假设我们有删失的生存数据与基线marker值,我们希望看到marker如何预测数据集中的受试者的存活时间。特别是,假设我们有几天的生存时间,我们想看看标记如何预测一年的存活(predict.time=365)。该功能roc.km.calc()返回感兴趣的时间点的唯一标记值、TP(真阳性)、FP(假阳性)、对应于感兴趣时间点(predict.time)和AUC(ROC)曲线下面积的Kaplan-Meier生存估计。
Sys.setlocale('LC_ALL','C')
## [1] "C"
library(survivalROC)
data(mayo)
head(mayo)
## time censor mayoscore5 mayoscore4
## 1 41 1 11.251850 10.629450
## 2 179 1 10.136070 10.185220
## 3 334 1 10.095740 9.422995
## 4 400 1 10.189150 9.567799
## 5 130 1 9.770148 9.039419
## 6 223 1 9.226429 9.033388
nobs <- NROW(mayo)
cutoff <- 365
## MAYOSCORE 4, METHOD = NNE
Mayo4.1= survivalROC(Stime=mayo$time,##生存时间
status=mayo$censor,## 终止事件
marker = mayo$mayoscore4, ## marker value
predict.time = cutoff,## 预测时间截点
span = 0.25*nobs^(-0.20))##span,NNE法的namda
str(Mayo4.1)## list结构
## List of 6
## $ cut.values : num [1:313] -Inf 4.58 4.9 4.93 4.93 ...
## $ TP : num [1:313] 1 0.997 0.995 0.993 0.99 ...
## $ FP : num [1:313] 1 0.997 0.994 0.99 0.987 ...
## $ predict.time: num 365
## $ Survival : num 0.929
## $ AUC : num 0.931
## 绘图
plot(Mayo4.1$FP, Mayo4.1$TP, ## x=FP,y=TP
type="l",col="red", ##线条设置
xlim=c(0,1), ylim=c(0,1),
xlab=paste( "FP", "\n", "AUC = ",round(Mayo4.1$AUC,3)), ##连接
ylab="TP",
main="Mayoscore 4, Method = NNE \n Year = 1")## \n换行符
abline(0,1,col="gray",lty=2)##线条颜色
## MAYOSCORE 4, METHOD = KM
Mayo4.2= survivalROC(Stime=mayo$time,
status=mayo$censor,
marker = mayo$mayoscore4,
predict.time = cutoff, method="KM")
plot(Mayo4.2$FP, Mayo4.2$TP,
type="l",col="red",xlim=c(0,1), ylim=c(0,1),
xlab=paste( "FP", "\n", "AUC = ",round(Mayo4.2$AUC,3)),
ylab="TP",
main="Mayoscore 4, Method = KM \n Year = 1")
abline(0,1,col="gray",lty=2)
## NNE法
plot(Mayo4.1$FP, Mayo4.1$TP, ## x=FP,y=TP
type="l",col="red", ##线条设置
xlim=c(0,1), ylim=c(0,1),
xlab=("FP"), ##连接
ylab="TP",
main="Time dependent ROC")## \n换行符
abline(0,1,col="gray",lty=2)##线条颜色
## KM法
lines(Mayo4.2$FP, Mayo4.2$TP, type="l",col="green",xlim=c(0,1), ylim=c(0,1))
legend(0.6,0.2,c(paste("AUC of NNE =",round(Mayo4.1$AUC,3)),
paste("AUC of KM =",round(Mayo4.2$AUC,3))),
x.intersp=1, y.intersp=0.8,
lty= 1 ,lwd= 2,col=c("red","green"),
bty = "n",# bty框的类型
seg.len=1,cex=0.8)#
require(ggsci)
## Loading required package: ggsci
library("scales")
pal_nejm("default")(8)
## [1] "#BC3C29FF" "#0072B5FF" "#E18727FF" "#20854EFF" "#7876B1FF" "#6F99ADFF"
## [7] "#FFDC91FF" "#EE4C97FF"
show_col(pal_nejm("default")(8))
## NNE法
plot(Mayo4.1$FP, Mayo4.1$TP, ## x=FP,y=TP
type="l",col="#BC3C29FF", ##线条设置
xlim=c(0,1), ylim=c(0,1),
xlab=("FP"), ##连接
ylab="TP",
main="Time dependent ROC")## \n换行符
abline(0,1,col="gray",lty=2)##线条颜色
## KM法
lines(Mayo4.2$FP, Mayo4.2$TP, type="l",col="#0072B5FF",xlim=c(0,1), ylim=c(0,1))
legend(0.6,0.2,c(paste("AUC of NNE =",round(Mayo4.1$AUC,3)),
paste("AUC of KM =",round(Mayo4.2$AUC,3))),
x.intersp=1, y.intersp=0.8,
lty= 1 ,lwd= 2,col=c("#BC3C29FF","#0072B5FF"),
bty = "n",# bty框的类型
seg.len=1,cex=0.8)#