Nosso intuito é construir um modelo de predição de receitas de lançamentos cinematográficos, através das seguintes variáveis disponíveis:

Importando os dados de treino e tratanto nossa base de dados

train <- read.csv("~/trabalhos estcomp/train.csv")

library(randomForest)
library(tidyverse)

dados <-  na.omit(train)
dados <- dados[dados$budget > 100000,]

pop <- dados$popularity
revenue <- dados$revenue
budget <- dados$budget
runtime <- dados$runtime
language <- as.integer(dados$original_language == 'en')

base <- as.data.frame(cbind(pop, revenue, budget, runtime, language))

Usando agora o metodo de Random Forest para criarmos um modelo preditivo com base na regressão, temos com 200 árvores:

rf = randomForest(revenue~. , data = base , importance = TRUE, ntrees = 200, do.trace = T)
##      |      Out-of-bag   |
## Tree |      MSE  %Var(y) |
##    1 | 1.42e+16    58.00 |
##    2 | 2.046e+16    83.54 |
##    3 | 1.982e+16    80.92 |
##    4 | 1.822e+16    74.40 |
##    5 | 1.629e+16    66.53 |
##    6 | 1.505e+16    61.45 |
##    7 | 1.44e+16    58.80 |
##    8 | 1.409e+16    57.54 |
##    9 | 1.329e+16    54.27 |
##   10 | 1.294e+16    52.85 |
##   11 | 1.323e+16    54.03 |
##   12 | 1.291e+16    52.69 |
##   13 | 1.257e+16    51.32 |
##   14 | 1.24e+16    50.63 |
##   15 | 1.217e+16    49.71 |
##   16 | 1.197e+16    48.86 |
##   17 | 1.177e+16    48.08 |
##   18 | 1.154e+16    47.11 |
##   19 | 1.131e+16    46.18 |
##   20 | 1.164e+16    47.51 |
##   21 | 1.136e+16    46.40 |
##   22 | 1.12e+16    45.72 |
##   23 | 1.109e+16    45.28 |
##   24 | 1.094e+16    44.68 |
##   25 | 1.087e+16    44.40 |
##   26 | 1.079e+16    44.08 |
##   27 | 1.073e+16    43.81 |
##   28 | 1.065e+16    43.50 |
##   29 | 1.067e+16    43.57 |
##   30 | 1.066e+16    43.55 |
##   31 | 1.064e+16    43.46 |
##   32 | 1.075e+16    43.90 |
##   33 | 1.061e+16    43.31 |
##   34 | 1.06e+16    43.28 |
##   35 | 1.08e+16    44.09 |
##   36 | 1.089e+16    44.48 |
##   37 | 1.085e+16    44.30 |
##   38 | 1.09e+16    44.50 |
##   39 | 1.083e+16    44.23 |
##   40 | 1.077e+16    43.98 |
##   41 | 1.082e+16    44.17 |
##   42 | 1.087e+16    44.37 |
##   43 | 1.085e+16    44.30 |
##   44 | 1.081e+16    44.15 |
##   45 | 1.098e+16    44.83 |
##   46 | 1.099e+16    44.88 |
##   47 | 1.093e+16    44.64 |
##   48 | 1.099e+16    44.86 |
##   49 | 1.094e+16    44.66 |
##   50 | 1.104e+16    45.08 |
##   51 | 1.098e+16    44.81 |
##   52 | 1.09e+16    44.49 |
##   53 | 1.084e+16    44.25 |
##   54 | 1.078e+16    44.01 |
##   55 | 1.074e+16    43.84 |
##   56 | 1.069e+16    43.64 |
##   57 | 1.068e+16    43.60 |
##   58 | 1.062e+16    43.37 |
##   59 | 1.056e+16    43.13 |
##   60 | 1.055e+16    43.09 |
##   61 | 1.053e+16    42.99 |
##   62 | 1.052e+16    42.94 |
##   63 | 1.05e+16    42.89 |
##   64 | 1.055e+16    43.10 |
##   65 | 1.052e+16    42.94 |
##   66 | 1.049e+16    42.82 |
##   67 | 1.056e+16    43.10 |
##   68 | 1.055e+16    43.07 |
##   69 | 1.056e+16    43.11 |
##   70 | 1.058e+16    43.18 |
##   71 | 1.056e+16    43.12 |
##   72 | 1.055e+16    43.08 |
##   73 | 1.053e+16    42.99 |
##   74 | 1.052e+16    42.97 |
##   75 | 1.048e+16    42.79 |
##   76 | 1.046e+16    42.70 |
##   77 | 1.043e+16    42.58 |
##   78 | 1.039e+16    42.42 |
##   79 | 1.038e+16    42.37 |
##   80 | 1.034e+16    42.21 |
##   81 | 1.036e+16    42.31 |
##   82 | 1.037e+16    42.33 |
##   83 | 1.037e+16    42.34 |
##   84 | 1.034e+16    42.23 |
##   85 | 1.031e+16    42.10 |
##   86 | 1.032e+16    42.15 |
##   87 | 1.031e+16    42.11 |
##   88 | 1.029e+16    42.01 |
##   89 | 1.026e+16    41.90 |
##   90 | 1.026e+16    41.90 |
##   91 | 1.029e+16    42.01 |
##   92 | 1.029e+16    42.03 |
##   93 | 1.028e+16    41.99 |
##   94 | 1.034e+16    42.21 |
##   95 | 1.033e+16    42.19 |
##   96 | 1.033e+16    42.20 |
##   97 | 1.036e+16    42.30 |
##   98 | 1.037e+16    42.34 |
##   99 | 1.036e+16    42.29 |
##  100 | 1.034e+16    42.22 |
##  101 | 1.039e+16    42.44 |
##  102 | 1.036e+16    42.31 |
##  103 | 1.034e+16    42.23 |
##  104 | 1.037e+16    42.34 |
##  105 | 1.033e+16    42.20 |
##  106 | 1.031e+16    42.08 |
##  107 | 1.03e+16    42.05 |
##  108 | 1.029e+16    42.00 |
##  109 | 1.032e+16    42.15 |
##  110 | 1.03e+16    42.06 |
##  111 | 1.03e+16    42.05 |
##  112 | 1.034e+16    42.22 |
##  113 | 1.037e+16    42.32 |
##  114 | 1.043e+16    42.59 |
##  115 | 1.041e+16    42.52 |
##  116 | 1.041e+16    42.50 |
##  117 | 1.039e+16    42.42 |
##  118 | 1.038e+16    42.37 |
##  119 | 1.038e+16    42.38 |
##  120 | 1.039e+16    42.44 |
##  121 | 1.041e+16    42.50 |
##  122 | 1.041e+16    42.51 |
##  123 | 1.041e+16    42.51 |
##  124 | 1.04e+16    42.45 |
##  125 | 1.039e+16    42.43 |
##  126 | 1.04e+16    42.45 |
##  127 | 1.038e+16    42.37 |
##  128 | 1.04e+16    42.46 |
##  129 | 1.039e+16    42.44 |
##  130 | 1.046e+16    42.71 |
##  131 | 1.047e+16    42.75 |
##  132 | 1.046e+16    42.72 |
##  133 | 1.047e+16    42.73 |
##  134 | 1.044e+16    42.62 |
##  135 | 1.041e+16    42.49 |
##  136 | 1.038e+16    42.40 |
##  137 | 1.037e+16    42.34 |
##  138 | 1.036e+16    42.31 |
##  139 | 1.035e+16    42.28 |
##  140 | 1.035e+16    42.27 |
##  141 | 1.035e+16    42.25 |
##  142 | 1.033e+16    42.18 |
##  143 | 1.032e+16    42.12 |
##  144 | 1.029e+16    42.01 |
##  145 | 1.029e+16    42.01 |
##  146 | 1.027e+16    41.94 |
##  147 | 1.026e+16    41.88 |
##  148 | 1.026e+16    41.91 |
##  149 | 1.025e+16    41.87 |
##  150 | 1.029e+16    42.01 |
##  151 | 1.028e+16    41.96 |
##  152 | 1.027e+16    41.95 |
##  153 | 1.025e+16    41.85 |
##  154 | 1.024e+16    41.80 |
##  155 | 1.026e+16    41.88 |
##  156 | 1.026e+16    41.89 |
##  157 | 1.027e+16    41.93 |
##  158 | 1.026e+16    41.90 |
##  159 | 1.026e+16    41.89 |
##  160 | 1.025e+16    41.84 |
##  161 | 1.024e+16    41.80 |
##  162 | 1.024e+16    41.83 |
##  163 | 1.023e+16    41.77 |
##  164 | 1.021e+16    41.68 |
##  165 | 1.02e+16    41.65 |
##  166 | 1.02e+16    41.65 |
##  167 | 1.02e+16    41.64 |
##  168 | 1.02e+16    41.66 |
##  169 | 1.02e+16    41.63 |
##  170 | 1.019e+16    41.60 |
##  171 | 1.018e+16    41.55 |
##  172 | 1.016e+16    41.50 |
##  173 | 1.015e+16    41.46 |
##  174 | 1.019e+16    41.60 |
##  175 | 1.02e+16    41.64 |
##  176 | 1.02e+16    41.63 |
##  177 | 1.02e+16    41.66 |
##  178 | 1.023e+16    41.78 |
##  179 | 1.024e+16    41.81 |
##  180 | 1.026e+16    41.90 |
##  181 | 1.027e+16    41.93 |
##  182 | 1.026e+16    41.89 |
##  183 | 1.026e+16    41.89 |
##  184 | 1.025e+16    41.85 |
##  185 | 1.026e+16    41.90 |
##  186 | 1.025e+16    41.84 |
##  187 | 1.024e+16    41.80 |
##  188 | 1.022e+16    41.73 |
##  189 | 1.021e+16    41.70 |
##  190 | 1.022e+16    41.71 |
##  191 | 1.023e+16    41.78 |
##  192 | 1.025e+16    41.86 |
##  193 | 1.025e+16    41.86 |
##  194 | 1.025e+16    41.84 |
##  195 | 1.027e+16    41.95 |
##  196 | 1.027e+16    41.95 |
##  197 | 1.028e+16    41.96 |
##  198 | 1.028e+16    41.97 |
##  199 | 1.028e+16    41.97 |
##  200 | 1.027e+16    41.92 |
##  201 | 1.027e+16    41.91 |
##  202 | 1.028e+16    41.99 |
##  203 | 1.029e+16    42.01 |
##  204 | 1.03e+16    42.04 |
##  205 | 1.03e+16    42.07 |
##  206 | 1.03e+16    42.05 |
##  207 | 1.029e+16    42.03 |
##  208 | 1.03e+16    42.05 |
##  209 | 1.029e+16    42.01 |
##  210 | 1.028e+16    41.96 |
##  211 | 1.028e+16    41.96 |
##  212 | 1.028e+16    41.97 |
##  213 | 1.027e+16    41.92 |
##  214 | 1.026e+16    41.88 |
##  215 | 1.027e+16    41.93 |
##  216 | 1.027e+16    41.95 |
##  217 | 1.027e+16    41.94 |
##  218 | 1.027e+16    41.94 |
##  219 | 1.029e+16    42.03 |
##  220 | 1.029e+16    42.02 |
##  221 | 1.028e+16    41.99 |
##  222 | 1.028e+16    41.99 |
##  223 | 1.03e+16    42.08 |
##  224 | 1.03e+16    42.05 |
##  225 | 1.029e+16    42.03 |
##  226 | 1.03e+16    42.06 |
##  227 | 1.03e+16    42.04 |
##  228 | 1.029e+16    42.01 |
##  229 | 1.028e+16    41.99 |
##  230 | 1.03e+16    42.04 |
##  231 | 1.03e+16    42.06 |
##  232 | 1.03e+16    42.06 |
##  233 | 1.03e+16    42.04 |
##  234 | 1.03e+16    42.05 |
##  235 | 1.028e+16    41.99 |
##  236 | 1.029e+16    42.00 |
##  237 | 1.028e+16    41.98 |
##  238 | 1.029e+16    42.02 |
##  239 | 1.028e+16    41.97 |
##  240 | 1.028e+16    41.97 |
##  241 | 1.027e+16    41.94 |
##  242 | 1.028e+16    41.96 |
##  243 | 1.031e+16    42.09 |
##  244 | 1.031e+16    42.08 |
##  245 | 1.03e+16    42.07 |
##  246 | 1.031e+16    42.09 |
##  247 | 1.03e+16    42.07 |
##  248 | 1.031e+16    42.08 |
##  249 | 1.031e+16    42.09 |
##  250 | 1.031e+16    42.09 |
##  251 | 1.03e+16    42.07 |
##  252 | 1.03e+16    42.06 |
##  253 | 1.03e+16    42.04 |
##  254 | 1.029e+16    42.03 |
##  255 | 1.03e+16    42.05 |
##  256 | 1.029e+16    42.00 |
##  257 | 1.028e+16    41.97 |
##  258 | 1.028e+16    41.97 |
##  259 | 1.028e+16    41.96 |
##  260 | 1.028e+16    41.98 |
##  261 | 1.028e+16    41.98 |
##  262 | 1.029e+16    42.00 |
##  263 | 1.028e+16    41.98 |
##  264 | 1.028e+16    41.96 |
##  265 | 1.027e+16    41.92 |
##  266 | 1.027e+16    41.93 |
##  267 | 1.027e+16    41.92 |
##  268 | 1.027e+16    41.93 |
##  269 | 1.027e+16    41.95 |
##  270 | 1.027e+16    41.94 |
##  271 | 1.027e+16    41.93 |
##  272 | 1.027e+16    41.91 |
##  273 | 1.025e+16    41.87 |
##  274 | 1.024e+16    41.82 |
##  275 | 1.023e+16    41.79 |
##  276 | 1.023e+16    41.78 |
##  277 | 1.024e+16    41.83 |
##  278 | 1.024e+16    41.81 |
##  279 | 1.025e+16    41.84 |
##  280 | 1.024e+16    41.82 |
##  281 | 1.024e+16    41.81 |
##  282 | 1.024e+16    41.80 |
##  283 | 1.024e+16    41.81 |
##  284 | 1.024e+16    41.80 |
##  285 | 1.024e+16    41.80 |
##  286 | 1.023e+16    41.78 |
##  287 | 1.024e+16    41.80 |
##  288 | 1.026e+16    41.89 |
##  289 | 1.026e+16    41.88 |
##  290 | 1.026e+16    41.88 |
##  291 | 1.025e+16    41.86 |
##  292 | 1.024e+16    41.83 |
##  293 | 1.025e+16    41.87 |
##  294 | 1.025e+16    41.86 |
##  295 | 1.025e+16    41.84 |
##  296 | 1.025e+16    41.84 |
##  297 | 1.024e+16    41.83 |
##  298 | 1.025e+16    41.84 |
##  299 | 1.027e+16    41.93 |
##  300 | 1.027e+16    41.94 |
##  301 | 1.027e+16    41.95 |
##  302 | 1.027e+16    41.93 |
##  303 | 1.026e+16    41.88 |
##  304 | 1.026e+16    41.88 |
##  305 | 1.026e+16    41.88 |
##  306 | 1.027e+16    41.94 |
##  307 | 1.027e+16    41.93 |
##  308 | 1.027e+16    41.92 |
##  309 | 1.026e+16    41.90 |
##  310 | 1.027e+16    41.94 |
##  311 | 1.026e+16    41.89 |
##  312 | 1.025e+16    41.85 |
##  313 | 1.024e+16    41.82 |
##  314 | 1.025e+16    41.84 |
##  315 | 1.024e+16    41.83 |
##  316 | 1.024e+16    41.80 |
##  317 | 1.023e+16    41.78 |
##  318 | 1.022e+16    41.75 |
##  319 | 1.022e+16    41.74 |
##  320 | 1.022e+16    41.74 |
##  321 | 1.023e+16    41.76 |
##  322 | 1.022e+16    41.74 |
##  323 | 1.022e+16    41.74 |
##  324 | 1.023e+16    41.75 |
##  325 | 1.023e+16    41.78 |
##  326 | 1.024e+16    41.80 |
##  327 | 1.024e+16    41.81 |
##  328 | 1.024e+16    41.81 |
##  329 | 1.024e+16    41.81 |
##  330 | 1.024e+16    41.83 |
##  331 | 1.024e+16    41.80 |
##  332 | 1.024e+16    41.81 |
##  333 | 1.023e+16    41.76 |
##  334 | 1.022e+16    41.72 |
##  335 | 1.022e+16    41.74 |
##  336 | 1.022e+16    41.71 |
##  337 | 1.022e+16    41.72 |
##  338 | 1.022e+16    41.72 |
##  339 | 1.023e+16    41.77 |
##  340 | 1.023e+16    41.76 |
##  341 | 1.025e+16    41.84 |
##  342 | 1.024e+16    41.81 |
##  343 | 1.023e+16    41.77 |
##  344 | 1.023e+16    41.76 |
##  345 | 1.023e+16    41.78 |
##  346 | 1.024e+16    41.80 |
##  347 | 1.024e+16    41.80 |
##  348 | 1.023e+16    41.78 |
##  349 | 1.023e+16    41.76 |
##  350 | 1.023e+16    41.77 |
##  351 | 1.024e+16    41.80 |
##  352 | 1.025e+16    41.85 |
##  353 | 1.025e+16    41.84 |
##  354 | 1.025e+16    41.85 |
##  355 | 1.025e+16    41.84 |
##  356 | 1.025e+16    41.85 |
##  357 | 1.025e+16    41.85 |
##  358 | 1.025e+16    41.85 |
##  359 | 1.025e+16    41.86 |
##  360 | 1.025e+16    41.85 |
##  361 | 1.025e+16    41.84 |
##  362 | 1.027e+16    41.93 |
##  363 | 1.027e+16    41.95 |
##  364 | 1.027e+16    41.94 |
##  365 | 1.027e+16    41.93 |
##  366 | 1.026e+16    41.89 |
##  367 | 1.025e+16    41.86 |
##  368 | 1.026e+16    41.88 |
##  369 | 1.025e+16    41.87 |
##  370 | 1.025e+16    41.86 |
##  371 | 1.025e+16    41.84 |
##  372 | 1.027e+16    41.93 |
##  373 | 1.026e+16    41.91 |
##  374 | 1.026e+16    41.91 |
##  375 | 1.026e+16    41.89 |
##  376 | 1.026e+16    41.91 |
##  377 | 1.028e+16    41.96 |
##  378 | 1.027e+16    41.93 |
##  379 | 1.026e+16    41.89 |
##  380 | 1.026e+16    41.89 |
##  381 | 1.025e+16    41.87 |
##  382 | 1.025e+16    41.86 |
##  383 | 1.024e+16    41.83 |
##  384 | 1.026e+16    41.89 |
##  385 | 1.026e+16    41.87 |
##  386 | 1.026e+16    41.88 |
##  387 | 1.026e+16    41.88 |
##  388 | 1.026e+16    41.87 |
##  389 | 1.025e+16    41.85 |
##  390 | 1.024e+16    41.82 |
##  391 | 1.024e+16    41.83 |
##  392 | 1.025e+16    41.86 |
##  393 | 1.027e+16    41.93 |
##  394 | 1.027e+16    41.92 |
##  395 | 1.027e+16    41.93 |
##  396 | 1.027e+16    41.93 |
##  397 | 1.028e+16    41.95 |
##  398 | 1.028e+16    41.99 |
##  399 | 1.028e+16    41.97 |
##  400 | 1.028e+16    41.97 |
##  401 | 1.029e+16    42.03 |
##  402 | 1.03e+16    42.07 |
##  403 | 1.03e+16    42.07 |
##  404 | 1.03e+16    42.05 |
##  405 | 1.03e+16    42.07 |
##  406 | 1.03e+16    42.06 |
##  407 | 1.03e+16    42.06 |
##  408 | 1.03e+16    42.06 |
##  409 | 1.03e+16    42.06 |
##  410 | 1.03e+16    42.04 |
##  411 | 1.03e+16    42.04 |
##  412 | 1.029e+16    42.04 |
##  413 | 1.029e+16    42.02 |
##  414 | 1.028e+16    41.98 |
##  415 | 1.027e+16    41.94 |
##  416 | 1.027e+16    41.92 |
##  417 | 1.026e+16    41.89 |
##  418 | 1.026e+16    41.87 |
##  419 | 1.024e+16    41.83 |
##  420 | 1.024e+16    41.80 |
##  421 | 1.023e+16    41.79 |
##  422 | 1.024e+16    41.83 |
##  423 | 1.024e+16    41.82 |
##  424 | 1.024e+16    41.82 |
##  425 | 1.024e+16    41.79 |
##  426 | 1.023e+16    41.78 |
##  427 | 1.023e+16    41.76 |
##  428 | 1.022e+16    41.74 |
##  429 | 1.024e+16    41.80 |
##  430 | 1.023e+16    41.79 |
##  431 | 1.025e+16    41.86 |
##  432 | 1.025e+16    41.85 |
##  433 | 1.025e+16    41.86 |
##  434 | 1.025e+16    41.85 |
##  435 | 1.025e+16    41.85 |
##  436 | 1.024e+16    41.83 |
##  437 | 1.024e+16    41.81 |
##  438 | 1.024e+16    41.79 |
##  439 | 1.023e+16    41.76 |
##  440 | 1.023e+16    41.75 |
##  441 | 1.022e+16    41.72 |
##  442 | 1.022e+16    41.72 |
##  443 | 1.022e+16    41.73 |
##  444 | 1.022e+16    41.74 |
##  445 | 1.022e+16    41.72 |
##  446 | 1.022e+16    41.74 |
##  447 | 1.022e+16    41.73 |
##  448 | 1.022e+16    41.71 |
##  449 | 1.021e+16    41.70 |
##  450 | 1.021e+16    41.68 |
##  451 | 1.02e+16    41.66 |
##  452 | 1.02e+16    41.65 |
##  453 | 1.02e+16    41.66 |
##  454 | 1.02e+16    41.66 |
##  455 | 1.019e+16    41.62 |
##  456 | 1.021e+16    41.68 |
##  457 | 1.021e+16    41.68 |
##  458 | 1.02e+16    41.67 |
##  459 | 1.02e+16    41.67 |
##  460 | 1.021e+16    41.70 |
##  461 | 1.021e+16    41.69 |
##  462 | 1.02e+16    41.67 |
##  463 | 1.02e+16    41.65 |
##  464 | 1.02e+16    41.63 |
##  465 | 1.019e+16    41.59 |
##  466 | 1.018e+16    41.59 |
##  467 | 1.02e+16    41.63 |
##  468 | 1.02e+16    41.63 |
##  469 | 1.019e+16    41.62 |
##  470 | 1.02e+16    41.66 |
##  471 | 1.02e+16    41.63 |
##  472 | 1.019e+16    41.62 |
##  473 | 1.019e+16    41.61 |
##  474 | 1.019e+16    41.60 |
##  475 | 1.018e+16    41.58 |
##  476 | 1.019e+16    41.59 |
##  477 | 1.019e+16    41.63 |
##  478 | 1.019e+16    41.63 |
##  479 | 1.019e+16    41.61 |
##  480 | 1.019e+16    41.61 |
##  481 | 1.019e+16    41.62 |
##  482 | 1.019e+16    41.62 |
##  483 | 1.019e+16    41.62 |
##  484 | 1.019e+16    41.61 |
##  485 | 1.02e+16    41.63 |
##  486 | 1.019e+16    41.62 |
##  487 | 1.019e+16    41.62 |
##  488 | 1.019e+16    41.60 |
##  489 | 1.019e+16    41.59 |
##  490 | 1.018e+16    41.57 |
##  491 | 1.018e+16    41.57 |
##  492 | 1.017e+16    41.54 |
##  493 | 1.018e+16    41.58 |
##  494 | 1.018e+16    41.56 |
##  495 | 1.017e+16    41.54 |
##  496 | 1.017e+16    41.54 |
##  497 | 1.017e+16    41.52 |
##  498 | 1.018e+16    41.58 |
##  499 | 1.018e+16    41.56 |
##  500 | 1.019e+16    41.59 |
rf
## 
## Call:
##  randomForest(formula = revenue ~ ., data = base, importance = TRUE,      ntrees = 200, do.trace = T) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 1
## 
##           Mean of squared residuals: 1.018539e+16
##                     % Var explained: 58.41
plot(rf, main = 'Erro Regressão Random Forest')

Ou seja, há uma estabilização do erro por volta de \(200\) árvores e a variabilidade da variável resposta é explicada por cerca de \(56,7\%\) da variação das variáveis explicativas.

Além disso:

##               %IncMSE IncNodePurity
## pop      4.962122e+15  1.028268e+19
## budget   1.215862e+16  1.659283e+19
## runtime  1.093565e+15  3.581220e+18
## language 6.991284e+14  7.235766e+17

Desempenham maior importância na receita do filme, por ordem, o orçamento, a popularida, o tempo de execução e o idioma. O que nos dá o insight de que grandes orçamentos e boas campanhas de marketing e divulgação são realmente essenciais para o bom retorno financeiro de um filme.