#################### Crecimiento y desarrollo ####################
library(nortest)
library(agricolae)
library(readxl)
library(readxl)

DAT <- read_excel("C:/Users/Johan Forigua/Documents/Universidad Nacional/Semestre 9/Fisiologia de la produccion/Analisis/DAT.xlsx")
Dat <- DAT
Dat$TRT <- as.factor(Dat$TRT)
Dat$B <- as.factor(Dat$B)

########## Spad ##########
#### Descriptivos }
Med <- tapply(Dat$SPAD,list(Dat$TRT,Dat$DDS),mean);Med
##           46     57      63
## Ctrl 28.4125 32.075 31.4500
## Post 38.8375 35.675 35.0125
## PrMn 39.2000 37.125 35.6750
## PrPt 34.2125 33.675 38.2375
Dvs <- tapply(Dat$SPAD,list(Dat$TRT,Dat$DDS),sd);Dvs
##            46        57       63
## Ctrl 2.082881 2.2081289 5.245134
## Post 3.867054 0.4031129 3.216226
## PrMn 2.770250 1.3647344 3.294909
## PrPt 2.948819 4.7289005 3.730928
CoefV <- Dvs/Med*100;CoefV
##            46        57        63
## Ctrl 7.330861  6.884268 16.677691
## Post 9.957011  1.129959  9.185935
## PrMn 7.066965  3.676052  9.235906
## PrPt 8.619129 14.042763  9.757248
#### ANOVAS
MdSPAD1 <- aov(SPAD~TRT+B,data = Dat[1:32,])
MdSPAD2 <- aov(SPAD~TRT+B,data = Dat[33:48,])
MdSPAD3 <- aov(SPAD~TRT+B,data = Dat[49:80,])
summary(MdSPAD1);summary(MdSPAD2);summary(MdSPAD3)
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## TRT          3  610.2  203.39   21.57 4.1e-07 ***
## B            3   13.9    4.62    0.49   0.693    
## Residuals   25  235.8    9.43                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3  59.03  19.676   3.660 0.0567 .
## B            3  39.41  13.136   2.443 0.1309  
## Residuals    9  48.38   5.376                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3  188.0   62.68   3.678 0.0254 *
## B            3   12.4    4.15   0.243 0.8653  
## Residuals   25  426.0   17.04                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(MdSPAD1,"TRT");Sp1
## $statistics
##    MSerror Df     Mean       CV      MSD
##   9.431312 25 35.16562 8.733086 4.223674
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##         SPAD      std r  Min  Max   Q25   Q50    Q75
## Ctrl 28.4125 2.082881 8 25.7 30.9 26.75 28.60 30.075
## Post 38.8375 3.867054 8 31.7 45.2 37.55 39.05 40.425
## PrMn 39.2000 2.770250 8 35.9 43.8 37.35 38.40 40.625
## PrPt 34.2125 2.948819 8 30.3 39.1 32.65 33.50 36.175
## 
## $comparison
## NULL
## 
## $groups
##         SPAD groups
## PrMn 39.2000      a
## Post 38.8375      a
## PrPt 34.2125      b
## Ctrl 28.4125      c
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(MdSPAD2,"TRT");Sp2
## $statistics
##    MSerror Df    Mean       CV      MSD
##   5.375833  9 34.6375 6.693856 5.118148
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##        SPAD       std r  Min  Max    Q25   Q50    Q75
## Ctrl 32.075 2.2081289 4 29.2 34.0 30.925 32.55 33.700
## Post 35.675 0.4031129 4 35.2 36.1 35.425 35.70 35.950
## PrMn 37.125 1.3647344 4 35.2 38.4 36.775 37.45 37.800
## PrPt 33.675 4.7289005 4 28.5 38.9 30.450 33.65 36.875
## 
## $comparison
## NULL
## 
## $groups
##        SPAD groups
## PrMn 37.125      a
## Post 35.675      a
## PrPt 33.675      a
## Ctrl 32.075      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(MdSPAD3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   17.03945 25 35.09375 11.76246 5.677172
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##         SPAD      std r  Min  Max    Q25   Q50    Q75
## Ctrl 31.4500 5.245134 8 25.9 38.9 26.850 30.45 35.175
## Post 35.0125 3.216226 8 28.9 38.0 32.900 35.90 37.800
## PrMn 35.6750 3.294909 8 28.7 39.3 35.325 36.55 37.450
## PrPt 38.2375 3.730928 8 34.5 44.0 34.900 37.70 40.450
## 
## $comparison
## NULL
## 
## $groups
##         SPAD groups
## PrPt 38.2375      a
## PrMn 35.6750     ab
## Post 35.0125     ab
## Ctrl 31.4500      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,59),
                 ylab = "SPAD", xlab = "dds", 
                 main = "Contenido relativo de clorofilas",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 3.5, c("c","a","a","b",
                                "a","a","a","a",
                                "b", "ab","ab","a"))
  segments(0,0,200,0)
  legend("topleft", c("C","Pos","Pr-Des","Pr-Pos"), 
         cex=.8, bty = "n",horiz=T,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- MdSPAD1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.98927, p-value = 0.9835
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.14885, p-value = 0.9596
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.99052, p-value = 0.973
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 4, p-value = 0.5494
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- MdSPAD2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.98133, p-value = 0.9733
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.19945, p-value = 0.8597
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.98268, p-value = 0.9519
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 3.25, p-value = 0.5169
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- MdSPAD3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.96086, p-value = 0.2898
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.55647, p-value = 0.1389
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.96683, p-value = 0.3531
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 10.5, p-value = 0.06225
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Temperatura ##########
#### Descriptivos 
Med <- tapply(Dat$Temp,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##           46  57      63
## Ctrl 16.3250 NaN 18.9875
## Post 16.1375 NaN 21.0125
## PrMn 16.8500 NaN 20.5625
## PrPt 16.6125 NaN 18.4500
Dvs <- tapply(Dat$Temp,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##             46 57       63
## Ctrl 1.5294724 NA 3.787362
## Post 0.7520211 NA 4.044551
## PrMn 2.0248457 NA 3.927172
## PrPt 2.3135857 NA 3.684717
CoefV <- Dvs/Med*100;CoefV
##             46 57       63
## Ctrl  9.368897 NA 19.94660
## Post  4.660084 NA 19.24831
## PrMn 12.016888 NA 19.09871
## PrPt 13.926776 NA 19.97137
#### ANOVAS
Md1 <- aov(Temp~TRT+B,data = Dat[1:32,])
Md3 <- aov(Temp~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md3)
##             Df Sum Sq Mean Sq F value Pr(>F)
## TRT          3   2.37   0.789   0.261  0.853
## B            3  10.87   3.624   1.198  0.331
## Residuals   25  75.63   3.025
##             Df Sum Sq Mean Sq F value Pr(>F)
## TRT          3   36.2   12.07   0.793  0.509
## B            3   37.3   12.44   0.817  0.496
## Residuals   25  380.6   15.22
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##   MSerror Df     Mean       CV      MSD
##   3.02525 25 16.48125 10.55335 2.392131
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##         Temp       std r  Min  Max    Q25   Q50    Q75
## Ctrl 16.3250 1.5294724 8 15.0 19.4 15.350 15.70 16.750
## Post 16.1375 0.7520211 8 15.3 17.8 15.775 15.95 16.250
## PrMn 16.8500 2.0248457 8 14.7 21.4 15.800 16.45 16.800
## PrPt 16.6125 2.3135857 8 11.5 19.1 16.200 17.10 17.725
## 
## $comparison
## NULL
## 
## $groups
##         Temp groups
## PrMn 16.8500      a
## PrPt 16.6125      a
## Ctrl 16.3250      a
## Post 16.1375      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   15.22341 25 19.75313 19.75241 5.366119
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##         Temp      std r  Min  Max    Q25   Q50    Q75
## Ctrl 18.9875 3.787362 8 13.5 25.3 16.950 19.15 21.100
## Post 21.0125 4.044551 8 16.6 28.8 18.475 20.35 22.825
## PrMn 20.5625 3.927172 8 15.9 27.6 17.525 19.95 23.100
## PrPt 18.4500 3.684717 8 13.9 24.1 15.200 18.85 20.475
## 
## $comparison
## NULL
## 
## $groups
##         Temp groups
## Post 21.0125      a
## PrMn 20.5625      a
## Ctrl 18.9875      a
## PrPt 18.4500      a
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med[,-2], beside = T, ylim = c(0,35),
                 ylab = "°C", xlab = "dds", 
                 main = "Temperatura Foliar",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med[,-2] - Dvs[,-2], Graf, Med[,-2] + Dvs[,-2])
  segments(Graf - 0.1, Med[,-2] - Dvs[,-2], Graf + 0.1, Med[,-2] - Dvs[,-2])
  segments(Graf - 0.1, Med[,-2] + Dvs[,-2], Graf + 0.1, Med[,-2] + Dvs[,-2])
  text(Graf, Med[,-2] + Dvs[,-2] + 3.5, c("a"))
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=T,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.93913, p-value = 0.07074
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.79617, p-value = 0.03488
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.92551, p-value = 0.03111
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 7, p-value = 0.2206
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.95329, p-value = 0.1787
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.45479, p-value = 0.252
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.96547, p-value = 0.326
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 6, p-value = 0.3062
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Altura ##########
#### Descriptivos 
Med <- tapply(Dat$Altura,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46     57      63
## Ctrl 28.78750 36.375 35.6500
## Post 20.02500 27.300 30.3750
## PrMn 21.43750 28.875 29.4375
## PrPt 23.07143 27.375 27.4500
Dvs <- tapply(Dat$Altura,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##            46       57       63
## Ctrl 3.784343 7.157455 3.007609
## Post 2.261952 3.043025 4.985622
## PrMn 2.757296 2.561738 3.907845
## PrPt 3.801629 4.871259 3.586881
CoefV <- Dvs/Med*100;CoefV
##            46        57        63
## Ctrl 13.14578 19.676853  8.436492
## Post 11.29564 11.146611 16.413571
## PrMn 12.86202  8.871819 13.275056
## PrPt 16.47765 17.794554 13.066961
#### ANOVAS
Md1 <- aov(Altura~TRT+B,data = Dat[1:32,])
Md2 <- aov(Altura~TRT+B,data = Dat[33:48,])
Md3 <- aov(Altura~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3  354.8  118.26  12.363 4.35e-05 ***
## B            3   46.4   15.47   1.618    0.212    
## Residuals   24  229.6    9.57                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 224.34   74.78   3.513 0.0623 .
## B            3  80.74   26.91   1.264 0.3438  
## Residuals    9 191.60   21.29                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3  294.1   98.03   7.036 0.00138 **
## B            3   86.0   28.66   2.057 0.13156   
## Residuals   25  348.3   13.93                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##   MSerror Df     Mean     CV
##    9.5657 24 23.33871 13.252
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.901262  0.05
## 
## $means
##        Altura      std r  Min  Max    Q25  Q50    Q75
## Ctrl 28.78750 3.784343 8 22.4 33.8 26.500 28.8 30.875
## Post 20.02500 2.261952 8 17.0 23.0 18.375 19.6 21.875
## PrMn 21.43750 2.757296 8 16.0 24.0 19.875 22.5 23.500
## PrPt 23.07143 3.801629 7 16.0 28.0 22.250 24.0 24.500
## 
## $comparison
## NULL
## 
## $groups
##        Altura groups
## Ctrl 28.78750      a
## PrPt 23.07143      b
## PrMn 21.43750      b
## Post 20.02500      b
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df     Mean      CV      MSD
##   21.28896  9 29.98125 15.3896 10.18514
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##      Altura      std r  Min  Max    Q25   Q50    Q75
## Ctrl 36.375 7.157455 4 31.5 47.0 32.625 33.50 37.250
## Post 27.300 3.043025 4 23.7 31.0 25.800 27.25 28.750
## PrMn 28.875 2.561738 4 26.0 31.5 27.125 29.00 30.750
## PrPt 27.375 4.871259 4 20.5 32.0 26.500 28.50 29.375
## 
## $comparison
## NULL
## 
## $groups
##      Altura groups
## Ctrl 36.375      a
## PrMn 28.875      a
## PrPt 27.375      a
## Post 27.300      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   13.93221 25 30.72812 12.14714 5.133509
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##       Altura      std r  Min  Max    Q25   Q50    Q75
## Ctrl 35.6500 3.007609 8 30.8 39.4 34.225 35.90 37.225
## Post 30.3750 4.985622 8 20.9 36.4 28.275 30.55 34.325
## PrMn 29.4375 3.907845 8 23.7 33.4 27.200 29.75 33.225
## PrPt 27.4500 3.586881 8 19.9 30.8 26.100 28.00 30.275
## 
## $comparison
## NULL
## 
## $groups
##       Altura groups
## Ctrl 35.6500      a
## Post 30.3750      b
## PrMn 29.4375      b
## PrPt 27.4500      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,59),
                 ylab = "cm", xlab = "dds", 
                 main = "Altura de la planta",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 3.5, c("a","b","b","b",
                                "a","a","a","a",
                                "a","b","b","b"))
  segments(0,0,200,0)
  legend("topleft", c("C","Pos","Pr-Des","Pr-Pos"), 
         cex=.8, bty = "n",horiz=T,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.96707, p-value = 0.4422
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.48228, p-value = 0.2146
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.96627, p-value = 0.3581
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 13.129, p-value = 0.0222
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.986, p-value = 0.9938
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.12881, p-value = 0.9781
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.98067, p-value = 0.9289
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 2.375, p-value = 0.6671
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.97171, p-value = 0.5478
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.38203, p-value = 0.3788
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.97252, p-value = 0.4878
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 4.5, p-value = 0.4799
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Ancho de tallo ##########
#### Descriptivos 
Med <- tapply(Dat$Ancho,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46     57    63
## Ctrl 4.485000 5.5625 5.700
## Post 4.378750 7.0250 7.225
## PrMn 6.400000 6.9500 7.600
## PrPt 4.811429 7.1000 6.775
Dvs <- tapply(Dat$Ancho,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##             46        57        63
## Ctrl 0.8590859 0.7888547 0.8585702
## Post 0.8273786 1.0688779 0.5775564
## PrMn 0.3515273 0.3439961 2.7422618
## PrPt 0.9254626 0.4778424 1.3677406
CoefV <- Dvs/Med*100;CoefV
##             46        57        63
## Ctrl 19.154646 14.181657 15.062636
## Post 18.895315 15.215344  7.993861
## PrMn  5.492614  4.949585 36.082393
## PrPt 19.234673  6.730174 20.188053
#### ANOVAS
Md1 <- aov(Ancho~TRT+B,data = Dat[1:32,])
Md2 <- aov(Ancho~TRT+B,data = Dat[33:48,])
Md3 <- aov(Ancho~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## TRT          3 21.118   7.039  13.144 2.8e-05 ***
## B            3  3.109   1.036   1.935   0.151    
## Residuals   24 12.853   0.536                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3  6.462  2.1539   3.088 0.0826 .
## B            3  0.057  0.0189   0.027 0.9935  
## Residuals    9  6.278  0.6975                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value Pr(>F)
## TRT          3  16.23   5.410   2.071  0.130
## B            3   7.93   2.644   1.012  0.404
## Residuals   25  65.30   2.612
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##     MSerror Df     Mean       CV
##   0.5355459 24 5.025484 14.56198
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.901262  0.05
## 
## $means
##         Ancho       std r  Min  Max    Q25   Q50    Q75
## Ctrl 4.485000 0.8590859 8 3.35 5.49 3.9450 4.385 5.3025
## Post 4.378750 0.8273786 8 3.34 5.37 3.9250 4.185 5.2425
## PrMn 6.400000 0.3515273 8 6.00 7.00 6.0875 6.400 6.5875
## PrPt 4.811429 0.9254626 7 3.42 6.16 4.1850 5.120 5.3050
## 
## $comparison
## NULL
## 
## $groups
##         Ancho groups
## PrMn 6.400000      a
## PrPt 4.811429      b
## Ctrl 4.485000      b
## Post 4.378750      b
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##     MSerror Df     Mean       CV      MSD
##   0.6975174  9 6.659375 12.54134 1.843603
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##       Ancho       std r  Min  Max    Q25   Q50    Q75
## Ctrl 5.5625 0.7888547 4 4.70 6.35 5.0000 5.600 6.1625
## Post 7.0250 1.0688779 4 6.10 8.50 6.3250 6.750 7.4500
## PrMn 6.9500 0.3439961 4 6.45 7.20 6.8625 7.075 7.1625
## PrPt 7.1000 0.4778424 4 6.60 7.75 6.9000 7.025 7.2250
## 
## $comparison
## NULL
## 
## $groups
##       Ancho groups
## PrPt 7.1000      a
## Post 7.0250      a
## PrMn 6.9500      a
## Ctrl 5.5625      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##   MSerror Df  Mean       CV      MSD
##    2.6119 25 6.825 23.67967 2.222709
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##      Ancho       std r Min  Max   Q25  Q50   Q75
## Ctrl 5.700 0.8585702 8 4.4  6.7 5.025 5.85 6.425
## Post 7.225 0.5775564 8 6.4  8.1 6.875 7.30 7.600
## PrMn 7.600 2.7422618 8 5.1 14.0 6.225 7.25 7.425
## PrPt 6.775 1.3677406 8 5.0  9.8 6.250 6.60 6.850
## 
## $comparison
## NULL
## 
## $groups
##      Ancho groups
## PrMn 7.600      a
## Post 7.225      a
## PrPt 6.775      a
## Ctrl 5.700      a
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,13),
                 ylab = "cm", xlab = "dds", 
                 main = "Ancho del tallo",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + .9, c("b","b","a","b",
                                "a","a","a","a",
                                "a","a","a","a"))
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=T,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.9493, p-value = 0.1493
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.50653, p-value = 0.1863
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.96289, p-value = 0.295
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 4.3548, p-value = 0.4995
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.96644, p-value = 0.7781
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.2217, p-value = 0.7951
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.97024, p-value = 0.7594
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 5, p-value = 0.2873
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.86206, p-value = 0.0007658
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 1.153, p-value = 0.004377
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.83974, p-value = 0.000531
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 10, p-value = 0.07524
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Numero de hojas ##########
#### Descriptivos 
Med <- tapply(Dat$NoHojas,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46    57     63
## Ctrl 3.495833  6.50  6.000
## Post 7.833333 20.75 14.250
## PrMn 9.958333 10.25 16.125
## PrPt 7.190476 13.25 18.500
Dvs <- tapply(Dat$NoHojas,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##            46         57       63
## Ctrl 1.569090  2.5166115 4.070802
## Post 2.648749 14.1745076 3.150964
## PrMn 1.855387  6.5510813 4.580627
## PrPt 2.713868  0.9574271 9.561829
CoefV <- Dvs/Med*100;CoefV
##            46        57       63
## Ctrl 44.88458 38.717100 67.84670
## Post 33.81382 68.310880 22.11203
## PrMn 18.63150 63.912989 28.40699
## PrPt 37.74253  7.225865 51.68556
#### ANOVAS
Md1 <- aov(NoHojas~TRT+B,data = Dat[1:32,])
Md2 <- aov(NoHojas~TRT+B,data = Dat[33:48,])
Md3 <- aov(NoHojas~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## TRT          3 173.63   57.88  13.143 2.8e-05 ***
## B            3  28.95    9.65   2.191   0.115    
## Residuals   24 105.69    4.40                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)
## TRT          3  438.2  146.06   1.978  0.188
## B            3   88.7   29.56   0.400  0.756
## Residuals    9  664.6   73.84
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3  708.1  236.03   6.645 0.00188 **
## B            3   84.3   28.11   0.791 0.51010   
## Residuals   25  888.0   35.52                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##    MSerror Df     Mean      CV
##   4.403587 24 7.117204 29.4845
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.901262  0.05
## 
## $means
##       NoHojas      std r      Min       Max      Q25       Q50       Q75
## Ctrl 3.495833 1.569090 8 1.633333  6.666667 2.583333  3.166667  3.916667
## Post 7.833333 2.648749 8 4.333333 11.666667 6.083333  7.333333  9.750000
## PrMn 9.958333 1.855387 8 7.000000 12.333333 8.833333 10.000000 11.250000
## PrPt 7.190476 2.713868 7 4.333333 11.666667 5.000000  7.333333  8.500000
## 
## $comparison
## NULL
## 
## $groups
##       NoHojas groups
## PrMn 9.958333      a
## Post 7.833333      a
## PrPt 7.190476      a
## Ctrl 3.495833      b
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df    Mean       CV      MSD
##   73.84028  9 12.6875 67.72837 18.96866
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##      NoHojas        std r Min Max   Q25  Q50   Q75
## Ctrl    6.50  2.5166115 4   4  10  5.50  6.0  7.00
## Post   20.75 14.1745076 4   6  38 11.25 19.5 29.00
## PrMn   10.25  6.5510813 4   2  18  8.00 10.5 12.75
## PrPt   13.25  0.9574271 4  12  14 12.75 13.5 14.00
## 
## $comparison
## NULL
## 
## $groups
##      NoHojas groups
## Post   20.75      a
## PrPt   13.25      a
## PrMn   10.25      a
## Ctrl    6.50      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   35.52125 25 13.71875 43.44398 8.196877
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##      NoHojas      std r Min Max  Q25  Q50   Q75
## Ctrl   6.000 4.070802 8   3  15  4.0  4.0  6.00
## Post  14.250 3.150964 8  11  21 12.5 14.0 15.00
## PrMn  16.125 4.580627 8   8  20 14.0 17.5 20.00
## PrPt  18.500 9.561829 8   7  33 11.0 15.5 27.25
## 
## $comparison
## NULL
## 
## $groups
##      NoHojas groups
## PrPt  18.500      a
## PrMn  16.125      a
## Post  14.250      a
## Ctrl   6.000      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,39), xlab = "dds", 
                 main = "Número de hojas",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 2.5, c("b","a","a","a",
                               "a","a","a","a",
                               "b","a","a","a"))
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.9795, p-value = 0.7987
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.216, p-value = 0.8306
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.98456, p-value = 0.8578
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 4.871, p-value = 0.4318
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.98189, p-value = 0.9767
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.21634, p-value = 0.8118
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.97554, p-value = 0.8536
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 5.875, p-value = 0.2087
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.96817, p-value = 0.4505
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.42363, p-value = 0.3006
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.96274, p-value = 0.2773
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 10, p-value = 0.07524
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso fresco total ##########
#### Descriptivos 
Med <- tapply(Dat$Pfto,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46      57       63
## Ctrl 17.24375 27.2550 22.02125
## Post 24.59375 54.6350 65.05250
## PrMn 36.66875 68.2525 65.47000
## PrPt 28.74000 54.2400 53.95000
Dvs <- tapply(Dat$Pfto,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##            46       57       63
## Ctrl 1.998628 10.93097 10.06189
## Post 4.649178 20.55726 24.39197
## PrMn 6.207609 25.04196 19.44004
## PrPt 6.827662 12.44932 24.11544
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 11.59045 40.10628 45.69173
## Post 18.90390 37.62654 37.49582
## PrMn 16.92888 36.69018 29.69305
## PrPt 23.75665 22.95229 44.69961
#### ANOVAS
Md1 <- aov(Pfto~TRT+B,data = Dat[1:32,])
Md2 <- aov(Pfto~TRT+B,data = Dat[33:48,])
Md3 <- aov(Pfto~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3 1574.9   525.0  25.588 1.19e-07 ***
## B            3  236.3    78.8   3.839   0.0224 *  
## Residuals   24  492.4    20.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)
## TRT          3   3541  1180.2   2.726  0.106
## B            3     76    25.3   0.059  0.980
## Residuals    9   3896   432.9
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3  10030    3343   7.540 0.000935 ***
## B            3    504     168   0.379 0.768909    
## Residuals   25  11086     443                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##    MSerror Df     Mean      CV
##   20.51658 24 26.74935 16.9332
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.901262  0.05
## 
## $means
##          Pfto      std r   Min   Max     Q25    Q50     Q75
## Ctrl 17.24375 1.998628 8 14.18 20.67 16.3075 17.025 17.9150
## Post 24.59375 4.649178 8 19.31 34.45 22.0700 24.300 25.7125
## PrMn 36.66875 6.207609 8 25.38 43.95 33.2800 38.470 40.6800
## PrPt 28.74000 6.827662 7 15.54 35.76 27.2550 29.300 33.0350
## 
## $comparison
## NULL
## 
## $groups
##          Pfto groups
## PrMn 36.66875      a
## PrPt 28.74000      b
## Post 24.59375      b
## Ctrl 17.24375      c
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df     Mean       CV    MSD
##   432.9442  9 51.09562 40.72229 45.931
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##         Pfto      std r   Min   Max     Q25    Q50     Q75
## Ctrl 27.2550 10.93097 4 14.71 39.65 20.5225 27.330 34.0625
## Post 54.6350 20.55726 4 31.99 76.34 40.3975 55.105 69.3425
## PrMn 68.2525 25.04196 4 43.29 89.84 48.4050 69.940 89.7875
## PrPt 54.2400 12.44932 4 43.38 72.10 47.9025 50.740 57.0775
## 
## $comparison
## NULL
## 
## $groups
##         Pfto groups
## PrMn 68.2525      a
## Post 54.6350      a
## PrPt 54.2400      a
## Ctrl 27.2550      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   443.4206 25 51.62344 40.79068 28.96091
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##          Pfto      std r   Min    Max     Q25   Q50     Q75
## Ctrl 22.02125 10.06189 8 12.23  42.29 15.2125 19.76 24.5700
## Post 65.05250 24.39197 8 34.02 115.38 51.9550 62.30 72.3600
## PrMn 65.47000 19.44004 8 37.57  97.14 54.2100 64.92 77.6475
## PrPt 53.95000 24.11544 8 19.00 103.35 42.6800 50.50 61.5875
## 
## $comparison
## NULL
## 
## $groups
##          Pfto groups
## PrMn 65.47000      a
## Post 65.05250      a
## PrPt 53.95000      a
## Ctrl 22.02125      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,100),
                 ylab = "g", xlab = "dds", 
                 main = "Peso fresco total",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 5, c("c","b","a","b",
                              "a","a","a","a",
                                "b","a","a","a"))
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.96945, p-value = 0.5042
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.3965, p-value = 0.3491
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.95617, p-value = 0.1992
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 4.871, p-value = 0.4318
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.93357, p-value = 0.2775
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.37192, p-value = 0.3772
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.95406, p-value = 0.4745
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 5, p-value = 0.2873
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.94381, p-value = 0.09609
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.60812, p-value = 0.1044
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.94119, p-value = 0.07635
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 5.5, p-value = 0.3579
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso seco total ##########
#### Descriptivos 
Med <- tapply(Dat$Psto,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46      57       63
## Ctrl 2.264375  3.8450  3.86500
## Post 4.033000  7.1850 11.09625
## PrMn 4.848625 11.4425 10.99125
## PrPt 3.920286  7.5775  9.16250
Dvs <- tapply(Dat$Psto,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##             46        57       63
## Ctrl 0.2325117 1.6176835 1.916612
## Post 1.4307421 3.1070404 3.772888
## PrMn 0.9099835 2.6877422 3.842869
## PrPt 0.7474164 0.8520319 3.465329
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 10.26825 42.07239 49.58892
## Post 35.47588 43.24343 34.00147
## PrMn 18.76787 23.48912 34.96298
## PrPt 19.06535 11.24423 37.82078
#### ANOVAS
Md1 <- aov(Psto~TRT+B,data = Dat[1:32,])
Md2 <- aov(Psto~TRT+B,data = Dat[33:48,])
Md3 <- aov(Psto~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3 28.076   9.359  11.858 6.77e-05 ***
## B            3  3.657   1.219   1.544     0.23    
## Residuals   23 18.152   0.789                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 116.03   38.68   5.941 0.0162 *
## B            3   2.07    0.69   0.106 0.9545  
## Residuals    9  58.59    6.51                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3 276.47   92.16   8.132 0.000601 ***
## B            3  29.48    9.83   0.867 0.471117    
## Residuals   25 283.31   11.33                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##     MSerror Df     Mean       CV
##   0.7892253 23 3.752567 23.67402
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          3.91356  0.05
## 
## $means
##          Psto       std r   Min   Max   Q25    Q50     Q75
## Ctrl 2.264375 0.2325117 8 1.922 2.602 2.138 2.2550 2.43525
## Post 4.033000 1.4307421 7 3.009 6.197 3.091 3.3650 4.73900
## PrMn 4.848625 0.9099835 8 3.483 5.934 4.134 4.9785 5.57825
## PrPt 3.920286 0.7474164 7 2.528 4.616 3.713 4.1140 4.37900
## 
## $comparison
## NULL
## 
## $groups
##          Psto groups
## PrMn 4.848625      a
## Post 4.033000      a
## PrPt 3.920286      a
## Ctrl 2.264375      b
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##   MSerror Df   Mean       CV     MSD
##    6.5103  9 7.5125 33.96378 5.63236
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##         Psto       std r  Min   Max     Q25    Q50    Q75
## Ctrl  3.8450 1.6176835 4 1.71  5.63  3.3300  4.020  4.535
## Post  7.1850 3.1070404 4 3.01 10.23  5.8900  7.750  9.045
## PrMn 11.4425 2.6877422 4 7.98 14.53 10.5675 11.630 12.505
## PrPt  7.5775 0.8520319 4 6.41  8.33  7.2275  7.785  8.135
## 
## $comparison
## NULL
## 
## $groups
##         Psto groups
## PrMn 11.4425      a
## PrPt  7.5775     ab
## Post  7.1850     ab
## Ctrl  3.8450      b
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df    Mean      CV      MSD
##   11.33232 25 8.77875 38.3466 4.629817
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##          Psto      std r  Min   Max    Q25    Q50     Q75
## Ctrl  3.86500 1.916612 8 2.27  7.71 2.5525  3.035  4.7050
## Post 11.09625 3.772888 8 6.09 18.65 9.0925 10.465 12.5175
## PrMn 10.99125 3.842869 8 6.28 15.60 7.7325 10.610 14.7550
## PrPt  9.16250 3.465329 8 3.80 15.35 7.7450  8.890 10.4675
## 
## $comparison
## NULL
## 
## $groups
##          Psto groups
## Post 11.09625      a
## PrMn 10.99125      a
## PrPt  9.16250      a
## Ctrl  3.86500      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,20),
                 ylab = "g", xlab = "dds", 
                 main = "Peso seco total",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 1.3, c("b","a","a","b",
                              "b","ab","a","ab",
                              "b","a","a","a"))
  segments(0,0,200,0)
  legend("topleft", c("C","Pos","Pr-Des","Pr-Pos"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.91074, p-value = 0.01554
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.89095, p-value = 0.0199
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.91209, p-value = 0.0191
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 10, p-value = 0.07524
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.96895, p-value = 0.8213
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.25793, p-value = 0.6701
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.96709, p-value = 0.7007
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 0.625, p-value = 0.9602
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.95287, p-value = 0.1738
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.59807, p-value = 0.1107
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.95921, p-value = 0.2244
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 10, p-value = 0.07524
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso Fresco hojas ##########
#### Descriptivos 
Med <- tapply(Dat$PfH,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46       57       63
## Ctrl  8.92125 16.13704 11.43625
## Post 14.88500 37.91651 35.46000
## PrMn 22.41125 45.66323 35.73625
## PrPt 17.60714 36.09923 30.36375
Dvs <- tapply(Dat$PfH,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##            46        57        63
## Ctrl 1.740086  7.265478  7.031374
## Post 2.745214  9.170334 13.627576
## PrMn 4.165472 16.181102 10.114127
## PrPt 3.363994  6.315352 13.631865
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 19.50495 45.02362 61.48322
## Post 18.44282 24.18559 38.43084
## PrMn 18.58652 35.43574 28.30215
## PrPt 19.10585 17.49442 44.89520
#### ANOVAS
Md1 <- aov(PfH~TRT+B,data = Dat[1:32,])
Md2 <- aov(PfH~TRT+B,data = Dat[33:48,])
Md3 <- aov(PfH~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3  757.4  252.48  29.499 3.21e-08 ***
## B            3   57.9   19.30   2.255    0.108    
## Residuals   24  205.4    8.56                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 1899.4   633.1   4.537 0.0336 *
## B            3   59.7    19.9   0.143 0.9318  
## Residuals    9 1256.1   139.6                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3   3162  1053.9   7.383 0.00105 **
## B            3     94    31.5   0.220 0.88134   
## Residuals   25   3569   142.7                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##    MSerror Df    Mean       CV
##   8.558918 24 15.9029 18.39641
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.901262  0.05
## 
## $means
##           PfH      std r   Min   Max     Q25    Q50     Q75
## Ctrl  8.92125 1.740086 8  7.06 11.88  7.5125  8.660 10.1650
## Post 14.88500 2.745214 8 10.99 20.17 13.6075 14.625 15.8150
## PrMn 22.41125 4.165472 8 15.02 28.67 20.3475 23.280 24.5925
## PrPt 17.60714 3.363994 7 10.50 20.93 17.8450 18.040 19.0450
## 
## $comparison
## NULL
## 
## $groups
##           PfH groups
## PrMn 22.41125      a
## PrPt 17.60714      b
## Post 14.88500      b
## Ctrl  8.92125      c
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df   Mean       CV      MSD
##   139.5626  9 33.954 34.79313 26.07801
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##           PfH       std r       Min      Max      Q25      Q50      Q75
## Ctrl 16.13704  7.265478 4  7.139942 24.57877 12.79735 16.41472 19.75441
## Post 37.91651  9.170334 4 28.947153 46.77480 30.59161 37.97205 45.29695
## PrMn 45.66323 16.181102 4 29.806850 61.15056 32.74219 45.84776 58.76880
## PrPt 36.09923  6.315352 4 29.574197 44.74874 33.63683 35.03699 37.49939
## 
## $comparison
## NULL
## 
## $groups
##           PfH groups
## PrMn 45.66323      a
## Post 37.91651     ab
## PrPt 36.09923     ab
## Ctrl 16.13704      b
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   142.7424 25 28.24906 42.29339 16.43164
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##           PfH       std r   Min   Max     Q25    Q50     Q75
## Ctrl 11.43625  7.031374 8  4.27 25.72  7.1450  9.385 13.3625
## Post 35.46000 13.627576 8 16.14 62.49 28.1175 34.010 39.3600
## PrMn 35.73625 10.114127 8 19.58 50.62 28.3600 37.790 41.8725
## PrPt 30.36375 13.631865 8 11.11 58.24 24.9450 27.265 34.3225
## 
## $comparison
## NULL
## 
## $groups
##           PfH groups
## PrMn 35.73625      a
## Post 35.46000      a
## PrPt 30.36375      a
## Ctrl 11.43625      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,70),
                 ylab = "g", xlab = "dds", 
                 main = "Peso fresco hojas",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 4, c("c","b","a","b",
                              "b","ab","a","ab",
                                "b","a","a","a"))
  
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.9383, p-value = 0.07408
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.66212, p-value = 0.07592
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.9231, p-value = 0.03033
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 4.871, p-value = 0.4318
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.9108, p-value = 0.1199
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.5355, p-value = 0.1434
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.93233, p-value = 0.2267
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 5, p-value = 0.2873
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.94702, p-value = 0.1186
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.57181, p-value = 0.1266
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.94572, p-value = 0.09978
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 10, p-value = 0.07524
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso seco hojas ##########
#### Descriptivos 
Med <- tapply(Dat$PsH,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46     57      63
## Ctrl 1.359625 2.3000 2.07625
## Post 2.694429 4.9150 6.89500
## PrMn 3.403750 7.6925 6.64125
## PrPt 2.691143 5.0775 5.69500
Dvs <- tapply(Dat$PsH,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##             46        57       63
## Ctrl 0.1623585 1.1003636 1.265520
## Post 0.7565628 1.6227240 2.526935
## PrMn 0.6851074 1.8490786 2.252532
## PrPt 0.5613500 0.5586517 2.234860
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 11.94141 47.84189 60.95220
## Post 28.07879 33.01575 36.64880
## PrMn 20.12802 24.03742 33.91728
## PrPt 20.85917 11.00249 39.24250
#### ANOVAS
Md1 <- aov(PsH~TRT+B,data = Dat[1:32,])
Md2 <- aov(PsH~TRT+B,data = Dat[33:48,])
Md3 <- aov(PsH~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3 17.436   5.812  17.008 4.85e-06 ***
## B            3  0.935   0.312   0.912     0.45    
## Residuals   23  7.860   0.342                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3  58.21  19.404   8.160 0.00618 **
## B            3   1.33   0.442   0.186 0.90343   
## Residuals    9  21.40   2.378                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## TRT          3 119.11   39.70   8.664 0.00041 ***
## B            3  11.82    3.94   0.860 0.47487    
## Residuals   25 114.57    4.58                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##     MSerror Df     Mean       CV
##   0.3417329 23 2.526867 23.13455
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          3.91356  0.05
## 
## $means
##           PsH       std r   Min   Max   Q25    Q50     Q75
## Ctrl 1.359625 0.1623585 8 1.192 1.628 1.228 1.3345 1.45850
## Post 2.694429 0.7565628 7 2.104 4.128 2.215 2.3790 2.91000
## PrMn 3.403750 0.6851074 8 2.363 4.424 3.037 3.4130 3.89175
## PrPt 2.691143 0.5613500 7 1.445 3.061 2.773 2.8450 2.97050
## 
## $comparison
## NULL
## 
## $groups
##           PsH groups
## PrMn 3.403750      a
## Post 2.694429      a
## PrPt 2.691143      a
## Ctrl 1.359625      b
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df    Mean       CV      MSD
##   2.377842  9 4.99625 30.86365 3.403936
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##         PsH       std r  Min  Max    Q25   Q50   Q75
## Ctrl 2.3000 1.1003636 4 0.83 3.49 1.9700 2.440 2.770
## Post 4.9150 1.6227240 4 2.93 6.84 4.1750 4.945 5.685
## PrMn 7.6925 1.8490786 4 5.37 9.89 7.0725 7.755 8.375
## PrPt 5.0775 0.5586517 4 4.37 5.73 4.8725 5.105 5.310
## 
## $comparison
## NULL
## 
## $groups
##         PsH groups
## PrMn 7.6925      a
## PrPt 5.0775     ab
## Post 4.9150     ab
## Ctrl 2.3000      b
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   4.582769 25 5.326875 40.18755 2.944207
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##          PsH      std r  Min   Max    Q25   Q50    Q75
## Ctrl 2.07625 1.265520 8 0.91  4.79 1.2775 1.640 2.5800
## Post 6.89500 2.526935 8 3.41 11.70 5.3675 6.575 7.9075
## PrMn 6.64125 2.252532 8 3.97  9.55 4.9750 6.190 8.7325
## PrPt 5.69500 2.234860 8 2.46  9.45 4.7450 5.465 6.5800
## 
## $comparison
## NULL
## 
## $groups
##          PsH groups
## Post 6.89500      a
## PrMn 6.64125      a
## PrPt 5.69500      a
## Ctrl 2.07625      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,13),
                 ylab = "g", xlab = "dds", 
                 main = "Peso seco total",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 1, c("c","b","a","b",
                              "b","ab","a","ab",
                              "b","a","a","a"))
  
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.93953, p-value = 0.08835
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.58694, p-value = 0.1174
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.93271, p-value = 0.0567
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 4.1333, p-value = 0.5304
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.93475, p-value = 0.2896
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.52594, p-value = 0.1521
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.933, p-value = 0.2321
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 7.625, p-value = 0.1063
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.95149, p-value = 0.1588
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.55376, p-value = 0.1412
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.95961, p-value = 0.2299
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 6, p-value = 0.3062
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso fresco Tallos ##########
#### Descriptivos 
Med <- tapply(Dat$PfT,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46       57       63
## Ctrl  8.32625 11.11796 10.58500
## Post  9.72125 16.71849 29.59250
## PrMn 14.13125 22.58927 29.73375
## PrPt 11.10286 18.14077 23.58625
Dvs <- tapply(Dat$PfT,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##            46        57        63
## Ctrl 1.086974  3.999901  3.137301
## Post 2.059788 12.288586 11.014925
## PrMn 2.125468  9.005926 10.398340
## PrPt 3.564696  6.305999 10.665694
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 13.05478 35.97692 29.63912
## Post 21.18851 73.50299 37.22201
## PrMn 15.04090 39.86816 34.97151
## PrPt 32.10611 34.76147 45.21996
#### ANOVAS
Md1 <- aov(PfT~TRT+B,data = Dat[1:32,])
Md2 <- aov(PfT~TRT+B,data = Dat[33:48,])
Md3 <- aov(PfT~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## TRT          3 147.68   49.23  14.978 1.05e-05 ***
## B            3  66.96   22.32   6.791  0.00179 ** 
## Residuals   24  78.88    3.29                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)
## TRT          3  268.6   89.52   0.972  0.448
## B            3   34.7   11.58   0.126  0.943
## Residuals    9  828.9   92.10
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3 1941.8   647.3   7.084 0.00133 **
## B            3  187.3    62.4   0.683 0.57064   
## Residuals   25 2284.1    91.4                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##    MSerror Df     Mean       CV
##   3.286561 24 10.81129 16.76847
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.901262  0.05
## 
## $means
##           PfT      std r   Min   Max     Q25    Q50     Q75
## Ctrl  8.32625 1.086974 8  6.97 10.28  7.4125  8.345  8.8800
## Post  9.72125 2.059788 8  7.60 14.31  8.6675  9.140 10.1175
## PrMn 14.13125 2.125468 8 10.36 16.74 12.9425 14.765 15.5525
## PrPt 11.10286 3.564696 7  5.06 15.37  9.4050 11.230 13.6250
## 
## $comparison
## NULL
## 
## $groups
##           PfT groups
## PrMn 14.13125      a
## PrPt 11.10286      b
## Post  9.72125     bc
## Ctrl  8.32625      c
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df     Mean       CV      MSD
##   92.10179  9 17.14162 55.98635 21.18478
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##           PfT       std r        Min      Max      Q25      Q50      Q75
## Ctrl 11.11796  3.999901 4  7.5700585 15.07123  7.72515 10.91528 14.30809
## Post 16.71849 12.288586 4  0.8502326 29.56520 10.90219 18.22925 24.04555
## PrMn 22.58927  9.005926 4 13.4831496 31.79512 15.66281 22.53940 29.46586
## PrPt 18.14077  6.305999 4 13.8058034 27.35126 14.19675 15.70301 19.64704
## 
## $comparison
## NULL
## 
## $groups
##           PfT groups
## PrMn 22.58927      a
## PrPt 18.14077      a
## Post 16.71849      a
## Ctrl 11.11796      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   91.36426 25 23.37438 40.89292 13.14596
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##           PfT       std r   Min   Max     Q25    Q50     Q75
## Ctrl 10.58500  3.137301 8  6.48 16.57  8.6525 10.195 11.4775
## Post 29.59250 11.014925 8 17.88 52.89 23.4775 28.035 31.9175
## PrMn 29.73375 10.398340 8 17.12 46.52 20.7725 30.660 35.4900
## PrPt 23.58625 10.665694 8  7.89 45.11 18.7050 23.185 25.4550
## 
## $comparison
## NULL
## 
## $groups
##           PfT groups
## PrMn 29.73375      a
## Post 29.59250      a
## PrPt 23.58625     ab
## Ctrl 10.58500      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,48),
                 ylab = "g", xlab = "dds", 
                 main = "Peso fresco Tallo",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + 3, c("c","bc","a","b",
                              "b","ab","a","ab",
                              "a","a","a","ab"))
  
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.98718, p-value = 0.9648
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.14503, p-value = 0.9645
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.98387, p-value = 0.8392
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 3.3226, p-value = 0.6504
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.97673, p-value = 0.9323
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.21707, p-value = 0.8096
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.97902, p-value = 0.9071
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 2.375, p-value = 0.6671
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.94296, p-value = 0.09087
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.61658, p-value = 0.09935
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.94166, p-value = 0.07848
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 6, p-value = 0.3062
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso seco Tallos ##########
#### Descriptivos 
Med <- tapply(Dat$PsT,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46    57      63
## Ctrl 0.904750 1.545 1.78875
## Post 1.338571 2.270 4.20125
## PrMn 1.444875 3.750 4.35000
## PrPt 1.229143 2.500 3.46750
Dvs <- tapply(Dat$PsT,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##             46        57       63
## Ctrl 0.1553629 0.5519360 0.715191
## Post 0.7744890 1.5510212 1.279837
## PrMn 0.2842471 0.8796590 1.622960
## PrPt 0.3960764 0.4741308 1.293475
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 17.17192 35.72401 39.98273
## Post 57.85937 68.32692 30.46325
## PrMn 19.67278 23.45757 37.30943
## PrPt 32.22378 18.96523 37.30282
#### ANOVAS
Md1 <- aov(PsT~TRT+B,data = Dat[1:32,])
Md2 <- aov(PsT~TRT+B,data = Dat[33:48,])
Md3 <- aov(PsT~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3  1.298  0.4325   2.386 0.0952 .
## B            3  1.106  0.3687   2.034 0.1371  
## Residuals   23  4.169  0.1812                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 10.105   3.368   2.835 0.0985 .
## B            3  0.432   0.144   0.121 0.9452  
## Residuals    9 10.694   1.188                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value Pr(>F)   
## TRT          3  33.08  11.025   6.771 0.0017 **
## B            3   4.49   1.496   0.918 0.4463   
## Residuals   25  40.71   1.628                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##     MSerror Df   Mean       CV
##   0.1812474 23 1.2257 34.73375
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          3.91356  0.05
## 
## $means
##           PsT       std r   Min   Max     Q25    Q50     Q75
## Ctrl 0.904750 0.1553629 8 0.730 1.161 0.79350 0.8810 0.99525
## Post 1.338571 0.7744890 7 0.782 2.852 0.84800 0.9050 1.56750
## PrMn 1.444875 0.2842471 8 1.049 1.889 1.21075 1.5275 1.59425
## PrPt 1.229143 0.3960764 7 0.473 1.641 1.10500 1.2940 1.49300
## 
## $comparison
## NULL
## 
## $groups
##           PsT groups
## PrMn 1.444875      a
## Post 1.338571      a
## PrPt 1.229143      a
## Ctrl 0.904750      a
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df    Mean       CV     MSD
##   1.188253  9 2.51625 43.32122 2.40627
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##        PsT       std r  Min  Max    Q25   Q50    Q75
## Ctrl 1.545 0.5519360 4 0.88 2.14 1.2250 1.580 1.9000
## Post 2.270 1.5510212 4 0.08 3.39 1.7150 2.805 3.3600
## PrMn 3.750 0.8796590 4 2.61 4.64 3.3225 3.875 4.3025
## PrPt 2.500 0.4741308 4 2.04 3.16 2.2650 2.400 2.6350
## 
## $comparison
## NULL
## 
## $groups
##        PsT groups
## PrMn 3.750      a
## PrPt 2.500      a
## Post 2.270      a
## Ctrl 1.545      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   1.628372 25 3.451875 36.96765 1.755016
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##          PsT      std r  Min  Max    Q25   Q50    Q75
## Ctrl 1.78875 0.715191 8 1.12 2.92 1.3000 1.475 2.1250
## Post 4.20125 1.279837 8 2.68 6.95 3.5300 4.020 4.4500
## PrMn 4.35000 1.622960 8 2.19 6.18 2.7875 4.420 5.9900
## PrPt 3.46750 1.293475 8 1.34 5.90 2.8125 3.560 3.8825
## 
## $comparison
## NULL
## 
## $groups
##          PsT groups
## PrMn 4.35000      a
## Post 4.20125      a
## PrPt 3.46750     ab
## Ctrl 1.78875      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,10),
                 ylab = "g", xlab = "dds", 
                 main = "Peso seco tallo",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + .5, c("a","a","a","a",
                              "a","a","a","a",
                              "b","a","a","ab"))
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.92861, p-value = 0.04511
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.62233, p-value = 0.09544
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.90971, p-value = 0.01693
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 11.6, p-value = 0.0407
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.9571, p-value = 0.6097
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.2341, p-value = 0.754
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.95925, p-value = 0.5588
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 1.5, p-value = 0.8266
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.96579, p-value = 0.3919
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.42361, p-value = 0.3006
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.97148, p-value = 0.4605
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 7, p-value = 0.2206
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Peso seco Tallos ##########
#### Descriptivos 
Med <- tapply(Dat$PsT,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##            46    57      63
## Ctrl 0.904750 1.545 1.78875
## Post 1.338571 2.270 4.20125
## PrMn 1.444875 3.750 4.35000
## PrPt 1.229143 2.500 3.46750
Dvs <- tapply(Dat$PsT,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##             46        57       63
## Ctrl 0.1553629 0.5519360 0.715191
## Post 0.7744890 1.5510212 1.279837
## PrMn 0.2842471 0.8796590 1.622960
## PrPt 0.3960764 0.4741308 1.293475
CoefV <- Dvs/Med*100;CoefV
##            46       57       63
## Ctrl 17.17192 35.72401 39.98273
## Post 57.85937 68.32692 30.46325
## PrMn 19.67278 23.45757 37.30943
## PrPt 32.22378 18.96523 37.30282
#### ANOVAS
Md1 <- aov(PsT~TRT+B,data = Dat[1:32,])
Md2 <- aov(PsT~TRT+B,data = Dat[33:48,])
Md3 <- aov(PsT~TRT+B,data = Dat[49:80,])
summary(Md1);summary(Md2);summary(Md3)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3  1.298  0.4325   2.386 0.0952 .
## B            3  1.106  0.3687   2.034 0.1371  
## Residuals   23  4.169  0.1812                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness
##             Df Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 10.105   3.368   2.835 0.0985 .
## B            3  0.432   0.144   0.121 0.9452  
## Residuals    9 10.694   1.188                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value Pr(>F)   
## TRT          3  33.08  11.025   6.771 0.0017 **
## B            3   4.49   1.496   0.918 0.4463   
## Residuals   25  40.71   1.628                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp1 <- HSD.test(Md1,"TRT");Sp1
## $statistics
##     MSerror Df   Mean       CV
##   0.1812474 23 1.2257 34.73375
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          3.91356  0.05
## 
## $means
##           PsT       std r   Min   Max     Q25    Q50     Q75
## Ctrl 0.904750 0.1553629 8 0.730 1.161 0.79350 0.8810 0.99525
## Post 1.338571 0.7744890 7 0.782 2.852 0.84800 0.9050 1.56750
## PrMn 1.444875 0.2842471 8 1.049 1.889 1.21075 1.5275 1.59425
## PrPt 1.229143 0.3960764 7 0.473 1.641 1.10500 1.2940 1.49300
## 
## $comparison
## NULL
## 
## $groups
##           PsT groups
## PrMn 1.444875      a
## Post 1.338571      a
## PrPt 1.229143      a
## Ctrl 0.904750      a
## 
## attr(,"class")
## [1] "group"
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df    Mean       CV     MSD
##   1.188253  9 2.51625 43.32122 2.40627
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##        PsT       std r  Min  Max    Q25   Q50    Q75
## Ctrl 1.545 0.5519360 4 0.88 2.14 1.2250 1.580 1.9000
## Post 2.270 1.5510212 4 0.08 3.39 1.7150 2.805 3.3600
## PrMn 3.750 0.8796590 4 2.61 4.64 3.3225 3.875 4.3025
## PrPt 2.500 0.4741308 4 2.04 3.16 2.2650 2.400 2.6350
## 
## $comparison
## NULL
## 
## $groups
##        PsT groups
## PrMn 3.750      a
## PrPt 2.500      a
## Post 2.270      a
## Ctrl 1.545      a
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   1.628372 25 3.451875 36.96765 1.755016
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##          PsT      std r  Min  Max    Q25   Q50    Q75
## Ctrl 1.78875 0.715191 8 1.12 2.92 1.3000 1.475 2.1250
## Post 4.20125 1.279837 8 2.68 6.95 3.5300 4.020 4.4500
## PrMn 4.35000 1.622960 8 2.19 6.18 2.7875 4.420 5.9900
## PrPt 3.46750 1.293475 8 1.34 5.90 2.8125 3.560 3.8825
## 
## $comparison
## NULL
## 
## $groups
##          PsT groups
## PrMn 4.35000      a
## Post 4.20125      a
## PrPt 3.46750     ab
## Ctrl 1.78875      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{Graf <- barplot(Med, beside = T, ylim = c(0,10),
                 ylab = "g", xlab = "dds", 
                 main = "Peso seco tallo",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med - Dvs, Graf, Med + Dvs)
  segments(Graf - 0.1, Med - Dvs, Graf + 0.1, Med - Dvs)
  segments(Graf - 0.1, Med + Dvs, Graf + 0.1, Med + Dvs)
  text(Graf, Med + Dvs + .5, c("a","a","a","a",
                               "a","a","a","a",
                               "b","a","a","ab"))
  segments(0,0,200,0)
  legend("topleft", c("Ctrl","Post","PrMn","PrPt"), 
         cex=.8, bty = "n",horiz=F,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.92861, p-value = 0.04511
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.62233, p-value = 0.09544
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.90971, p-value = 0.01693
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 11.6, p-value = 0.0407
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.9571, p-value = 0.6097
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.2341, p-value = 0.754
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.95925, p-value = 0.5588
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 1.5, p-value = 0.8266
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.96579, p-value = 0.3919
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.42361, p-value = 0.3006
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.97148, p-value = 0.4605
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 7, p-value = 0.2206
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Relacion de area foliar ##########
#### Descriptivos 
Med <- tapply(Dat$RAF,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##       46          57          63
## Ctrl NaN 0.009062815 0.008716131
## Post NaN 0.006311254 0.009038144
## PrMn NaN 0.006930461 0.008613272
## PrPt NaN 0.007896439 0.008390358
Dvs <- tapply(Dat$RAF,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##      46          57           63
## Ctrl NA 0.004164912 0.0017094735
## Post NA 0.001085955 0.0007603613
## PrMn NA 0.001145386 0.0013778514
## PrPt NA 0.002865114 0.0010928986
CoefV <- Dvs/Med*100;CoefV
##      46       57        63
## Ctrl NA 45.95606 19.612757
## Post NA 17.20664  8.412804
## PrMn NA 16.52683 15.996841
## PrPt NA 36.28362 13.025649
#### ANOVAS
Md2 <- aov(Afol~TRT+B,data = Dat[33:48,])
Md3 <- aov(Afol~TRT+B,data = Dat[49:80,])
summary(Md2);summary(Md3)
##             Df  Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 2745119  915040   4.074  0.044 *
## B            3  109489   36496   0.163  0.919  
## Residuals    9 2021221  224580                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3 3552570 1184190   6.674 0.00183 **
## B            3  392140  130713   0.737 0.54007   
## Residuals   25 4436160  177446                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df     Mean       CV      MSD
##   224580.1  9 1103.975 42.92659 1046.106
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##           Afol      std r     Min      Max       Q25       Q50      Q75
## Ctrl  531.5602 335.7513 4 113.256  908.630  367.1168  552.1775  716.621
## Post 1108.1030 392.1495 4 601.679 1463.580  900.7047 1183.5765 1390.975
## PrMn 1702.0683 503.0449 4 954.406 1999.769 1630.0518 1927.0490 1999.065
## PrPt 1074.1678 436.6604 4 539.573 1605.770  909.7332 1075.6640 1240.099
## 
## $comparison
## NULL
## 
## $groups
##           Afol groups
## PrMn 1702.0683      a
## Post 1108.1030     ab
## PrPt 1074.1678     ab
## Ctrl  531.5602      b
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   177446.4 25 1025.379 41.08177 579.3458
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##           Afol      std r     Min      Max       Q25       Q50       Q75
## Ctrl  456.6281 240.8003 8 210.838  956.570  316.3972  403.6715  484.5158
## Post 1245.4782 464.6873 8 592.064 2202.295  992.2043 1236.7985 1352.8727
## PrMn 1275.1069 384.5220 8 678.059 1816.356 1045.4070 1249.4685 1602.0757
## PrPt 1124.3034 517.6687 8 460.188 2151.347  828.8767 1068.4970 1269.7368
## 
## $comparison
## NULL
## 
## $groups
##           Afol groups
## PrMn 1275.1069      a
## Post 1245.4782      a
## PrPt 1124.3034      a
## Ctrl  456.6281      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{ par(mar=c(4,5,4,4))
  Graf <- barplot(Med[,-1], beside = T, ylim = c(0,.017),
                 ylab = expression(g/cm^2), xlab = "dds", 
                 main = "Relacion de área foliar",
                 col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med[,-1] - Dvs[,-1], Graf, Med[,-1] + Dvs[,-1])
  segments(Graf - 0.1, Med[,-1] - Dvs[,-1], Graf + 0.1, Med[,-1] - Dvs[,-1])
  segments(Graf - 0.1, Med[,-1] + Dvs[,-1], Graf + 0.1, Med[,-1] + Dvs[,-1])
  text(Graf, Med[,-1] + Dvs[,-1] + .0010, c("b","ab","ab","a",
                              "b","a","a","a"))
  
  segments(0,0,200,0)
  legend("topleft", c("C","Pos","Pr-Des","Pr-Pos"), 
         cex=.8, bty = "n",horiz=T,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.92861, p-value = 0.04511
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.62233, p-value = 0.09544
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.90971, p-value = 0.01693
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 11.6, p-value = 0.0407
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.96679, p-value = 0.7844
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.25063, p-value = 0.696
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.97476, p-value = 0.8403
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 1.5, p-value = 0.8266
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.94887, p-value = 0.1338
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.56167, p-value = 0.1346
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.94665, p-value = 0.1055
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 8, p-value = 0.1562
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296
########## Area foliar ##########
#### Descriptivos 
Med <- tapply(Dat$Afol,list(Dat$TRT,Dat$DDS),mean, na.rm=T);Med
##       46        57        63
## Ctrl NaN  531.5602  456.6281
## Post NaN 1108.1030 1245.4782
## PrMn NaN 1702.0683 1275.1069
## PrPt NaN 1074.1678 1124.3034
Dvs <- tapply(Dat$Afol,list(Dat$TRT,Dat$DDS),sd, na.rm=T);Dvs
##      46       57       63
## Ctrl NA 335.7513 240.8003
## Post NA 392.1495 464.6873
## PrMn NA 503.0449 384.5220
## PrPt NA 436.6604 517.6687
CoefV <- Dvs/Med*100;CoefV
##      46       57       63
## Ctrl NA 63.16335 52.73444
## Post NA 35.38926 37.30995
## PrMn NA 29.55492 30.15606
## PrPt NA 40.65105 46.04350
#### ANOVAS
Md2 <- aov(Afol~TRT+B,data = Dat[33:48,])
Md3 <- aov(Afol~TRT+B,data = Dat[49:80,])
summary(Md2);summary(Md3)
##             Df  Sum Sq Mean Sq F value Pr(>F)  
## TRT          3 2745119  915040   4.074  0.044 *
## B            3  109489   36496   0.163  0.919  
## Residuals    9 2021221  224580                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## TRT          3 3552570 1184190   6.674 0.00183 **
## B            3  392140  130713   0.737 0.54007   
## Residuals   25 4436160  177446                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#### Medias Tukey
Sp2 <- HSD.test(Md2,"TRT");Sp2
## $statistics
##    MSerror Df     Mean       CV      MSD
##   224580.1  9 1103.975 42.92659 1046.106
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4          4.41489  0.05
## 
## $means
##           Afol      std r     Min      Max       Q25       Q50      Q75
## Ctrl  531.5602 335.7513 4 113.256  908.630  367.1168  552.1775  716.621
## Post 1108.1030 392.1495 4 601.679 1463.580  900.7047 1183.5765 1390.975
## PrMn 1702.0683 503.0449 4 954.406 1999.769 1630.0518 1927.0490 1999.065
## PrPt 1074.1678 436.6604 4 539.573 1605.770  909.7332 1075.6640 1240.099
## 
## $comparison
## NULL
## 
## $groups
##           Afol groups
## PrMn 1702.0683      a
## Post 1108.1030     ab
## PrPt 1074.1678     ab
## Ctrl  531.5602      b
## 
## attr(,"class")
## [1] "group"
Sp3 <- HSD.test(Md3,"TRT");Sp3
## $statistics
##    MSerror Df     Mean       CV      MSD
##   177446.4 25 1025.379 41.08177 579.3458
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    TRT   4         3.889997  0.05
## 
## $means
##           Afol      std r     Min      Max       Q25       Q50       Q75
## Ctrl  456.6281 240.8003 8 210.838  956.570  316.3972  403.6715  484.5158
## Post 1245.4782 464.6873 8 592.064 2202.295  992.2043 1236.7985 1352.8727
## PrMn 1275.1069 384.5220 8 678.059 1816.356 1045.4070 1249.4685 1602.0757
## PrPt 1124.3034 517.6687 8 460.188 2151.347  828.8767 1068.4970 1269.7368
## 
## $comparison
## NULL
## 
## $groups
##           Afol groups
## PrMn 1275.1069      a
## Post 1245.4782      a
## PrPt 1124.3034      a
## Ctrl  456.6281      b
## 
## attr(,"class")
## [1] "group"
#### Graficos
{ par(mar=c(4,5,4,4))
  Graf <- barplot(Med[,-1], beside = T, ylim = c(0,3000),
                  ylab = expression(cm^2), xlab = "dds", 
                  main = "Área foliar",
                  col = c("White", "Orange","Darkgreen","Darkblue"))
  segments(Graf, Med[,-1] - Dvs[,-1], Graf, Med[,-1] + Dvs[,-1])
  segments(Graf - 0.1, Med[,-1] - Dvs[,-1], Graf + 0.1, Med[,-1] - Dvs[,-1])
  segments(Graf - 0.1, Med[,-1] + Dvs[,-1], Graf + 0.1, Med[,-1] + Dvs[,-1])
  text(Graf, Med[,-1] + Dvs[,-1] + 170, c("b","ab","a","ab",
                                          "b","a","a","a"))
  
  segments(0,0,200,0)
  legend("topleft", c("C","Pos","Pr-Des","Pr-Pos"), 
         cex=.8, bty = "n",horiz=T,
         fill = c("White", "Orange","Darkgreen","Darkblue"))
}

#### Supuestos 
Res1 <- Md1$residuals
list(shapiro.test(Res1), ad.test(Res1),sf.test(Res1),
     pearson.test(Res1),bartlett.test(Dat$SPAD[1:32],Dat$TRT[1:32]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res1
## W = 0.92861, p-value = 0.04511
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res1
## A = 0.62233, p-value = 0.09544
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res1
## W = 0.90971, p-value = 0.01693
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res1
## P = 11.6, p-value = 0.0407
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[1:32] and Dat$TRT[1:32]
## Bartlett's K-squared = 2.4975, df = 3, p-value = 0.4757
Res2 <- Md2$residuals
list(shapiro.test(Res2), ad.test(Res2),sf.test(Res2),
     pearson.test(Res2),bartlett.test(Dat$SPAD[33:48],Dat$TRT[33:48]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res2
## W = 0.96679, p-value = 0.7844
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res2
## A = 0.25063, p-value = 0.696
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res2
## W = 0.97476, p-value = 0.8403
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res2
## P = 1.5, p-value = 0.8266
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[33:48] and Dat$TRT[33:48]
## Bartlett's K-squared = 11.758, df = 3, p-value = 0.00826
Res3 <- Md3$residuals
list(shapiro.test(Res3), ad.test(Res3),sf.test(Res3),
     pearson.test(Res3),bartlett.test(Dat$SPAD[49:80],Dat$TRT[49:80]))
## [[1]]
## 
##  Shapiro-Wilk normality test
## 
## data:  Res3
## W = 0.94887, p-value = 0.1338
## 
## 
## [[2]]
## 
##  Anderson-Darling normality test
## 
## data:  Res3
## A = 0.56167, p-value = 0.1346
## 
## 
## [[3]]
## 
##  Shapiro-Francia normality test
## 
## data:  Res3
## W = 0.94665, p-value = 0.1055
## 
## 
## [[4]]
## 
##  Pearson chi-square normality test
## 
## data:  Res3
## P = 8, p-value = 0.1562
## 
## 
## [[5]]
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Dat$SPAD[49:80] and Dat$TRT[49:80]
## Bartlett's K-squared = 2.2121, df = 3, p-value = 0.5296