20190717
## Warning: package 'nycflights13' was built under R version 3.6.1
## Warning: package 'tidyverse' was built under R version 3.6.1
## -- Attaching packages ------------------------------------------------ tidyverse 1.2.1 --
## √ ggplot2 3.2.0 √ purrr 0.3.2
## √ tibble 2.1.3 √ dplyr 0.8.3
## √ tidyr 0.8.3 √ stringr 1.4.0
## √ readr 1.3.1 √ forcats 0.4.0
## Warning: package 'readr' was built under R version 3.6.1
## Warning: package 'dplyr' was built under R version 3.6.1
## Warning: package 'forcats' was built under R version 3.6.1
## -- Conflicts --------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
data load
select
-연월일 추출
mutate
summarize
# 월별
flights%>%
group_by(month)%>%
summarize("delay_mean"=mean(dep_delay,na.rm=TRUE),
"delay_max"=max(dep_delay,na.rm=TRUE),
"delay_min"=min(dep_delay,na.rm=TRUE),
"delay_median"=median(dep_delay,na.rm=TRUE))# 항공사별
a<-flights%>%
group_by(carrier)%>%
summarize("delay_mean" = mean(dep_delay,na.rm=TRUE),
"delay_max" = max(dep_delay,na.rm=TRUE),
"delay_min" = min(dep_delay,na.rm=TRUE),
"delay_median" = median(dep_delay,na.rm=TRUE))
names(flights)## [1] "year" "month" "day" "dep_time"
## [5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
## [9] "arr_delay" "carrier" "flight" "tailnum"
## [13] "origin" "dest" "air_time" "distance"
## [17] "hour" "minute" "time_hour"
# 월별 항공사별
flights%>%
group_by(month,carrier)%>%
summarize("delay_mean" = mean(dep_delay,na.rm=TRUE),
"delay_max" = max(dep_delay,na.rm=TRUE),
"delay_min" = min(dep_delay,na.rm=TRUE),
"delay_median" = median(dep_delay,na.rm=TRUE))# 항공사별- delay_mean 정렬
a<-flights%>%
group_by(carrier)%>%
summarize("delay_mean" = mean(dep_delay,na.rm=TRUE),
"delay_max" = max(dep_delay,na.rm=TRUE),
"delay_min" = min(dep_delay,na.rm=TRUE),
"delay_median" = median(dep_delay,na.rm=TRUE))
# 순위 달기
a%>%
arrange(desc(delay_mean))%>%
mutate("rank"=1:16)wheater
- year,mon,day 변수 추가 -추가 시에는 format(object,format=“%y(m,d)”)
- 춘천만 따로 추출하여 지역,평균 기온 변수만 남기고, 가장 추웠던 날짜 순으로 정렬
- 월별 평균기온, 평균 강수량 table 생성
- 지점별 평균 기온, 평균 강수량, 평균 풍속, 평균 상대습도 table 생성
- 지점별,월별 평균 기온/평균 강수량 테이블 생성 후 지점, 월별, 평균 기온 순으로 정렬
1. year,mon,day 변수 추가
## Warning: package 'readxl' was built under R version 3.6.1
## [1] "지점" "지점코드" "일시" "평균기온"
## [5] "일강수량" "평균 풍속" "평균 상대습도"
weather$year<-format(weather$일시, format="%y")
weather$mon<-format(weather$일시, format="%m")
weather$day<-format(weather$일시, format="%d")
weather2. 춘천만 따로 추출하여 지역,평균 기온 변수만 남기고, 가장 추웠던 날짜 순으로 정렬
3. 월별 평균기온, 평균 강수량 table 생성
4. 지점별 평균 기온, 평균 강수량, 평균 풍속, 평균 상대습도 table 생성
colnames(weather)<-c("region","regopn_code","date","tem","rain","wind","wet","year","mon","day")
weather%>%
group_by(region) %>%
summarize(mean_tem=mean(tem),
mean_rian=mean(rain),
mean_wind=mean(wind),
mean_s=mean(wet))5. 지점별,월별 평균 기온/평균 강수량 테이블 생성 후 지점, 월별, 평균 기온 순으로 정렬
# 1
w<-weather%>%
group_by(region,mon)%>%
summarize(mean_tem=mean(tem),
mean_rian=mean(rain))
w%>%arrange(region,mon,mean_tem)# 2
data.frame(weather%>%
group_by(region,mon)%>%
summarize(mean_tem=mean(tem),
mean_rian=mean(rain))%>%
arrange(region,mon))