packages

library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package 'ggplot2' was built under R version 3.4.4package 'dplyr' was built under R version 3.4.2Conflicts with tidy packages ------------------------------------------------------------------------
filter(): dplyr, stats
lag():    dplyr, stats

abro el df

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vS5tAKzrYRbmf0GiH_H-aWC7V7AwliLxUtb8A8uW84FDZgEToM8xag8X_jzZxNF6eSKH75SBfTSFdpB/pub?gid=1955655961&single=true&output=csv")

tabla QA x tacabo

table(df$QA,df$Tabaquismo)
             
              Ex_fumador Fumador No_fumador
  No presenta          8      35         34
  Presenta             6      30         12

diferencias ??

chisq.test(table(df$QA,df$Tabaquismo))

    Pearson's Chi-squared test

data:  table(df$QA, df$Tabaquismo)
X-squared = 4.718, df = 2, p-value = 0.09451

tabla QA x exposicion

table(df$QA,df$Exposicion_solar) 
             
              0-9 10-19 >20
  No presenta  18    10  49
  Presenta      1     4  43

diferencias ?

chisq.test(table(df$QA,df$Exposicion_solar))###existe significancia 

    Pearson's Chi-squared test

data:  table(df$QA, df$Exposicion_solar)
X-squared = 12.096, df = 2, p-value = 0.002362

tabla QA x genero

table(df$QA,df$Genero)
             
              Femenino Masculino
  No presenta        1        76
  Presenta           0        48
chisq.test(table(df$QA,df$Genero))###no tenemos significancia
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test with Yates' continuity correction

data:  table(df$QA, df$Genero)
X-squared = 3.7821e-33, df = 1, p-value = 1

tabla QA x Medidas de proteccion

table(df$QA,df$Medidas_de_proteccion)
             
              Bloqueador_piel Ninguno Sombrero_o_gorro ambos
  No presenta              14      31               22    10
  Presenta                  4      29               12     3

diferencias ??

chisq.test(table(df$QA,df$Medidas_de_proteccion))###no tenemos significancia
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  table(df$QA, df$Medidas_de_proteccion)
X-squared = 5.9235, df = 3, p-value = 0.1154

graficas

mosaicplot(table(df$QA,df$Medidas_de_proteccion), shade = T)

graficas

mosaicplot(table(df$QA,df$Exposicion_solar) , shade = T)

agrupo

df %>% 
  group_by(QA,Medidas_de_proteccion) %>% 
summarise(n=n()) %>% 
  ungroup()

graficas

df %>% 
  group_by(QA,Medidas_de_proteccion) %>% 
summarise(n=n()) %>% 
  ggplot(aes(x=QA, y=n, fill=Medidas_de_proteccion))+
  geom_col()+
  theme_minimal()

graficas

df%>% 
  group_by(QA,Edad) %>% 
summarise(n=n()) %>% 
  ggplot(aes(x=Edad, y=n, fill=QA))+
  geom_col()+
  theme_minimal()

agrupo

df %>% 
group_by(QA,Edad,Exposicion_solar) %>% 
summarise(n=n())

graficas

df %>% 
group_by(QA,Edad,Exposicion_solar) %>% 
summarise(n=n()) %>% 
 ggplot(aes(x=Exposicion_solar, y=n, fill=QA))+
  geom_col()+
  facet_grid(~Edad)+
  theme_minimal()

graficas

df %>% 
group_by(QA,Edad,Exposicion_solar) %>% 
summarise(n=n()) %>% 
 ggplot(aes(x=Exposicion_solar, y=n, fill=QA))+
  geom_col()+
  theme_minimal()

LS0tCnRpdGxlOiAiUHJldmFsZW5jaWEgUUEgQ2FyZWxtYXB1IDIwMTkiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI3BhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpgYGAKI2Ficm8gZWwgZGYKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UzV0QUt6cllSYm1mMEdpSF9ILWFXQzdWN0F3bGlMeFV0YjhBOHVXODRGRFpnRVRvTTh4YWc4WF9qelp4TkY2ZVNLSDc1U0JmVFNGZHBCL3B1Yj9naWQ9MTk1NTY1NTk2MSZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiN0YWJsYSBRQSB4IHRhY2FibwpgYGB7cn0KdGFibGUoZGYkUUEsZGYkVGFiYXF1aXNtbykKYGBgCiNkaWZlcmVuY2lhcyA/PwpgYGB7cn0KY2hpc3EudGVzdCh0YWJsZShkZiRRQSxkZiRUYWJhcXVpc21vKSkKYGBgCiN0YWJsYSBRQSB4IGV4cG9zaWNpb24KYGBge3J9CnRhYmxlKGRmJFFBLGRmJEV4cG9zaWNpb25fc29sYXIpIApgYGAKI2RpZmVyZW5jaWFzID8KYGBge3J9CmNoaXNxLnRlc3QodGFibGUoZGYkUUEsZGYkRXhwb3NpY2lvbl9zb2xhcikpIyMjZXhpc3RlIHNpZ25pZmljYW5jaWEgCmBgYAojdGFibGEgUUEgeCBnZW5lcm8KYGBge3J9CnRhYmxlKGRmJFFBLGRmJEdlbmVybykKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KHRhYmxlKGRmJFFBLGRmJEdlbmVybykpIyMjbm8gdGVuZW1vcyBzaWduaWZpY2FuY2lhCmBgYAojdGFibGEgUUEgeCBNZWRpZGFzIGRlIHByb3RlY2Npb24gCmBgYHtyfQp0YWJsZShkZiRRQSxkZiRNZWRpZGFzX2RlX3Byb3RlY2Npb24pCmBgYAojZGlmZXJlbmNpYXMgPz8gCmBgYHtyfQpjaGlzcS50ZXN0KHRhYmxlKGRmJFFBLGRmJE1lZGlkYXNfZGVfcHJvdGVjY2lvbikpIyMjbm8gdGVuZW1vcyBzaWduaWZpY2FuY2lhCmBgYAojZ3JhZmljYXMKYGBge3J9Cm1vc2FpY3Bsb3QodGFibGUoZGYkUUEsZGYkTWVkaWRhc19kZV9wcm90ZWNjaW9uKSwgc2hhZGUgPSBUKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQptb3NhaWNwbG90KHRhYmxlKGRmJFFBLGRmJEV4cG9zaWNpb25fc29sYXIpICwgc2hhZGUgPSBUKQpgYGAKI2FncnVwbwpgYGB7cn0KZGYgJT4lIAogIGdyb3VwX2J5KFFBLE1lZGlkYXNfZGVfcHJvdGVjY2lvbikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKICB1bmdyb3VwKCkKYGBgCiNncmFmaWNhcwpgYGB7cn0KZGYgJT4lIAogIGdyb3VwX2J5KFFBLE1lZGlkYXNfZGVfcHJvdGVjY2lvbikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKICBnZ3Bsb3QoYWVzKHg9UUEsIHk9biwgZmlsbD1NZWRpZGFzX2RlX3Byb3RlY2Npb24pKSsKICBnZW9tX2NvbCgpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQpkZiU+JSAKICBncm91cF9ieShRQSxFZGFkKSAlPiUgCnN1bW1hcmlzZShuPW4oKSkgJT4lIAogIGdncGxvdChhZXMoeD1FZGFkLCB5PW4sIGZpbGw9UUEpKSsKICBnZW9tX2NvbCgpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKI2FncnVwbwpgYGB7cn0KZGYgJT4lIApncm91cF9ieShRQSxFZGFkLEV4cG9zaWNpb25fc29sYXIpICU+JSAKc3VtbWFyaXNlKG49bigpKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQpkZiAlPiUgCmdyb3VwX2J5KFFBLEVkYWQsRXhwb3NpY2lvbl9zb2xhcikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKIGdncGxvdChhZXMoeD1FeHBvc2ljaW9uX3NvbGFyLCB5PW4sIGZpbGw9UUEpKSsKICBnZW9tX2NvbCgpKwogIGZhY2V0X2dyaWQofkVkYWQpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKI2dyYWZpY2FzCmBgYHtyfQpkZiAlPiUgCmdyb3VwX2J5KFFBLEVkYWQsRXhwb3NpY2lvbl9zb2xhcikgJT4lIApzdW1tYXJpc2Uobj1uKCkpICU+JSAKIGdncGxvdChhZXMoeD1FeHBvc2ljaW9uX3NvbGFyLCB5PW4sIGZpbGw9UUEpKSsKICBnZW9tX2NvbCgpKwogIHRoZW1lX21pbmltYWwoKQpgYGAKCg==