Differences in Neuropsych Test Scores from Wave 1 to Wave 3 (Total Sample)

Brief Test of Attention

t-Test

Attention = t.test(widenp13$Attention.1,widenp13$Attention.3,paired=TRUE)
Attention
## 
##  Paired t-test
## 
## data:  widenp13$Attention.1 and widenp13$Attention.3
## t = 5.4296536, df = 1520, p-value = 6.564092e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1809968476 0.3857355653
## sample estimates:
## mean of the differences 
##            0.2833662064

Mixed Model Regression

Attn = lmer(Attention~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(Attn)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Attention ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 18119.6
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -3.3200460 -0.5232179  0.0182806  0.5598941  2.6975948 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 2.507538 1.583521
##  Residual             2.091361 1.446154
## Number of obs: 4270, groups:  HNDid, 2749
## 
## Fixed effects:
##                   Estimate    Std. Error            df   t value
## (Intercept)   9.101230e+00  2.188432e-01  2.945679e+03  41.58790
## Time         -1.487830e-01  2.415217e-02  2.003775e+03  -6.16023
## Age0         -3.225988e-02  4.126391e-03  2.697835e+03  -7.81794
## SexMen       -3.046929e-01  7.684270e-02  2.680643e+03  -3.96515
## RaceAfrAm    -7.825774e-01  7.802616e-02  2.676487e+03 -10.02968
## PovStatBelow -6.228142e-01  7.834004e-02  2.677095e+03  -7.95014
##                Pr(>|t|)
## (Intercept)  < 2.22e-16
## Time         8.7548e-10
## Age0         7.6361e-15
## SexMen       7.5269e-05
## RaceAfrAm    < 2.22e-16
## PovStatBelow 2.7212e-15
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.228                            
## Age0        -0.918  0.014                     
## SexMen      -0.169  0.021  0.009              
## RaceAfrAm   -0.191 -0.020  0.010 -0.010       
## PovStatBelw -0.186  0.032  0.062  0.059 -0.153

California Verbal Learning Test A

t-Test

CVLtca = t.test(widenp13$CVLtca.1,widenp13$CVLtca.3,paired=TRUE)
CVLtca
## 
##  Paired t-test
## 
## data:  widenp13$CVLtca.1 and widenp13$CVLtca.3
## t = 38.470457, df = 1613, p-value < 2.2204e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  6.447301055 7.140059540
## sample estimates:
## mean of the differences 
##             6.793680297

Mixed Model Regression

CVL_listA = lmer(CVLtca~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(CVL_listA)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CVLtca ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 29606.4
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -3.6958650 -0.4689845  0.0260421  0.5035957  3.1351564 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 24.65441 4.965321
##  Residual             25.31103 5.031007
## Number of obs: 4452, groups:  HNDid, 2838
## 
## Fixed effects:
##                   Estimate    Std. Error            df   t value
## (Intercept)    39.20892160    0.70770563 3082.69792654  55.40287
## Time           -3.33504771    0.08116774 2164.17794343 -41.08834
## Age0           -0.17288072    0.01329820 2810.89391533 -13.00031
## SexMen         -2.83343778    0.24594727 2769.75989120 -11.52051
## RaceAfrAm      -2.35663575    0.25050990 2765.56648907  -9.40736
## PovStatBelow   -1.95671150    0.25058651 2763.26618068  -7.80853
##                Pr(>|t|)
## (Intercept)  < 2.22e-16
## Time         < 2.22e-16
## Age0         < 2.22e-16
## SexMen       < 2.22e-16
## RaceAfrAm    < 2.22e-16
## PovStatBelow 8.1479e-15
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.237                            
## Age0        -0.915  0.007                     
## SexMen      -0.167  0.017  0.008              
## RaceAfrAm   -0.189 -0.023  0.009 -0.009       
## PovStatBelw -0.189  0.031  0.065  0.062 -0.153

California Verbal Learning Test B

t-Test

CVLtcb = t.test(widenp13$CVLtcb.1,widenp13$CVLtcb.3,paired=TRUE)
CVLtcb
## 
##  Paired t-test
## 
## data:  widenp13$CVLtcb.1 and widenp13$CVLtcb.3
## t = 31.924465, df = 1599, p-value < 2.2204e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.613736087 1.825013913
## sample estimates:
## mean of the differences 
##                1.719375

Mixed Model Regression

CVL_listB= lmer(CVLtcb~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(CVL_listB)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CVLtcb ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 18144.8
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -2.5697678 -0.6005774 -0.0475523  0.5475930  3.7387468 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 1.344019 1.159318
##  Residual             2.324447 1.524614
## Number of obs: 4435, groups:  HNDid, 2835
## 
## Fixed effects:
##                   Estimate    Std. Error            df   t value
## (Intercept)     8.10202786    0.18810367 3118.56537106  43.07214
## Time           -0.84417745    0.02417936 2290.24794134 -34.91314
## Age0           -0.02394167    0.00350989 2794.33921950  -6.82120
## SexMen         -0.61909606    0.06485189 2746.31265153  -9.54631
## RaceAfrAm      -0.63889745    0.06605645 2738.86055450  -9.67199
## PovStatBelow   -0.43267703    0.06606889 2736.43725465  -6.54888
##                Pr(>|t|)
## (Intercept)  < 2.22e-16
## Time         < 2.22e-16
## Age0         1.1024e-11
## SexMen       < 2.22e-16
## RaceAfrAm    < 2.22e-16
## PovStatBelow 6.8990e-11
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.264                            
## Age0        -0.908  0.006                     
## SexMen      -0.166  0.016  0.009              
## RaceAfrAm   -0.189 -0.024  0.011 -0.009       
## PovStatBelw -0.188  0.032  0.064  0.061 -0.153

California Verbal Learning Test Learning Slope

t-Test

CVLbet = t.test(widenp13$CVLbet.1,widenp13$CVLbet.3,paired=TRUE)
CVLbet
## 
##  Paired t-test
## 
## data:  widenp13$CVLbet.1 and widenp13$CVLbet.3
## t = 2.7448119, df = 1618, p-value = 0.006121499
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.02899875272 0.17421310646
## sample estimates:
## mean of the differences 
##            0.1016059296

Mixed Model Regression

CVL_learn = lmer(CVLbet~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(CVL_learn)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CVLbet ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 13841.3
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -6.5860229 -0.6323392  0.0257568  0.6229600  3.2592137 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  HNDid    (Intercept) 0.1870192 0.4324572
##  Residual             1.1168455 1.0568091
## Number of obs: 4461, groups:  HNDid, 2842
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)   2.615956e+00  1.071741e-01  3.156240e+03 24.40848 < 2.22e-16
## Time         -2.320545e-02  1.615987e-02  2.472044e+03 -1.43599  0.1511311
## Age0         -1.480275e-02  1.971729e-03  2.719625e+03 -7.50750 8.1208e-14
## SexMen       -2.532870e-01  3.632486e-02  2.654729e+03 -6.97283 3.9054e-12
## RaceAfrAm    -1.004138e-01  3.699559e-02  2.647237e+03 -2.71421  0.0066865
## PovStatBelow -8.977480e-02  3.699402e-02  2.643340e+03 -2.42674  0.0153017
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.310                            
## Age0        -0.897  0.008                     
## SexMen      -0.164  0.019  0.008              
## RaceAfrAm   -0.184 -0.025  0.010 -0.008       
## PovStatBelw -0.189  0.035  0.066  0.060 -0.152

Digit Span Forward

t-Test

DigitSpanFwd = t.test(widenp13$DigitSpanFwd.1,widenp13$DigitSpanFwd.3,paired=TRUE)
DigitSpanFwd
## 
##  Paired t-test
## 
## data:  widenp13$DigitSpanFwd.1 and widenp13$DigitSpanFwd.3
## t = 1.5353205, df = 1748, p-value = 0.1248861
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.01760942808  0.14453910218
## sample estimates:
## mean of the differences 
##           0.06346483705

Mixed Model Regression

DigitSpanFwd = lmer(DigitSpanFwd~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(DigitSpanFwd)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: DigitSpanFwd ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 19364
## 
## Scaled residuals: 
##         Min          1Q      Median          3Q         Max 
## -2.67121566 -0.46372315 -0.08273055  0.42937660  2.87375169 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 3.152055 1.775403
##  Residual             1.494908 1.222664
## Number of obs: 4668, groups:  HNDid, 2919
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)   8.999731e+00  2.150910e-01  3.069589e+03 41.84150 < 2.22e-16
## Time         -2.328120e-02  1.975289e-02  2.072776e+03 -1.17862   0.238684
## Age0         -2.589013e-02  4.104686e-03  2.910082e+03 -6.30746 3.2676e-10
## SexMen        1.453786e-01  7.638145e-02  2.896318e+03  1.90332   0.057097
## RaceAfrAm    -6.729177e-01  7.782012e-02  2.895796e+03 -8.64709 < 2.22e-16
## PovStatBelow -5.442575e-01  7.799859e-02  2.900235e+03 -6.97779 3.7007e-12
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.171                            
## Age0        -0.927  0.009                     
## SexMen      -0.168  0.013  0.005              
## RaceAfrAm   -0.191 -0.030  0.007 -0.011       
## PovStatBelw -0.181  0.011  0.059  0.059 -0.152

Digit Span Backward

t-Test

DigitSpanBck = t.test(widenp13$DigitSpanBck.1,widenp13$DigitSpanBck.3,paired=TRUE)
DigitSpanBck
## 
##  Paired t-test
## 
## data:  widenp13$DigitSpanBck.1 and widenp13$DigitSpanBck.3
## t = 1.3336342, df = 1724, p-value = 0.1824999
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.02619402374  0.13749837157
## sample estimates:
## mean of the differences 
##           0.05565217391

Mixed Model Regression

DigitSpanBck = lmer(DigitSpanBck~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(DigitSpanBck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: DigitSpanBck ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 19021
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -3.2574026 -0.4716392 -0.0488628  0.4177069  4.0117754 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 2.857465 1.690404
##  Residual             1.510119 1.228869
## Number of obs: 4629, groups:  HNDid, 2904
## 
## Fixed effects:
##                   Estimate    Std. Error            df   t value
## (Intercept)   7.793080e+00  2.082415e-01  3.046828e+03  37.42329
## Time         -3.356641e-02  1.990115e-02  2.059459e+03  -1.68666
## Age0         -2.782140e-02  3.972023e-03  2.877139e+03  -7.00434
## SexMen       -9.652966e-02  7.393541e-02  2.862136e+03  -1.30559
## RaceAfrAm    -1.052518e+00  7.533006e-02  2.860699e+03 -13.97209
## PovStatBelow -5.861208e-01  7.553269e-02  2.867545e+03  -7.75983
##                Pr(>|t|)
## (Intercept)  < 2.22e-16
## Time           0.091821
## Age0         3.0773e-12
## SexMen         0.191795
## RaceAfrAm    < 2.22e-16
## PovStatBelow 1.1736e-14
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.178                            
## Age0        -0.926  0.009                     
## SexMen      -0.166  0.014  0.004              
## RaceAfrAm   -0.190 -0.033  0.007 -0.012       
## PovStatBelw -0.179  0.010  0.057  0.060 -0.153

Trail Making Test Part A

t-Test

TrailsA = t.test(widenp13$TrailsAtestSec.1,widenp13$TrailsAtestSec.3,paired=TRUE)
TrailsA
## 
##  Paired t-test
## 
## data:  widenp13$TrailsAtestSec.1 and widenp13$TrailsAtestSec.3
## t = -2.1177042, df = 1957, p-value = 0.03432592
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.7094000021 -0.2190984657
## sample estimates:
## mean of the differences 
##            -2.964249234

Mixed Model Regression

TrailsA = lmer(TrailsAtestSec~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(TrailsA)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TrailsAtestSec ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 52966.3
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -2.2432031 -0.2326372 -0.1158938  0.0301708  9.9749310 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept)  503.071 22.42924
##  Residual             2387.247 48.85946
## Number of obs: 4908, groups:  HNDid, 2950
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)    -5.04015364    4.81588492 2586.05075735 -1.04657 0.29539643
## Time            0.93456021    0.71383607 1877.98422035  1.30921 0.19062391
## Age0            0.70791573    0.08940737 2114.05816193  7.91787 3.8671e-15
## SexMen          6.03048099    1.65462979 2064.70242660  3.64461 0.00027441
## RaceAfrAm       9.77131535    1.68328951 2049.59840521  5.80489 7.4461e-09
## PovStatBelow    6.32609283    1.68998192 2075.88088326  3.74329 0.00018656
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.287                            
## Age0        -0.904  0.010                     
## SexMen      -0.166  0.022  0.008              
## RaceAfrAm   -0.181 -0.036  0.009 -0.011       
## PovStatBelw -0.177  0.009  0.062  0.057 -0.151

Trail Making Test Part B

t-Test

TrailsB = t.test(widenp13$TrailsBtestSec.1,widenp13$TrailsBtestSec.3,paired=TRUE)
TrailsB
## 
##  Paired t-test
## 
## data:  widenp13$TrailsBtestSec.1 and widenp13$TrailsBtestSec.3
## t = -5.8736656, df = 1947, p-value = 5.000876e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -25.41862850 -12.69328115
## sample estimates:
## mean of the differences 
##            -19.05595483

Mixed Model Regression

TrailsB = lmer(TrailsBtestSec~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(TrailsB)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TrailsBtestSec ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 62949.1
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -2.6246228 -0.3203912 -0.1421073  0.0885997  3.2701004 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 17423.97 131.9999
##  Residual             10454.11 102.2454
## Number of obs: 4891, groups:  HNDid, 2943
## 
## Fixed effects:
##                  Estimate   Std. Error           df  t value   Pr(>|t|)
## (Intercept)  -110.0986793   16.3966298 3062.6080313 -6.71471 2.2370e-11
## Time            9.1535400    1.5701753 2202.5731956  5.82963 6.3728e-09
## Age0            4.0418352    0.3122089 2873.7324045 12.94593 < 2.22e-16
## SexMen         18.7267366    5.8001135 2847.8042622  3.22868  0.0012577
## RaceAfrAm      69.6363387    5.9051771 2840.6318987 11.79242 < 2.22e-16
## PovStatBelow   51.8487481    5.9204939 2851.4427268  8.75750 < 2.22e-16
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.183                            
## Age0        -0.925  0.008                     
## SexMen      -0.169  0.017  0.008              
## RaceAfrAm   -0.190 -0.028  0.008 -0.013       
## PovStatBelw -0.179  0.006  0.059  0.061 -0.154

Word Fluency

t-Test

FluencyWord = t.test(widenp13$FluencyWord.1,widenp13$FluencyWord.3,paired=TRUE)
FluencyWord
## 
##  Paired t-test
## 
## data:  widenp13$FluencyWord.1 and widenp13$FluencyWord.3
## t = -1.2563914, df = 1980, p-value = 0.2091223
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.30509032753  0.06682682425
## sample estimates:
## mean of the differences 
##           -0.1191317516

Mixed Model Regression

FluencyWord = lmer(FluencyWord~Time + Age0 + Sex + Race + PovStat + (1|HNDid),data=np13_long)
summary(FluencyWord)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FluencyWord ~ Time + Age0 + Sex + Race + PovStat + (1 | HNDid)
##    Data: np13_long
## 
## REML criterion at convergence: 29113.5
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -3.3402004 -0.5012955 -0.0305745  0.4485452  2.7936286 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  HNDid    (Intercept) 18.013372 4.244216
##  Residual              8.895295 2.982498
## Number of obs: 4939, groups:  HNDid, 2958
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)   2.409721e+01  5.111920e-01  3.131757e+03 47.13925 < 2.22e-16
## Time          7.806695e-02  4.569525e-02  2.270765e+03  1.70843 0.08769398
## Age0         -8.993507e-02  9.755877e-03  2.967980e+03 -9.21855 < 2.22e-16
## SexMen        6.871435e-01  1.812067e-01  2.943420e+03  3.79204 0.00015241
## RaceAfrAm    -1.703338e+00  1.845301e-01  2.941549e+03 -9.23068 < 2.22e-16
## PovStatBelow -1.342639e+00  1.850196e-01  2.949998e+03 -7.25674 5.0461e-13
## 
## Correlation of Fixed Effects:
##             (Intr) Time   Age0   SexMen RcAfrA
## Time        -0.170                            
## Age0        -0.927  0.006                     
## SexMen      -0.168  0.015  0.006              
## RaceAfrAm   -0.192 -0.026  0.009 -0.012       
## PovStatBelw -0.176  0.003  0.056  0.060 -0.154