Differences in Neuropsych Test Scores from Wave 1 to Wave 3 - only on people who completed the CTS

Brief Test of Attention

t-Test

Attention = t.test(cts_widenp13$Attention.1,cts_widenp13$Attention.3,paired=TRUE)
Attention
## 
##  Paired t-test
## 
## data:  cts_widenp13$Attention.1 and cts_widenp13$Attention.3
## t = 1.8908798, df = 421, p-value = 0.05932674
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.007305369234  0.376973615680
## sample estimates:
## mean of the differences 
##            0.1848341232

Mixed Model Regression

Attn = lmer(Attention~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)

summary(Attn)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Attention ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 4499.4
## 
## Scaled residuals: 
##         Min          1Q      Median          3Q         Max 
## -2.66900117 -0.52650592  0.04977607  0.59716697  2.32604697 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 2.019611 1.421130
##  Residual             2.040731 1.428542
## Number of obs: 1086, groups:  HNDid, 664
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)    8.996299442   0.401443103 704.474357227 22.40990 < 2.22e-16
## Time          -0.130766727   0.046053767 520.505813922 -2.83944 0.00469606
## Age0          -0.026268358   0.007851739 636.474772366 -3.34555 0.00086949
## PovStatBelow  -0.519896777   0.156889522 638.502023248 -3.31378 0.00097248
## RaceAfrAm     -0.783490017   0.142973439 638.353464377 -5.47997 6.1289e-08
## SexMen        -0.232035058   0.142994561 638.942501566 -1.62268 0.10515013
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.242                            
## Age0        -0.917 -0.001                     
## PovStatBelw -0.254  0.015  0.150              
## RaceAfrAm   -0.215 -0.007  0.066 -0.058       
## SexMen      -0.115  0.019 -0.057  0.049 -0.076

California Verbal Learning Test A

t-Test

CVLtca = t.test(cts_widenp13$CVLtca.1,cts_widenp13$CVLtca.3,paired=TRUE)
CVLtca
## 
##  Paired t-test
## 
## data:  cts_widenp13$CVLtca.1 and cts_widenp13$CVLtca.3
## t = 19.435824, df = 435, p-value < 2.2204e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  5.459227255 6.687561736
## sample estimates:
## mean of the differences 
##             6.073394495

Mixed Model Regression

CVL_listA = lmer(CVLtca~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(CVL_listA)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CVLtca ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 7391.5
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -3.6537041 -0.4575660  0.0182753  0.4860896  2.8135714 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 30.32614 5.506918
##  Residual             21.52922 4.639959
## Number of obs: 1116, groups:  HNDid, 680
## 
## Fixed effects:
##                  Estimate   Std. Error           df   t value   Pr(>|t|)
## (Intercept)   40.03879321   1.45492897 727.21886454  27.51941 < 2.22e-16
## Time          -2.99605374   0.14921979 515.40470811 -20.07813 < 2.22e-16
## Age0          -0.19125783   0.02843451 663.32004637  -6.72626 3.7626e-11
## PovStatBelow  -2.15432489   0.55743193 656.74738261  -3.86473 0.00012225
## RaceAfrAm     -2.40306956   0.51479970 658.91571998  -4.66797 3.6867e-06
## SexMen        -2.56358753   0.51424849 658.05532178  -4.98511 7.9286e-07
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.219                            
## Age0        -0.922 -0.002                     
## PovStatBelw -0.258  0.009  0.149              
## RaceAfrAm   -0.239  0.002  0.088 -0.047       
## SexMen      -0.112  0.000 -0.057  0.053 -0.064

California Verbal Learning Test B

t-Test

CVLtcb = t.test(cts_widenp13$CVLtcb.1,cts_widenp13$CVLtcb.3,paired=TRUE)
CVLtcb
## 
##  Paired t-test
## 
## data:  cts_widenp13$CVLtcb.1 and cts_widenp13$CVLtcb.3
## t = 16.681488, df = 434, p-value < 2.2204e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.454072823 1.842478901
## sample estimates:
## mean of the differences 
##             1.648275862

Mixed Model Regression

CVL_listB=lmer(CVLtcb~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(CVL_listB)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CVLtcb ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 4618.9
## 
## Scaled residuals: 
##         Min          1Q      Median          3Q         Max 
## -2.52819472 -0.57677728 -0.03778711  0.51976170  3.02911240 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 1.858942 1.363430
##  Residual             2.137672 1.462078
## Number of obs: 1115, groups:  HNDid, 680
## 
## Fixed effects:
##                   Estimate    Std. Error            df   t value
## (Intercept)    8.479608428   0.396386829 743.127012832  21.39226
## Time          -0.810263969   0.046395420 542.725692270 -17.46431
## Age0          -0.029795048   0.007685872 662.846706751  -3.87660
## PovStatBelow  -0.463751318   0.150608104 655.530771317  -3.07919
## RaceAfrAm     -0.767441416   0.139081620 657.487645810  -5.51792
## SexMen        -0.359308758   0.138924985 656.520666669  -2.58635
##                Pr(>|t|)
## (Intercept)  < 2.22e-16
## Time         < 2.22e-16
## Age0         0.00011647
## PovStatBelow 0.00216236
## RaceAfrAm     4.938e-08
## SexMen       0.00991391
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.248                            
## Age0        -0.916 -0.003                     
## PovStatBelw -0.257  0.008  0.150              
## RaceAfrAm   -0.239  0.001  0.089 -0.046       
## SexMen      -0.112 -0.001 -0.056  0.053 -0.065

California Verbal Learning Test Learning Slope

t-Test

CVLbet = t.test(cts_widenp13$CVLbet.1,cts_widenp13$CVLbet.3,paired=TRUE)
CVLbet
## 
##  Paired t-test
## 
## data:  cts_widenp13$CVLbet.1 and cts_widenp13$CVLbet.3
## t = 0.59989275, df = 435, p-value = 0.5488901
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.09397595062  0.17654475796
## sample estimates:
## mean of the differences 
##           0.04128440367

Mixed Model Regression

CVL_learn = lmer(CVLbet~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(CVL_learn)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CVLbet ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 3435.3
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -3.8551318 -0.6205495  0.0274793  0.6375800  3.1961604 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  HNDid    (Intercept) 0.1782288 0.4221716
##  Residual             1.0770529 1.0378116
## Number of obs: 1116, groups:  HNDid, 680
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)   2.601686e+00  2.081104e-01  7.481387e+02 12.50147 < 2.22e-16
## Time         -1.413392e-02  3.171352e-02  5.768089e+02 -0.44567 0.65599935
## Age0         -1.450664e-02  3.938868e-03  6.191657e+02 -3.68295 0.00025071
## PovStatBelow -1.292062e-04  7.695551e-02  6.071136e+02 -0.00168 0.99866093
## RaceAfrAm    -2.279400e-02  7.115171e-02  6.112394e+02 -0.32036 0.74880666
## SexMen       -2.725361e-01  7.104301e-02  6.095847e+02 -3.83621 0.00013796
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.321                            
## Age0        -0.895 -0.002                     
## PovStatBelw -0.254  0.011  0.152              
## RaceAfrAm   -0.237  0.003  0.093 -0.044       
## SexMen      -0.108 -0.001 -0.055  0.051 -0.068

Digit Span Forward

t-Test

DigitSpanFwd = t.test(cts_widenp13$DigitSpanFwd.1,cts_widenp13$DigitSpanFwd.3,paired=TRUE)
DigitSpanFwd
## 
##  Paired t-test
## 
## data:  cts_widenp13$DigitSpanFwd.1 and cts_widenp13$DigitSpanFwd.3
## t = -0.94858957, df = 506, p-value = 0.3432822
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2180692256  0.0760573913
## sample estimates:
## mean of the differences 
##          -0.07100591716

Mixed Model Regression

DigitSpanFwd = lmer(DigitSpanFwd~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(DigitSpanFwd)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: DigitSpanFwd ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 4970.4
## 
## Scaled residuals: 
##         Min          1Q      Median          3Q         Max 
## -2.35125440 -0.48522793 -0.05872993  0.43987535  2.85364994 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 3.510214 1.873557
##  Residual             1.416577 1.190200
## Number of obs: 1199, groups:  HNDid, 692
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)    9.384516018   0.444133403 717.037148836 21.12995 < 2.22e-16
## Time           0.038509921   0.036472070 557.063216595  1.05587 0.29148335
## Age0          -0.031857081   0.008825491 685.245148413 -3.60967 0.00032894
## PovStatBelow  -0.682821257   0.174029128 690.428739375 -3.92360 9.5962e-05
## RaceAfrAm     -0.781789697   0.160327412 686.579762724 -4.87621 1.3449e-06
## SexMen         0.304994102   0.160177405 685.936481208  1.90410 0.05731507
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.155                            
## Age0        -0.934  0.001                     
## PovStatBelw -0.248  0.002  0.137              
## RaceAfrAm   -0.236 -0.021  0.084 -0.043       
## SexMen      -0.112  0.004 -0.062  0.047 -0.062

Digit Span Backward

t-Test

DigitSpanBck = t.test(cts_widenp13$DigitSpanBck.1,cts_widenp13$DigitSpanBck.3,paired=TRUE)
DigitSpanBck
## 
##  Paired t-test
## 
## data:  cts_widenp13$DigitSpanBck.1 and cts_widenp13$DigitSpanBck.3
## t = -2.2917537, df = 498, p-value = 0.02233633
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.33126336690 -0.02545005995
## sample estimates:
## mean of the differences 
##           -0.1783567134

Mixed Model Regression

DigitSpanBck = lmer(DigitSpanBck~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(DigitSpanBck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: DigitSpanBck ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 4920.1
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -2.1527793 -0.4984362 -0.0621020  0.4241946  3.5032170 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 3.107264 1.762743
##  Residual             1.528972 1.236516
## Number of obs: 1190, groups:  HNDid, 691
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)    7.793596963   0.428420087 707.504941994 18.19148 < 2.22e-16
## Time           0.062669964   0.038003106 544.685532352  1.64907 0.09970890
## Age0          -0.031038427   0.008496836 671.439396298 -3.65294 0.00027946
## PovStatBelow  -0.649914575   0.167723832 674.823325315 -3.87491 0.00011707
## RaceAfrAm     -1.086606250   0.154332738 671.602952348 -7.04067 4.7402e-12
## SexMen         0.260674726   0.154127882 671.122054155  1.69129 0.09124596
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.166                            
## Age0        -0.932  0.000                     
## PovStatBelw -0.245 -0.001  0.135              
## RaceAfrAm   -0.235 -0.025  0.084 -0.043       
## SexMen      -0.113  0.008 -0.061  0.045 -0.064

Trail Making Test Part A

t-Test

TrailsA = t.test(cts_widenp13$TrailsAtestSec.1,cts_widenp13$TrailsAtestSec.3,paired=TRUE)
TrailsA
## 
##  Paired t-test
## 
## data:  cts_widenp13$TrailsAtestSec.1 and cts_widenp13$TrailsAtestSec.3
## t = -2.7165715, df = 562, p-value = 0.006799382
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.064351219  -1.939201179
## sample estimates:
## mean of the differences 
##            -7.001776199

Mixed Model Regression

TrailsA = lmer(TrailsAtestSec~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(TrailsA)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TrailsAtestSec ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 13113
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -1.5984918 -0.2396807 -0.1028936  0.0673114 12.2795893 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  HNDid    (Intercept)  240.8849 15.52047
##  Residual             1708.9405 41.33933
## Number of obs: 1262, groups:  HNDid, 699
## 
## Fixed effects:
##                 Estimate  Std. Error          df  t value   Pr(>|t|)
## (Intercept)   -4.0677531   7.6045258 855.6481266 -0.53491  0.5928496
## Time           3.2988046   1.1719446 716.5422827  2.81481  0.0050145
## Age0           0.5926617   0.1457051 734.2284742  4.06754 5.2652e-05
## PovStatBelow   1.9101803   2.8670011 742.6314370  0.66626  0.5054492
## RaceAfrAm      7.1551958   2.6398265 731.3756600  2.71048  0.0068761
## SexMen         3.4325153   2.6339474 728.8978267  1.30318  0.1929238
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.300                            
## Age0        -0.902 -0.004                     
## PovStatBelw -0.237 -0.004  0.141              
## RaceAfrAm   -0.223 -0.021  0.087 -0.058       
## SexMen      -0.106  0.008 -0.063  0.044 -0.069

Trail Making Test Part B

t-Test

TrailsB = t.test(cts_widenp13$TrailsBtestSec.1,cts_widenp13$TrailsBtestSec.3,paired=TRUE)
TrailsB
## 
##  Paired t-test
## 
## data:  cts_widenp13$TrailsBtestSec.1 and cts_widenp13$TrailsBtestSec.3
## t = -1.1841996, df = 561, p-value = 0.2368355
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.204589816   3.766867396
## sample estimates:
## mean of the differences 
##             -5.71886121

Mixed Model Regression

TrailsB = lmer(TrailsBtestSec~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
## Error in eval(predvars, data, env): object 'TrailsBtestSec' not found
summary(TrailsB)
##             Length Class  Mode     
## statistic   1      -none- numeric  
## parameter   1      -none- numeric  
## p.value     1      -none- numeric  
## conf.int    2      -none- numeric  
## estimate    1      -none- numeric  
## null.value  1      -none- numeric  
## alternative 1      -none- character
## method      1      -none- character
## data.name   1      -none- character

Word Fluency

t-Test

FluencyWord = t.test(cts_widenp13$FluencyWord.1,cts_widenp13$FluencyWord.3,paired=TRUE)
FluencyWord
## 
##  Paired t-test
## 
## data:  cts_widenp13$FluencyWord.1 and cts_widenp13$FluencyWord.3
## t = -0.2468344, df = 561, p-value = 0.8051267
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3984683477  0.3095003761
## sample estimates:
## mean of the differences 
##          -0.04448398577

Mixed Model Regression

FluencyWord = lmer(FluencyWord~Time + Age0 + PovStat + Race + Sex + (1|HNDid),data=DissData)
summary(FluencyWord)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FluencyWord ~ Time + Age0 + PovStat + Race + Sex + (1 | HNDid)
##    Data: DissData
## 
## REML criterion at convergence: 7471.3
## 
## Scaled residuals: 
##         Min          1Q      Median          3Q         Max 
## -2.55689162 -0.53495207 -0.01874509  0.45378766  2.52112813 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  HNDid    (Intercept) 20.082616 4.481363
##  Residual              9.113221 3.018811
## Number of obs: 1260, groups:  HNDid, 698
## 
## Fixed effects:
##                  Estimate   Std. Error           df  t value   Pr(>|t|)
## (Intercept)   24.27434051   1.06903533 731.06396141 22.70677 < 2.22e-16
## Time           0.04063451   0.08840089 601.88469256  0.45966   0.645925
## Age0          -0.08871606   0.02121410 694.73513161 -4.18194 3.2603e-05
## PovStatBelow  -1.36447456   0.41631237 699.42134851 -3.27753   0.001099
## RaceAfrAm     -1.79757579   0.38436706 692.58277945 -4.67672 3.5054e-06
## SexMen         1.70465626   0.38405821 691.11061760  4.43854 1.0540e-05
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   PvSttB RcAfrA
## Time        -0.159                            
## Age0        -0.933 -0.003                     
## PovStatBelw -0.243 -0.010  0.135              
## RaceAfrAm   -0.235 -0.010  0.084 -0.047       
## SexMen      -0.109  0.003 -0.062  0.049 -0.066