   7402517  336478  1.2271 0.2186    
## Residuals 482 132169433  274210                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     21  19824292  944014  3.4812 1.686e-07 ***
## follower    20   8011361  400568  1.4772   0.07937 .  
## Residuals 1707 462894351  271174                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value Pr(>F)    
## Ear_Tag     21  82520084 3929528 16.6403 <2e-16 ***
## follower    20   4973896  248695  1.0531 0.3951    
## Residuals 1103 260467810  236145                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value Pr(>F)    
## Ear_Tag     15  45812825 3054188  23.440 <2e-16 ***
## follower    14   2096045  149718   1.149 0.3094    
## Residuals 1480 192839260  130297                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag    15   9945142  663009  3.1242 5.289e-05 ***
## follower   14   1648395  117742  0.5548    0.9002    
## Residuals 903 191633268  212218                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df   Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag    17  6064118  356713  4.0816 3.386e-07 ***
## follower   16  1094292   68393  0.7826    0.7048    
## Residuals 247 21586401   87394                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=distant_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: distant_visit
## 
## REML criterion at convergence: 93117.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7565 -0.6472 -0.1359  0.4845 14.2155 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  42673.9 206.58  
##  follower:trial (Intercept)    590.7  24.31  
##  Residual                   213075.7 461.60  
## Number of obs: 6146, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   642.44      20.56   31.25

#linear model length visit < 300 seconds

tr<-300
close_visit<-event_log%>%filter(to_next<tr)
dim(close_visit)
## [1] 49423    17
lmf<-close_visit%>%by(data=.,INDICES=close_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     23  172544692 7501943  31.020 < 2.2e-16 ***
## follower    22   30247403 1374882   5.685  3.85e-16 ***
## Residuals 4393 1062424150  241845                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag      21   94039265 4478060 26.6022 < 2.2e-16 ***
## follower     20   31183348 1559167  9.2623 < 2.2e-16 ***
## Residuals 14445 2431583453  168334                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      21  855134173 40720675 168.845 < 2.2e-16 ***
## follower     20   71211158  3560558  14.764 < 2.2e-16 ***
## Residuals 13518 3260165750   241172                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      15  201576449 13438430  91.443 < 2.2e-16 ***
## follower     14   26969479  1926391  13.108 < 2.2e-16 ***
## Residuals 10359 1522360980   146960                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  73275429 4885029 28.3100 < 2.2e-16 ***
## follower    14  11475504  819679  4.7503 9.645e-09 ***
## Residuals 4687 808763693  172555                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     17  18499827 1088225  8.1603 < 2.2e-16 ***
## follower    16  10613642  663353  4.9743 3.537e-10 ***
## Residuals 1797 239641540  133356                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=close_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: close_visit
## 
## REML criterion at convergence: 741573.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1422 -0.6961 -0.1549  0.5438  8.2906 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  39529   198.82  
##  follower:trial (Intercept)   3984    63.12  
##  Residual                   189528   435.35  
## Number of obs: 49423, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   601.08      19.38   31.02

Linear model length visit >= 300 seconds

distant_visit<-event_log%>%filter(to_next>=tr)
dim(distant_visit)
## [1] 8578   17
lmf<-distant_visit%>%by(data=.,INDICES=distant_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df    Sum Sq Mean Sq F value Pr(>F)    
## Ear_Tag    23  45872027 1994436  7.2427 <2e-16 ***
## follower   22   8243908  374723  1.3608 0.1253    
## Residuals 683 188079160  275372                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     21  29588878 1408994  5.4617 1.589e-14 ***
## follower    20   5598994  279950  1.0852    0.3577    
## Residuals 2554 658872298  257977                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value  Pr(>F)    
## Ear_Tag     21 111168241 5293726 21.9899 < 2e-16 ***
## follower    20   7224875  361244  1.5006 0.07156 .  
## Residuals 1536 369767458  240734                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value  Pr(>F)    
## Ear_Tag     15  53410042 3560669 24.7876 < 2e-16 ***
## follower    14   3848521  274894  1.9137 0.02109 *  
## Residuals 2025 290885297  143647                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  12661830  844122  4.2377 1.018e-07 ***
## follower    14   1915257  136804  0.6868    0.7891    
## Residuals 1209 240826698  199195                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df   Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag    17  7850852  461815  5.0367 8.174e-10 ***
## follower   16   810334   50646  0.5524    0.9174    
## Residuals 347 31816466   91690                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=distant_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: distant_visit
## 
## REML criterion at convergence: 129898.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8311 -0.6566 -0.1378  0.4855 14.2761 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  40305.0 200.8   
##  follower:trial (Intercept)    718.5  26.8   
##  Residual                   213127.2 461.7   
## Number of obs: 8578, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   633.93      19.71   32.17

Length visit < 150 seconds

tr<-150
close_visit<-event_log%>%filter(to_next<tr)
dim(close_visit)
## [1] 46988    17
lmf<-close_visit%>%by(data=.,INDICES=close_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     23  164516650 7152898 29.5927 < 2.2e-16 ***
## follower    22   28501625 1295528  5.3598 7.299e-15 ***
## Residuals 4203 1015912872  241711                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag      21   87772526 4179644  25.203 < 2.2e-16 ***
## follower     20   32659843 1632992   9.847 < 2.2e-16 ***
## Residuals 13606 2256369441  165836                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      21  836423110 39829672 166.384 < 2.2e-16 ***
## follower     20   71467011  3573351  14.927 < 2.2e-16 ***
## Residuals 13143 3146218236   239384                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag     15  190375865 12691724  87.776 < 2.2e-16 ***
## follower    14   26753276  1910948  13.216 < 2.2e-16 ***
## Residuals 9782 1414396611   144592                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  75034303 5002287 28.9389 < 2.2e-16 ***
## follower    14  11696471  835462  4.8333 6.075e-09 ***
## Residuals 4377 756594460  172857                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     17  19077141 1122185  8.3537 < 2.2e-16 ***
## follower    16  10575989  660999  4.9206 5.218e-10 ***
## Residuals 1653 222053157  134333                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=close_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: close_visit
## 
## REML criterion at convergence: 704790.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0488 -0.6962 -0.1540  0.5475  8.4037 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  39822   199.55  
##  follower:trial (Intercept)   4155    64.46  
##  Residual                   188417   434.07  
## Number of obs: 46988, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   601.29      19.49   30.85

Length visit >= 150 seconds

distant_visit<-event_log%>%filter(to_next>=tr)
dim(distant_visit)
## [1] 11013    17
lmf<-distant_visit%>%by(data=.,INDICES=distant_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df    Sum Sq Mean Sq F value  Pr(>F)    
## Ear_Tag    23  57576815 2503340  9.3620 < 2e-16 ***
## follower   22   8467995  384909  1.4395 0.08704 .  
## Residuals 873 233434201  267393                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value Pr(>F)    
## Ear_Tag     21  42191384 2009114  8.2034 <2e-16 ***
## follower    20   3318927  165946  0.6776 0.8521    
## Residuals 3393 830991113  244913                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     21 136481144 6499102 26.2441 < 2.2e-16 ***
## follower    20  10289969  514498  2.0776  0.003409 ** 
## Residuals 1911 473241103  247641                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  74148995 4943266 33.3202 < 2.2e-16 ***
## follower    14   5722369  408741  2.7551 0.0004549 ***
## Residuals 2602 386023259  148356                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  13581292  905419  4.7330 5.091e-09 ***
## follower    14   1651162  117940  0.6165    0.8534    
## Residuals 1519 290585067  191300                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##            Df   Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag    17 10601991  623647  6.7602 1.135e-14 ***
## follower   16  1791827  111989  1.2139    0.2525    
## Residuals 491 45295857   92252                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=distant_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: distant_visit
## 
## REML criterion at convergence: 166546.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8386 -0.6528 -0.1481  0.4936 14.3394 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  42632.5 206.48  
##  follower:trial (Intercept)    851.9  29.19  
##  Residual                   209590.3 457.81  
## Number of obs: 11013, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   625.15      19.99   31.27

Proportion variance explain by individuals and followers

prpvar<-matrix(c(16.76,1.63,16.64,0.23,
                16.96,1.7,15.8,0.28,
                17.1,1.8, 16.8,0.33), ncol = 2, byrow = T)
rownames(prpvar)<-c("< 600 s", ">= 600 s", "< 300 s",">= 300 s", "< 150 s", ">= 150 s")
colnames(prpvar)<-c("Ear_Tag","Follower")
print(prpvar)
##          Ear_Tag Follower
## < 600 s    16.76     1.63
## >= 600 s   16.64     0.23
## < 300 s    16.96     1.70
## >= 300 s   15.80     0.28
## < 150 s    17.10     1.80
## >= 150 s   16.80     0.33

Length visit < 60 seconds

tr<-60
close_visit<-event_log%>%filter(to_next<tr)
dim(close_visit)
## [1] 42050    17
lmf<-close_visit%>%by(data=.,INDICES=close_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     23 142866734 6211597 26.0101 < 2.2e-16 ***
## follower    22  24617616 1118983  4.6856  2.93e-12 ***
## Residuals 3734 891735405  238815                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag      21   80351381 3826256  23.351 < 2.2e-16 ***
## follower     20   34047410 1702371  10.389 < 2.2e-16 ***
## Residuals 12104 1983348445  163859                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      21  790005276 37619299 159.458 < 2.2e-16 ***
## follower     20   71641492  3582075  15.184 < 2.2e-16 ***
## Residuals 12349 2913371063   235920                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag     15  182647651 12176510  87.773 < 2.2e-16 ***
## follower    14   28379451  2027104  14.612 < 2.2e-16 ***
## Residuals 8501 1179324364   138728                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  73574736 4904982 27.7358 < 2.2e-16 ***
## follower    14  11364902  811779  4.5903  2.48e-08 ***
## Residuals 3750 663173936  176846                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     17  18477340 1086902  7.8452 < 2.2e-16 ***
## follower    16   9767190  610449  4.4062 1.427e-08 ***
## Residuals 1388 192299692  138544                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lapply(lmf,summary)
## $`1`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1223.1  -341.8   -49.0   302.2  3659.3 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     651.2466    61.8079  10.537  < 2e-16 ***
## Ear_TagY64-16   100.1618    89.3834   1.121  0.26254    
## Ear_TagY64-17    -2.4327    86.3872  -0.028  0.97754    
## Ear_TagY65-10   582.5834    62.6412   9.300  < 2e-16 ***
## Ear_TagY66-10   -27.4892    56.4084  -0.487  0.62606    
## Ear_TagY66-12   276.6407    90.5344   3.056  0.00226 ** 
## Ear_TagY66-14   420.5878    90.2767   4.659 3.29e-06 ***
## Ear_TagY67-11    62.6766    56.1978   1.115  0.26480    
## Ear_TagY67-14   114.5409    87.6644   1.307  0.19143    
## Ear_TagY68-11   369.9564    89.4336   4.137 3.60e-05 ***
## Ear_TagY68-12  -106.6545    85.1343  -1.253  0.21036    
## Ear_TagY68-14    44.4096    58.3083   0.762  0.44633    
## Ear_TagY69-12   387.2707    89.0177   4.350 1.39e-05 ***
## Ear_TagY70-11    65.0668    61.4901   1.058  0.29005    
## Ear_TagY70-12   -93.1451    57.4255  -1.622  0.10488    
## Ear_TagY70-13  -107.8442    84.7814  -1.272  0.20344    
## Ear_TagY71-12    92.8666    85.4077   1.087  0.27696    
## Ear_TagY74-14    95.4411    57.8424   1.650  0.09902 .  
## Ear_TagY76-13  -165.7148    52.2466  -3.172  0.00153 ** 
## Ear_TagY76-15   -11.6780    57.2674  -0.204  0.83843    
## Ear_TagY77-10    -2.6664    88.3484  -0.030  0.97592    
## Ear_TagY77-11    78.4717    92.6185   0.847  0.39691    
## Ear_TagY77-12   184.3512    61.4519   3.000  0.00272 ** 
## Ear_TagY77-13   184.5658    65.2417   2.829  0.00469 ** 
## followerY64-16   80.4279    64.9187   1.239  0.21546    
## followerY64-17  101.4693    65.4887   1.549  0.12137    
## followerY65-10  105.7387    60.1041   1.759  0.07862 .  
## followerY66-10  -59.3411    53.4277  -1.111  0.26678    
## followerY66-12   93.6621    63.6902   1.471  0.14149    
## followerY66-14   45.4418    64.1142   0.709  0.47852    
## followerY67-11  -72.9748    52.8453  -1.381  0.16739    
## followerY67-14   55.2141    61.8654   0.892  0.37219    
## followerY68-11   32.0989    72.1994   0.445  0.65664    
## followerY68-12  -21.9344    61.3647  -0.357  0.72078    
## followerY68-14  -65.3922    55.0096  -1.189  0.23462    
## followerY69-12   54.6752    68.8634   0.794  0.42727    
## followerY70-11   39.8615    57.0771   0.698  0.48498    
## followerY70-12  -39.2375    54.1984  -0.724  0.46913    
## followerY70-13   -4.7071    60.3255  -0.078  0.93781    
## followerY71-12    0.2261    59.8492   0.004  0.99699    
## followerY74-14  -11.4261    53.6018  -0.213  0.83121    
## followerY76-13 -265.0863    48.4407  -5.472 4.73e-08 ***
## followerY76-15 -104.4549    53.6527  -1.947  0.05162 .  
## followerY77-10   76.8362    63.3327   1.213  0.22512    
## followerY77-11        NA         NA      NA       NA    
## followerY77-12    3.2984    57.9362   0.057  0.95460    
## followerY77-13   -5.1530    62.8671  -0.082  0.93468    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 488.7 on 3734 degrees of freedom
## Multiple R-squared:  0.1581, Adjusted R-squared:  0.148 
## F-statistic: 15.58 on 45 and 3734 DF,  p-value: < 2.2e-16
## 
## 
## $`2`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -734.0 -300.1  -81.5  207.7 3313.3 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   616.305     30.203  20.406  < 2e-16 ***
## Ear_Tag1304   147.686     27.907   5.292 1.23e-07 ***
## Ear_Tag1305   -91.821     27.886  -3.293 0.000995 ***
## Ear_Tag1306    43.843     27.415   1.599 0.109800    
## Ear_Tag1307   -86.509     28.579  -3.027 0.002475 ** 
## Ear_Tag1310    71.717     28.264   2.537 0.011181 *  
## Ear_Tag1311   -25.218     26.788  -0.941 0.346531    
## Ear_Tag1312    97.415     28.314   3.441 0.000582 ***
## Ear_Tag1313   -34.496     27.727  -1.244 0.213474    
## Ear_Tag1314    70.071     29.267   2.394 0.016672 *  
## Ear_Tag1316   -64.205     27.818  -2.308 0.021013 *  
## Ear_Tag1353  -106.524     37.431  -2.846 0.004436 ** 
## Ear_Tag1354   121.341     38.623   3.142 0.001684 ** 
## Ear_Tag1355     7.484     37.954   0.197 0.843675    
## Ear_Tag1356   -34.197     37.954  -0.901 0.367609    
## Ear_Tag1357   -44.661     38.068  -1.173 0.240744    
## Ear_Tag1358  -127.619     38.228  -3.338 0.000845 ***
## Ear_Tag1359   -91.050     37.565  -2.424 0.015373 *  
## Ear_Tag1360   -84.843     38.378  -2.211 0.027075 *  
## Ear_Tag1361    -6.590     37.375  -0.176 0.860051    
## Ear_Tag1365  -100.483     37.086  -2.709 0.006749 ** 
## Ear_Tag1367  -207.028     38.732  -5.345 9.20e-08 ***
## follower1304 -157.581     27.353  -5.761 8.56e-09 ***
## follower1305  -83.585     27.220  -3.071 0.002141 ** 
## follower1306 -141.111     26.496  -5.326 1.02e-07 ***
## follower1307 -120.723     28.126  -4.292 1.78e-05 ***
## follower1310 -116.512     27.533  -4.232 2.34e-05 ***
## follower1311 -168.007     25.922  -6.481 9.46e-11 ***
## follower1312  -97.072     27.299  -3.556 0.000378 ***
## follower1313 -208.342     26.773  -7.782 7.74e-15 ***
## follower1314 -178.124     28.314  -6.291 3.26e-10 ***
## follower1316 -174.818     26.891  -6.501 8.29e-11 ***
## follower1353  -48.212     22.782  -2.116 0.034340 *  
## follower1354 -139.747     24.843  -5.625 1.89e-08 ***
## follower1355 -171.599     23.748  -7.226 5.28e-13 ***
## follower1356 -117.524     23.763  -4.946 7.69e-07 ***
## follower1357 -183.420     23.896  -7.676 1.77e-14 ***
## follower1358  -88.191     23.972  -3.679 0.000235 ***
## follower1359 -113.963     23.185  -4.915 8.98e-07 ***
## follower1360 -162.361     24.272  -6.689 2.34e-11 ***
## follower1361  -54.192     22.845  -2.372 0.017701 *  
## follower1365 -113.203     22.218  -5.095 3.54e-07 ***
## follower1367       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 404.8 on 12104 degrees of freedom
## Multiple R-squared:  0.05453,    Adjusted R-squared:  0.05133 
## F-statistic: 17.03 on 41 and 12104 DF,  p-value: < 2.2e-16
## 
## 
## $`3`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1345.67  -328.43   -52.79   288.61  2376.07 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   976.078     35.136  27.780  < 2e-16 ***
## Ear_Tag1106  -386.251     44.960  -8.591  < 2e-16 ***
## Ear_Tag1129  -155.276     47.322  -3.281 0.001036 ** 
## Ear_Tag1132  -184.588     48.286  -3.823 0.000133 ***
## Ear_Tag1200  -365.982     44.564  -8.213 2.38e-16 ***
## Ear_Tag1371   -53.215     47.166  -1.128 0.259241    
## Ear_Tag1413  -362.474     33.323 -10.877  < 2e-16 ***
## Ear_Tag1415  -205.704     32.412  -6.347 2.28e-10 ***
## Ear_Tag1418  -418.355     32.860 -12.732  < 2e-16 ***
## Ear_Tag1419  -366.595     32.761 -11.190  < 2e-16 ***
## Ear_Tag1421  -431.263     45.449  -9.489  < 2e-16 ***
## Ear_Tag1598  -661.807     31.343 -21.115  < 2e-16 ***
## Ear_Tag1653  -778.545     30.000 -25.951  < 2e-16 ***
## Ear_Tag1666  -583.351     30.756 -18.967  < 2e-16 ***
## Ear_Tag1668  -826.845     29.474 -28.054  < 2e-16 ***
## Ear_Tag1672  -779.758     29.918 -26.063  < 2e-16 ***
## Ear_Tag1688   -40.287     45.695  -0.882 0.377988    
## Ear_Tag1689   167.235     48.900   3.420 0.000628 ***
## Ear_Tag1691  -504.994     30.705 -16.447  < 2e-16 ***
## Ear_Tag1699   281.111     48.492   5.797 6.91e-09 ***
## Ear_Tag2034  -117.754     48.209  -2.443 0.014597 *  
## Ear_Tag2346  -319.546     48.235  -6.625 3.62e-11 ***
## follower1106   96.136     29.599   3.248 0.001166 ** 
## follower1129 -103.985     32.659  -3.184 0.001457 ** 
## follower1132   67.766     33.767   2.007 0.044783 *  
## follower1200 -128.647     28.563  -4.504 6.73e-06 ***
## follower1371   99.482     32.318   3.078 0.002087 ** 
## follower1413   88.819     33.732   2.633 0.008472 ** 
## follower1415  203.370     32.542   6.249 4.25e-10 ***
## follower1418  178.041     33.230   5.358 8.58e-08 ***
## follower1419  200.404     33.292   6.020 1.80e-09 ***
## follower1421   44.633     29.345   1.521 0.128291    
## follower1598  132.766     31.102   4.269 1.98e-05 ***
## follower1653  195.576     29.584   6.611 3.97e-11 ***
## follower1666   99.866     30.982   3.223 0.001270 ** 
## follower1668  117.179     29.303   3.999 6.40e-05 ***
## follower1672  221.207     29.930   7.391 1.55e-13 ***
## follower1688    6.322     30.705   0.206 0.836876    
## follower1689  -50.797     34.242  -1.483 0.137980    
## follower1691  223.300     30.906   7.225 5.30e-13 ***
## follower1699  -75.776     33.537  -2.259 0.023871 *  
## follower2034  190.752     33.509   5.693 1.28e-08 ***
## follower2346       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 485.7 on 12349 degrees of freedom
## Multiple R-squared:  0.2282, Adjusted R-squared:  0.2257 
## F-statistic: 89.08 on 41 and 12349 DF,  p-value: < 2.2e-16
## 
## 
## $`4`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -910.2 -256.3  -71.4  193.3 2697.9 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   588.622     28.431  20.704  < 2e-16 ***
## Ear_Tag1376    -4.792     35.850  -0.134 0.893678    
## Ear_Tag1378  -246.887     34.827  -7.089 1.46e-12 ***
## Ear_Tag1379  -145.891     34.494  -4.229 2.37e-05 ***
## Ear_Tag1403  -224.798     35.166  -6.393 1.72e-10 ***
## Ear_Tag1408  -216.066     27.564  -7.839 5.11e-15 ***
## Ear_Tag1410   122.358     35.425   3.454 0.000555 ***
## Ear_Tag1412  -200.850     25.520  -7.870 3.97e-15 ***
## Ear_Tag1416   231.034     29.223   7.906 2.99e-15 ***
## Ear_Tag2336  -203.747     34.887  -5.840 5.40e-09 ***
## Ear_Tag2337  -142.393     25.578  -5.567 2.67e-08 ***
## Ear_Tag2338  -324.045     26.908 -12.043  < 2e-16 ***
## Ear_Tag2339  -199.912     24.874  -8.037 1.04e-15 ***
## Ear_Tag2340    92.450     35.633   2.594 0.009489 ** 
## Ear_Tag2341  -112.251     36.145  -3.106 0.001905 ** 
## Ear_Tag2342  -180.990     26.616  -6.800 1.12e-11 ***
## follower1376  -93.768     21.915  -4.279 1.90e-05 ***
## follower1378   46.003     20.970   2.194 0.028277 *  
## follower1379  -66.154     20.606  -3.210 0.001330 ** 
## follower1403 -135.327     21.608  -6.263 3.96e-10 ***
## follower1408  124.246     27.165   4.574 4.86e-06 ***
## follower1410  -69.234     22.356  -3.097 0.001962 ** 
## follower1412   54.924     26.313   2.087 0.036891 *  
## follower1416  103.039     29.502   3.493 0.000481 ***
## follower2336  -14.925     21.377  -0.698 0.485075    
## follower2337   84.561     25.173   3.359 0.000785 ***
## follower2338  108.550     26.605   4.080 4.54e-05 ***
## follower2339   20.129     25.943   0.776 0.437826    
## follower2340 -182.425     22.137  -8.241  < 2e-16 ***
## follower2341       NA         NA      NA       NA    
## follower2342   79.740     26.422   3.018 0.002552 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 372.5 on 8501 degrees of freedom
## Multiple R-squared:  0.1518, Adjusted R-squared:  0.1489 
## F-statistic: 52.45 on 29 and 8501 DF,  p-value: < 2.2e-16
## 
## 
## $`5`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -895.8 -305.0  -51.5  234.5 3468.8 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   453.066     49.746   9.108  < 2e-16 ***
## Ear_Tag2084   502.817     64.946   7.742 1.25e-14 ***
## Ear_Tag2089   123.889     44.260   2.799 0.005150 ** 
## Ear_Tag2111   202.253     62.314   3.246 0.001182 ** 
## Ear_Tag2129   228.215     63.029   3.621 0.000298 ***
## Ear_Tag2134   -28.482     41.502  -0.686 0.492583    
## Ear_Tag2138   134.124     64.786   2.070 0.038497 *  
## Ear_Tag2144   -39.720     41.739  -0.952 0.341346    
## Ear_Tag2146   -32.682     59.648  -0.548 0.583788    
## Ear_Tag2343    10.773     43.623   0.247 0.804955    
## Ear_Tag2344   299.339     44.723   6.693 2.51e-11 ***
## Ear_Tag2345    83.986     61.263   1.371 0.170489    
## Ear_Tag2347   137.504     63.958   2.150 0.031627 *  
## Ear_Tag2348   237.429     45.659   5.200 2.10e-07 ***
## Ear_Tag2349   216.325     65.077   3.324 0.000896 ***
## Ear_Tag2350   226.274     48.060   4.708 2.59e-06 ***
## follower2084  -35.666     44.805  -0.796 0.426075    
## follower2089  -29.727     45.114  -0.659 0.509975    
## follower2111  -26.449     39.465  -0.670 0.502779    
## follower2129  -84.867     39.237  -2.163 0.030608 *  
## follower2134   95.199     44.056   2.161 0.030769 *  
## follower2138  -50.704     43.457  -1.167 0.243380    
## follower2144  147.563     44.576   3.310 0.000941 ***
## follower2146  -52.539     35.131  -1.496 0.134860    
## follower2343   88.511     44.335   1.996 0.045964 *  
## follower2344    8.268     47.249   0.175 0.861101    
## follower2345 -154.058     37.054  -4.158 3.29e-05 ***
## follower2347   15.915     41.626   0.382 0.702242    
## follower2348  127.196     44.804   2.839 0.004551 ** 
## follower2349       NA         NA      NA       NA    
## follower2350   98.618     50.283   1.961 0.049920 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 420.5 on 3750 degrees of freedom
## Multiple R-squared:  0.1135, Adjusted R-squared:  0.1067 
## F-statistic: 16.56 on 29 and 3750 DF,  p-value: < 2.2e-16
## 
## 
## $`6`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -875.55 -260.92  -69.19  214.04 1749.09 
## 
## Coefficients: (1 not defined because of singularities)
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   434.4333    56.4605   7.694 2.68e-14 ***
## Ear_Tag1318  -139.3468    58.8002  -2.370  0.01793 *  
## Ear_Tag1319     0.8263    56.0267   0.015  0.98824    
## Ear_Tag1320    27.7813    54.5982   0.509  0.61095    
## Ear_Tag1321   150.1278    55.8245   2.689  0.00725 ** 
## Ear_Tag1322  -113.8212    56.2587  -2.023  0.04325 *  
## Ear_Tag1323    59.5671    76.6537   0.777  0.43724    
## Ear_Tag1324    96.8429    84.9192   1.140  0.25431    
## Ear_Tag1325   -54.3440    83.3254  -0.652  0.51439    
## Ear_Tag1368  -166.8266    75.8395  -2.200  0.02799 *  
## Ear_Tag1369   267.5194    83.6927   3.196  0.00142 ** 
## Ear_Tag1370   153.0762    83.0662   1.843  0.06557 .  
## Ear_Tag1371    82.8926    78.0981   1.061  0.28870    
## Ear_Tag1372   153.7799    80.4822   1.911  0.05624 .  
## Ear_Tag1373   -59.0913    81.0904  -0.729  0.46630    
## Ear_Tag2005   -93.5791    61.9834  -1.510  0.13134    
## Ear_Tag2097   -55.1008    59.8271  -0.921  0.35721    
## Ear_Tag2098   -60.0330    52.5409  -1.143  0.25340    
## follower1318   42.0472    62.5394   0.672  0.50148    
## follower1319   81.3235    59.6564   1.363  0.17304    
## follower1320  179.8351    56.0099   3.211  0.00135 ** 
## follower1321  -42.7690    55.1504  -0.775  0.43818    
## follower1322  158.1958    55.5810   2.846  0.00449 ** 
## follower1323  183.5998    56.4254   3.254  0.00117 ** 
## follower1324   99.8209    68.0092   1.468  0.14240    
## follower1325   52.7183    64.5994   0.816  0.41459    
## follower1368  -78.1490    52.9456  -1.476  0.14016    
## follower1369  128.9120    67.8059   1.901  0.05748 .  
## follower1370   28.5884    62.9958   0.454  0.65003    
## follower1371   25.1889    55.8658   0.451  0.65214    
## follower1372   38.7894    57.8862   0.670  0.50291    
## follower1373        NA         NA      NA       NA    
## follower2005   28.6303    65.5043   0.437  0.66213    
## follower2097  134.0759    59.6531   2.248  0.02476 *  
## follower2098  -77.7113    52.1881  -1.489  0.13670    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 372.2 on 1388 degrees of freedom
## Multiple R-squared:  0.1281, Adjusted R-squared:  0.1073 
## F-statistic: 6.178 on 33 and 1388 DF,  p-value: < 2.2e-16

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=close_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: close_visit
## 
## REML criterion at convergence: 630471.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0803 -0.6940 -0.1537  0.5498  8.5339 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  40275   200.69  
##  follower:trial (Intercept)   4504    67.11  
##  Residual                   187030   432.47  
## Number of obs: 42050, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   602.23      19.69   30.58

Length visit < 30 seconds

tr<-30
close_visit<-event_log%>%filter(to_next<tr)
dim(close_visit)
## [1] 34774    17
lmf<-close_visit%>%by(data=.,INDICES=close_visit$trial,function(x) lm(visit.length~Ear_Tag+follower,data=x))
lapply(lmf,anova)
## $`1`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     23 120625888 5244604 22.2196 < 2.2e-16 ***
## follower    22  26208888 1191313  5.0472 1.458e-13 ***
## Residuals 2869 677185805  236035                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`2`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag      21   74782247 3561059  22.143 < 2.2e-16 ***
## follower     20   34916180 1745809  10.856 < 2.2e-16 ***
## Residuals 10098 1623949259  160819                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`3`
## Analysis of Variance Table
## 
## Response: visit.length
##              Df     Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag      21  713565908 33979329 145.988 < 2.2e-16 ***
## follower     20   74555232  3727762  16.016 < 2.2e-16 ***
## Residuals 11011 2562848678   232753                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`4`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq  Mean Sq F value    Pr(>F)    
## Ear_Tag     15 164053786 10936919  79.936 < 2.2e-16 ***
## follower    14  25490961  1820783  13.308 < 2.2e-16 ***
## Residuals 6774 926818722   136820                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`5`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     15  63075486 4205032 24.1871 < 2.2e-16 ***
## follower    14  10673070  762362  4.3851 8.378e-08 ***
## Residuals 2674 464886716  173854                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`6`
## Analysis of Variance Table
## 
## Response: visit.length
##             Df    Sum Sq Mean Sq F value    Pr(>F)    
## Ear_Tag     17  15302782  900164  6.6585 2.247e-15 ***
## follower    16   9042842  565178  4.1806 6.344e-08 ***
## Residuals 1124 151954191  135191                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lapply(lmf,summary)
## $`1`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1284.70  -342.59   -51.13   302.58  2072.78 
## 
## Coefficients: (1 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     691.906     70.100   9.870  < 2e-16 ***
## Ear_TagY64-16    91.108    102.752   0.887 0.375326    
## Ear_TagY64-17    -4.812    101.004  -0.048 0.962003    
## Ear_TagY65-10   672.185     70.776   9.497  < 2e-16 ***
## Ear_TagY66-10   -66.192     63.262  -1.046 0.295504    
## Ear_TagY66-12   320.238    108.655   2.947 0.003232 ** 
## Ear_TagY66-14   492.025    104.513   4.708 2.62e-06 ***
## Ear_TagY67-11    58.143     63.474   0.916 0.359737    
## Ear_TagY67-14    80.924    100.896   0.802 0.422590    
## Ear_TagY68-11   314.001    106.028   2.961 0.003087 ** 
## Ear_TagY68-12  -110.821    101.373  -1.093 0.274400    
## Ear_TagY68-14    14.377     66.037   0.218 0.827667    
## Ear_TagY69-12   388.750    102.942   3.776 0.000162 ***
## Ear_TagY70-11    36.922     68.907   0.536 0.592122    
## Ear_TagY70-12  -148.064     65.377  -2.265 0.023601 *  
## Ear_TagY70-13   -87.488     97.944  -0.893 0.371803    
## Ear_TagY71-12    93.795    101.589   0.923 0.355941    
## Ear_TagY74-14    81.991     67.393   1.217 0.223855    
## Ear_TagY76-13  -181.777     60.222  -3.018 0.002563 ** 
## Ear_TagY76-15   -24.563     65.555  -0.375 0.707918    
## Ear_TagY77-10    22.699    101.370   0.224 0.822832    
## Ear_TagY77-11    37.597    107.026   0.351 0.725394    
## Ear_TagY77-12   148.565     69.796   2.129 0.033375 *  
## Ear_TagY77-13   112.736     74.006   1.523 0.127786    
## followerY64-16   59.068     78.376   0.754 0.451124    
## followerY64-17   79.316     78.751   1.007 0.313936    
## followerY65-10  143.241     66.631   2.150 0.031657 *  
## followerY66-10  -78.645     59.368  -1.325 0.185376    
## followerY66-12   30.618     76.559   0.400 0.689246    
## followerY66-14    5.945     75.750   0.078 0.937454    
## followerY67-11  -73.392     58.442  -1.256 0.209289    
## followerY67-14    6.877     74.521   0.092 0.926478    
## followerY68-11 -131.910     97.701  -1.350 0.177077    
## followerY68-12  -94.182     71.798  -1.312 0.189707    
## followerY68-14  -60.292     61.032  -0.988 0.323294    
## followerY69-12  -26.882     85.788  -0.313 0.754039    
## followerY70-11   36.837     62.053   0.594 0.552793    
## followerY70-12  -60.048     59.262  -1.013 0.311018    
## followerY70-13  -90.605     70.914  -1.278 0.201471    
## followerY71-12  -38.532     71.423  -0.539 0.589592    
## followerY74-14  -16.155     58.182  -0.278 0.781296    
## followerY76-13 -282.216     52.399  -5.386 7.79e-08 ***
## followerY76-15 -103.463     59.500  -1.739 0.082165 .  
## followerY77-10   86.621     76.087   1.138 0.255031    
## followerY77-11       NA         NA      NA       NA    
## followerY77-12  -26.682     64.297  -0.415 0.678188    
## followerY77-13  -38.070     68.369  -0.557 0.577684    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 485.8 on 2869 degrees of freedom
## Multiple R-squared:  0.1782, Adjusted R-squared:  0.1653 
## F-statistic: 13.82 on 45 and 2869 DF,  p-value: < 2.2e-16
## 
## 
## $`2`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -748.4 -292.9  -82.9  202.6 3341.5 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   640.394     33.543  19.092  < 2e-16 ***
## Ear_Tag1304   138.168     30.018   4.603 4.22e-06 ***
## Ear_Tag1305   -70.779     30.709  -2.305 0.021196 *  
## Ear_Tag1306    49.755     29.590   1.681 0.092700 .  
## Ear_Tag1307   -87.936     31.621  -2.781 0.005431 ** 
## Ear_Tag1310    80.796     30.772   2.626 0.008661 ** 
## Ear_Tag1311   -35.257     28.762  -1.226 0.220308    
## Ear_Tag1312   117.966     30.579   3.858 0.000115 ***
## Ear_Tag1313    -9.979     30.247  -0.330 0.741461    
## Ear_Tag1314    86.836     31.833   2.728 0.006385 ** 
## Ear_Tag1316   -71.313     31.138  -2.290 0.022029 *  
## Ear_Tag1353  -142.833     41.294  -3.459 0.000545 ***
## Ear_Tag1354   120.025     42.331   2.835 0.004586 ** 
## Ear_Tag1355   -13.477     41.494  -0.325 0.745342    
## Ear_Tag1356   -63.543     41.640  -1.526 0.127041    
## Ear_Tag1357   -68.044     41.794  -1.628 0.103539    
## Ear_Tag1358  -166.712     42.235  -3.947 7.96e-05 ***
## Ear_Tag1359  -119.886     41.204  -2.910 0.003627 ** 
## Ear_Tag1360  -104.289     42.461  -2.456 0.014061 *  
## Ear_Tag1361   -56.772     41.225  -1.377 0.168497    
## Ear_Tag1365  -109.452     40.735  -2.687 0.007223 ** 
## Ear_Tag1367  -236.230     42.734  -5.528 3.32e-08 ***
## follower1304 -197.693     30.453  -6.492 8.88e-11 ***
## follower1305 -116.096     30.301  -3.831 0.000128 ***
## follower1306 -181.342     29.633  -6.120 9.73e-10 ***
## follower1307 -142.761     31.764  -4.494 7.05e-06 ***
## follower1310 -152.216     31.202  -4.878 1.09e-06 ***
## follower1311 -207.046     28.729  -7.207 6.14e-13 ***
## follower1312 -132.219     30.183  -4.381 1.20e-05 ***
## follower1313 -250.659     29.955  -8.368  < 2e-16 ***
## follower1314 -239.572     32.392  -7.396 1.51e-13 ***
## follower1316 -216.352     30.161  -7.173 7.84e-13 ***
## follower1353  -60.511     24.608  -2.459 0.013949 *  
## follower1354 -143.825     26.748  -5.377 7.74e-08 ***
## follower1355 -178.182     25.810  -6.903 5.38e-12 ***
## follower1356 -131.440     25.597  -5.135 2.87e-07 ***
## follower1357 -197.915     25.826  -7.663 1.98e-14 ***
## follower1358 -103.633     26.050  -3.978 6.99e-05 ***
## follower1359 -111.444     24.985  -4.461 8.27e-06 ***
## follower1360 -179.803     26.113  -6.886 6.09e-12 ***
## follower1361  -61.472     24.549  -2.504 0.012292 *  
## follower1365 -125.779     24.061  -5.228 1.75e-07 ***
## follower1367       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 401 on 10098 degrees of freedom
## Multiple R-squared:  0.06328,    Adjusted R-squared:  0.05947 
## F-statistic: 16.64 on 41 and 10098 DF,  p-value: < 2.2e-16
## 
## 
## $`3`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1373.16  -327.88   -51.25   286.74  2382.88 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   959.324     36.209  26.494  < 2e-16 ***
## Ear_Tag1106  -406.882     46.747  -8.704  < 2e-16 ***
## Ear_Tag1129  -129.636     49.423  -2.623 0.008728 ** 
## Ear_Tag1132  -213.033     50.691  -4.203 2.66e-05 ***
## Ear_Tag1200  -358.975     46.263  -7.759 9.28e-15 ***
## Ear_Tag1371   -65.094     49.187  -1.323 0.185728    
## Ear_Tag1413  -340.559     34.798  -9.787  < 2e-16 ***
## Ear_Tag1415  -194.081     33.578  -5.780 7.67e-09 ***
## Ear_Tag1418  -407.902     34.224 -11.918  < 2e-16 ***
## Ear_Tag1419  -360.975     34.390 -10.496  < 2e-16 ***
## Ear_Tag1421  -425.919     47.106  -9.042  < 2e-16 ***
## Ear_Tag1598  -654.966     32.492 -20.158  < 2e-16 ***
## Ear_Tag1653  -765.551     31.347 -24.422  < 2e-16 ***
## Ear_Tag1666  -581.063     31.714 -18.322  < 2e-16 ***
## Ear_Tag1668  -823.641     30.370 -27.120  < 2e-16 ***
## Ear_Tag1672  -770.522     31.251 -24.656  < 2e-16 ***
## Ear_Tag1688   -50.766     47.416  -1.071 0.284351    
## Ear_Tag1689   186.031     50.909   3.654 0.000259 ***
## Ear_Tag1691  -497.692     32.060 -15.524  < 2e-16 ***
## Ear_Tag1699   307.271     50.262   6.113 1.01e-09 ***
## Ear_Tag2034  -120.436     50.267  -2.396 0.016594 *  
## Ear_Tag2346  -302.868     49.943  -6.064 1.37e-09 ***
## follower1106  116.565     30.759   3.790 0.000152 ***
## follower1129  -88.063     34.018  -2.589 0.009646 ** 
## follower1132   51.388     36.896   1.393 0.163717    
## follower1200 -140.782     30.155  -4.669 3.07e-06 ***
## follower1371  121.705     35.116   3.466 0.000531 ***
## follower1413   93.406     34.747   2.688 0.007196 ** 
## follower1415  216.572     33.929   6.383 1.81e-10 ***
## follower1418  205.576     34.775   5.912 3.49e-09 ***
## follower1419  219.089     34.481   6.354 2.18e-10 ***
## follower1421   58.218     30.771   1.892 0.058518 .  
## follower1598  135.989     32.138   4.231 2.34e-05 ***
## follower1653  206.196     30.507   6.759 1.46e-11 ***
## follower1666  109.307     31.813   3.436 0.000593 ***
## follower1668  125.846     30.498   4.126 3.71e-05 ***
## follower1672  237.937     30.926   7.694 1.55e-14 ***
## follower1688   -7.546     32.382  -0.233 0.815733    
## follower1689  -48.822     35.824  -1.363 0.172970    
## follower1691  236.241     32.079   7.364 1.91e-13 ***
## follower1699  -63.638     34.844  -1.826 0.067825 .  
## follower2034  207.623     34.732   5.978 2.33e-09 ***
## follower2346       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 482.4 on 11011 degrees of freedom
## Multiple R-squared:  0.2352, Adjusted R-squared:  0.2323 
## F-statistic: 82.59 on 41 and 11011 DF,  p-value: < 2.2e-16
## 
## 
## $`4`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -925.04 -251.73  -72.41  195.68 2007.33 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    613.48      31.35  19.567  < 2e-16 ***
## Ear_Tag1376    -24.79      39.95  -0.620 0.534961    
## Ear_Tag1378   -269.56      38.49  -7.004 2.73e-12 ***
## Ear_Tag1379   -154.11      38.37  -4.016 5.98e-05 ***
## Ear_Tag1403   -238.50      38.83  -6.143 8.58e-10 ***
## Ear_Tag1408   -235.56      30.69  -7.676 1.88e-14 ***
## Ear_Tag1410    108.66      39.18   2.774 0.005561 ** 
## Ear_Tag1412   -203.41      28.23  -7.205 6.42e-13 ***
## Ear_Tag1416    214.07      32.88   6.512 7.97e-11 ***
## Ear_Tag2336   -222.45      38.74  -5.742 9.77e-09 ***
## Ear_Tag2337   -167.65      28.30  -5.924 3.30e-09 ***
## Ear_Tag2338   -345.48      30.48 -11.336  < 2e-16 ***
## Ear_Tag2339   -238.28      27.68  -8.609  < 2e-16 ***
## Ear_Tag2340    122.22      39.59   3.087 0.002028 ** 
## Ear_Tag2341   -130.85      40.04  -3.268 0.001088 ** 
## Ear_Tag2342   -193.40      30.17  -6.411 1.54e-10 ***
## follower1376  -134.04      24.86  -5.393 7.17e-08 ***
## follower1378    23.55      23.43   1.005 0.314729    
## follower1379   -82.03      22.98  -3.569 0.000361 ***
## follower1403  -156.90      24.37  -6.439 1.29e-10 ***
## follower1408   124.60      29.41   4.236 2.30e-05 ***
## follower1410  -106.30      25.20  -4.219 2.49e-05 ***
## follower1412    52.24      30.09   1.736 0.082580 .  
## follower1416    91.65      34.97   2.621 0.008797 ** 
## follower2336   -25.04      23.52  -1.064 0.287189    
## follower2337    83.61      27.21   3.073 0.002131 ** 
## follower2338   115.50      29.78   3.879 0.000106 ***
## follower2339     7.61      28.48   0.267 0.789298    
## follower2340  -192.69      24.46  -7.877 3.89e-15 ***
## follower2341       NA         NA      NA       NA    
## follower2342    94.81      28.79   3.294 0.000994 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 369.9 on 6774 degrees of freedom
## Multiple R-squared:  0.1698, Adjusted R-squared:  0.1662 
## F-statistic: 47.77 on 29 and 6774 DF,  p-value: < 2.2e-16
## 
## 
## $`5`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -896.8 -292.3  -51.8  224.9 3436.5 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   433.393     63.299   6.847 9.34e-12 ***
## Ear_Tag2084   524.867     81.792   6.417 1.64e-10 ***
## Ear_Tag2089   190.553     56.811   3.354 0.000807 ***
## Ear_Tag2111   244.562     78.112   3.131 0.001761 ** 
## Ear_Tag2129   260.660     77.552   3.361 0.000787 ***
## Ear_Tag2134   -68.081     53.743  -1.267 0.205342    
## Ear_Tag2138   130.577     80.497   1.622 0.104895    
## Ear_Tag2144    -6.006     54.204  -0.111 0.911780    
## Ear_Tag2146   -22.670     73.538  -0.308 0.757897    
## Ear_Tag2343    28.403     55.569   0.511 0.609298    
## Ear_Tag2344   337.872     57.003   5.927 3.48e-09 ***
## Ear_Tag2345   123.334     75.525   1.633 0.102580    
## Ear_Tag2347   207.094     79.432   2.607 0.009180 ** 
## Ear_Tag2348   283.919     58.121   4.885 1.10e-06 ***
## Ear_Tag2349   246.594     79.944   3.085 0.002059 ** 
## Ear_Tag2350   280.741     61.743   4.547 5.69e-06 ***
## follower2084 -116.765     52.669  -2.217 0.026710 *  
## follower2089  -42.946     52.441  -0.819 0.412899    
## follower2111  -32.990     46.755  -0.706 0.480507    
## follower2129 -113.259     47.812  -2.369 0.017913 *  
## follower2134   70.832     51.426   1.377 0.168513    
## follower2138  -70.269     51.597  -1.362 0.173351    
## follower2144  151.538     52.777   2.871 0.004120 ** 
## follower2146  -94.114     40.915  -2.300 0.021510 *  
## follower2343   82.979     52.053   1.594 0.111022    
## follower2344  -48.974     56.732  -0.863 0.388071    
## follower2345 -179.162     42.623  -4.203 2.72e-05 ***
## follower2347    4.579     47.667   0.096 0.923475    
## follower2348  112.561     53.161   2.117 0.034320 *  
## follower2349       NA         NA      NA       NA    
## follower2350   49.322     65.868   0.749 0.454045    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 417 on 2674 degrees of freedom
## Multiple R-squared:  0.1369, Adjusted R-squared:  0.1276 
## F-statistic: 14.63 on 29 and 2674 DF,  p-value: < 2.2e-16
## 
## 
## $`6`
## 
## Call:
## lm(formula = visit.length ~ Ear_Tag + follower, data = x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -793.00 -260.55  -59.75  208.07 1653.28 
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    378.80      60.07   6.306  4.1e-10 ***
## Ear_Tag1318   -109.69      63.44  -1.729 0.084071 .  
## Ear_Tag1319     24.95      58.43   0.427 0.669448    
## Ear_Tag1320     71.10      58.31   1.219 0.223007    
## Ear_Tag1321    212.30      62.22   3.412 0.000668 ***
## Ear_Tag1322   -105.78      60.94  -1.736 0.082857 .  
## Ear_Tag1323    159.35      83.38   1.911 0.056236 .  
## Ear_Tag1324    215.33      95.37   2.258 0.024141 *  
## Ear_Tag1325     66.11      89.08   0.742 0.458138    
## Ear_Tag1368    -77.72      82.10  -0.947 0.343997    
## Ear_Tag1369    290.03      94.20   3.079 0.002129 ** 
## Ear_Tag1370    177.20      91.36   1.939 0.052695 .  
## Ear_Tag1371    197.66      84.54   2.338 0.019562 *  
## Ear_Tag1372    256.54      85.72   2.993 0.002824 ** 
## Ear_Tag1373     31.37      88.81   0.353 0.723971    
## Ear_Tag2005    -78.65      66.18  -1.188 0.234892    
## Ear_Tag2097    -22.34      64.13  -0.348 0.727680    
## Ear_Tag2098    -25.56      56.54  -0.452 0.651265    
## follower1318    90.28      65.18   1.385 0.166316    
## follower1319    98.78      63.79   1.548 0.121788    
## follower1320   218.90      60.98   3.590 0.000345 ***
## follower1321   -43.49      59.40  -0.732 0.464206    
## follower1322   170.31      60.24   2.827 0.004781 ** 
## follower1323   105.73      63.92   1.654 0.098373 .  
## follower1324   115.92      78.76   1.472 0.141333    
## follower1325    12.68      72.54   0.175 0.861240    
## follower1368  -140.27      58.24  -2.409 0.016177 *  
## follower1369    83.44      74.32   1.123 0.261797    
## follower1370   -21.50      69.73  -0.308 0.757847    
## follower1371   -14.58      62.13  -0.235 0.814444    
## follower1372    24.13      64.68   0.373 0.709138    
## follower1373       NA         NA      NA       NA    
## follower2005    58.59      74.17   0.790 0.429694    
## follower2097   192.64      65.23   2.953 0.003212 ** 
## follower2098   -57.89      55.15  -1.050 0.294084    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 367.7 on 1124 degrees of freedom
## Multiple R-squared:  0.1381, Adjusted R-squared:  0.1128 
## F-statistic: 5.457 on 33 and 1124 DF,  p-value: < 2.2e-16

Linear mixed model for lenght visit variable

lmer(visit.length~(1|Ear_Tag:trial)+(1|follower:trial),data=close_visit)%>%summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: visit.length ~ (1 | Ear_Tag:trial) + (1 | follower:trial)
##    Data: close_visit
## 
## REML criterion at convergence: 521183.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1617 -0.6896 -0.1570  0.5488  8.0015 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  Ear_Tag:trial  (Intercept)  42093   205.17  
##  follower:trial (Intercept)   5572    74.64  
##  Residual                   185444   430.63  
## Number of obs: 34774, groups:  Ear_Tag:trial, 118; follower:trial, 118
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   597.94      20.37   29.35

Proportion variance explain by individuals and followers

prpvar<-matrix(c(17.37,1.94,18.05,2.39), ncol = 2, byrow = T)
rownames(prpvar)<-c("<= 60 s",  "<= 300 s")
colnames(prpvar)<-c("Ear_Tag","Follower")
print(prpvar)
##          Ear_Tag Follower
## <= 60 s    17.37     1.94
## <= 300 s   18.05     2.39