packages
library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package 'ggplot2' was built under R version 3.4.4package 'dplyr' was built under R version 3.4.2Conflicts with tidy packages ------------------------------------------------------------------------
filter(): dplyr, stats
lag(): dplyr, stats
abro el df
df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vS5tAKzrYRbmf0GiH_H-aWC7V7AwliLxUtb8A8uW84FDZgEToM8xag8X_jzZxNF6eSKH75SBfTSFdpB/pub?gid=1955655961&single=true&output=csv")
tabla QA x tacabo
table(df$QA,df$Tabaquismo)
Ex_fumador Fumador No_fumador
No presenta 8 35 34
Presenta 6 30 12
diferencias ??
chisq.test(table(df$QA,df$Tabaquismo))
Pearson's Chi-squared test
data: table(df$QA, df$Tabaquismo)
X-squared = 4.718, df = 2, p-value = 0.09451
tabla QA x exposicion
table(df$QA,df$Exposicion_solar)
0-9 10-19 >20
No presenta 18 10 49
Presenta 1 4 43
diferencias ?
chisq.test(table(df$QA,df$Exposicion_solar))###existe significancia
Pearson's Chi-squared test
data: table(df$QA, df$Exposicion_solar)
X-squared = 12.096, df = 2, p-value = 0.002362
tabla QA x genero
table(df$QA,df$Genero)
Femenino Masculino
No presenta 1 76
Presenta 0 48
chisq.test(table(df$QA,df$Genero))###no tenemos significancia
Chi-squared approximation may be incorrect
Pearson's Chi-squared test with Yates' continuity correction
data: table(df$QA, df$Genero)
X-squared = 3.7821e-33, df = 1, p-value = 1
tabla QA x Medidas de proteccion
table(df$QA,df$Medidas_de_proteccion)
Bloqueador_piel Ninguno Sombrero_o_gorro ambos
No presenta 14 31 22 10
Presenta 4 29 12 3
diferencias ??
chisq.test(table(df$QA,df$Medidas_de_proteccion))###no tenemos significancia
Chi-squared approximation may be incorrect
Pearson's Chi-squared test
data: table(df$QA, df$Medidas_de_proteccion)
X-squared = 5.9235, df = 3, p-value = 0.1154
graficas
mosaicplot(table(df$QA,df$Medidas_de_proteccion), shade = T)

graficas
mosaicplot(table(df$QA,df$Exposicion_solar) , shade = T)

agrupo
df %>%
group_by(QA,Medidas_de_proteccion) %>%
summarise(n=n()) %>%
ungroup()
graficas
df %>%
group_by(QA,Medidas_de_proteccion) %>%
summarise(n=n()) %>%
ggplot(aes(x=QA, y=n, fill=Medidas_de_proteccion))+
geom_col()+
theme_minimal()

graficas
df%>%
group_by(QA,Edad) %>%
summarise(n=n()) %>%
ggplot(aes(x=Edad, y=n, fill=QA))+
geom_col()+
theme_minimal()

agrupo
df %>%
group_by(QA,Edad,Exposicion_solar) %>%
summarise(n=n())
graficas
df %>%
group_by(QA,Edad,Exposicion_solar) %>%
summarise(n=n()) %>%
ggplot(aes(x=Exposicion_solar, y=n, fill=QA))+
geom_col()+
facet_grid(~Edad)+
theme_minimal()

graficas
df %>%
group_by(QA,Edad,Exposicion_solar) %>%
summarise(n=n()) %>%
ggplot(aes(x=Exposicion_solar, y=n, fill=QA))+
geom_col()+
theme_minimal()

LS0tCnRpdGxlOiAiUHJldmFsZW5jaWEgUUEgQ2FyZWxtYXB1IDIwMTkiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI3BhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpgYGAKI2Ficm8gZWwgZGYKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UzV0QUt6cllSYm1mMEdpSF9ILWFXQzdWN0F3bGlMeFV0YjhBOHVXODRGRFpnRVRvTTh4YWc4WF9qelp4TkY2ZVNLSDc1U0JmVFNGZHBCL3B1Yj9naWQ9MTk1NTY1NTk2MSZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiN0YWJsYSBRQSB4IHRhY2FibwpgYGB7cn0KdGFibGUoZGYkUUEsZGYkVGFiYXF1aXNtbykKYGBgCiNkaWZlcmVuY2lhcyA/PwpgYGB7cn0KY2hpc3EudGVzdCh0YWJsZShkZiRRQSxkZiRUYWJhcXVpc21vKSkKYGBgCiN0YWJsYSBRQSB4IGV4cG9zaWNpb24KYGBge3J9CnRhYmxlKGRmJFFBLGRmJEV4cG9zaWNpb25fc29sYXIpIApgYGAKI2RpZmVyZW5jaWFzID8KYGBge3J9CmNoaXNxLnRlc3QodGFibGUoZGYkUUEsZGYkRXhwb3NpY2lvbl9zb2xhcikpIyMjZXhpc3RlIHNpZ25pZmljYW5jaWEgCmBgYAojdGFibGEgUUEgeCBnZW5lcm8KYGBge3J9CnRhYmxlKGRmJFFBLGRmJEdlbmVybykKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KHRhYmxlKGRmJFFBLGRmJEdlbmVybykpIyMjbm8gdGVuZW1vcyBzaWduaWZpY2FuY2lhCmBgYAojdGFibGEgUUEgeCBNZWRpZGFzIGRlIHByb3RlY2Npb24gCmBgYHtyfQp0YWJsZShkZiRRQSxkZiRNZWRpZGFzX2RlX3Byb3RlY2Npb24pCmBgYAojZGlmZXJlbmNpYXMgPz8gCmBgYHtyfQpjaGlzcS50ZXN0KHRhYmxlKGRmJFFBLGRmJE1lZGlkYXNfZGVfcHJvdGVjY2lvbikpIyMjbm8gdGVuZW1vcyBzaWduaWZpY2FuY2lhCmBgYAojZ3JhZmljYXMKYGBge3J9Cm1vc2FpY3Bsb3QodGFibGUoZGYkUUEsZGYkTWVkaWRhc19kZV9wcm90ZWNjaW9uKSwgc2hhZGUgPSBUKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQptb3NhaWNwbG90KHRhYmxlKGRmJFFBLGRmJEV4cG9zaWNpb25fc29sYXIpICwgc2hhZGUgPSBUKQpgYGAKI2FncnVwbwpgYGB7cn0KZGYgJT4lIAogIGdyb3VwX2J5KFFBLE1lZGlkYXNfZGVfcHJvdGVjY2lvbikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKICB1bmdyb3VwKCkKYGBgCiNncmFmaWNhcwpgYGB7cn0KZGYgJT4lIAogIGdyb3VwX2J5KFFBLE1lZGlkYXNfZGVfcHJvdGVjY2lvbikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKICBnZ3Bsb3QoYWVzKHg9UUEsIHk9biwgZmlsbD1NZWRpZGFzX2RlX3Byb3RlY2Npb24pKSsKICBnZW9tX2NvbCgpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQpkZiU+JSAKICBncm91cF9ieShRQSxFZGFkKSAlPiUgCnN1bW1hcmlzZShuPW4oKSkgJT4lIAogIGdncGxvdChhZXMoeD1FZGFkLCB5PW4sIGZpbGw9UUEpKSsKICBnZW9tX2NvbCgpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKI2FncnVwbwpgYGB7cn0KZGYgJT4lIApncm91cF9ieShRQSxFZGFkLEV4cG9zaWNpb25fc29sYXIpICU+JSAKc3VtbWFyaXNlKG49bigpKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQpkZiAlPiUgCmdyb3VwX2J5KFFBLEVkYWQsRXhwb3NpY2lvbl9zb2xhcikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKIGdncGxvdChhZXMoeD1FeHBvc2ljaW9uX3NvbGFyLCB5PW4sIGZpbGw9UUEpKSsKICBnZW9tX2NvbCgpKwogIGZhY2V0X2dyaWQofkVkYWQpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQpkZiAlPiUgCmdyb3VwX2J5KFFBLEVkYWQsRXhwb3NpY2lvbl9zb2xhcikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKIGdncGxvdChhZXMoeD1FeHBvc2ljaW9uX3NvbGFyLCB5PW4sIGZpbGw9UUEpKSsKICBnZW9tX2NvbCgpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKCg==