How does half time result influence full time result in a soccer matches EPL last 4 seasons including 18-19

Let Load Data

Data<-read.csv("EplData.csv",header = TRUE)
str(Data)
## 'data.frame':    1520 obs. of  16 variables:
##  $ X       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ HomeTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 3 7 9 13 16 19 1 18 21 26 ...
##  $ AwayTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 2 23 25 22 24 8 27 20 14 15 ...
##  $ FTHG    : int  0 2 2 4 1 1 0 2 0 0 ...
##  $ FTAG    : int  1 2 2 2 0 3 2 2 1 3 ...
##  $ FTR     : Factor w/ 3 levels "A","D","H": 1 2 2 3 3 1 1 2 1 1 ...
##  $ HTHG    : int  0 2 0 3 1 0 0 1 0 0 ...
##  $ HTAG    : int  0 1 1 0 0 1 1 1 0 2 ...
##  $ HTR     : Factor w/ 3 levels "A","D","H": 2 3 1 3 3 1 1 2 2 1 ...
##  $ HS      : int  11 11 10 19 9 17 22 9 7 9 ...
##  $ AS      : int  7 18 11 10 9 11 8 15 8 19 ...
##  $ HST     : int  2 3 5 8 1 6 6 4 1 2 ...
##  $ AST     : int  3 10 5 5 4 7 4 5 3 7 ...
##  $ PSH     : num  1.95 1.39 1.7 1.99 1.65 2.52 1.31 2.88 3.48 5.75 ...
##  $ PSA     : num  4.27 10.39 5.62 4.34 5.9 ...
##  $ PSD     : num  3.65 4.92 3.95 3.48 4.09 3.35 5.75 3.33 3.46 3.98 ...
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

First we look for FTR and HTR values

table(Data$FTR)
## 
##   A   D   H 
## 461 361 698
table(Data$HTR)
## 
##   A   D   H 
## 379 631 510

From table above we can see that around 41.5% (631) of result at half time are Draw while Home Teams win is at 33.5% mark (510) and 24.9% (379) beeing Away win

At full time whistle things have changed with Draw result regressing by 42.8% (361) from (631) whilst Home Team win increases at rate of 36.86% (698) from (510) and finaly Away win increases by 21.6% (461) from (379)

How many Home Teams won HT and FT

HT_FT<-filter(Data,HTR=="H" & FTR=="H")
str(HT_FT)
## 'data.frame':    421 obs. of  16 variables:
##  $ X       : int  4 5 14 19 20 39 41 43 45 50 ...
##  $ HomeTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 13 16 23 15 14 20 1 9 19 27 ...
##  $ AwayTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 22 24 18 7 3 19 21 7 3 18 ...
##  $ FTHG    : int  4 1 2 3 1 3 2 3 3 2 ...
##  $ FTAG    : int  2 0 0 0 0 0 0 1 1 0 ...
##  $ FTR     : Factor w/ 3 levels "A","D","H": 3 3 3 3 3 3 3 3 3 3 ...
##  $ HTHG    : int  3 1 1 1 1 1 1 2 1 1 ...
##  $ HTAG    : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ HTR     : Factor w/ 3 levels "A","D","H": 3 3 3 3 3 3 3 3 3 3 ...
##  $ HS      : int  19 9 19 18 18 23 29 14 12 17 ...
##  $ AS      : int  10 9 4 10 13 6 9 15 7 14 ...
##  $ HST     : int  8 1 6 8 2 8 12 9 4 3 ...
##  $ AST     : int  5 4 2 3 2 1 4 2 2 4 ...
##  $ PSH     : num  1.99 1.65 1.94 2.08 1.44 2.05 1.28 4.11 2.36 2.23 ...
##  $ PSA     : num  4.34 5.9 4.3 3.87 8.6 4 13 2.01 3.23 3.48 ...
##  $ PSD     : num  3.48 4.09 3.66 3.56 4.74 3.54 6.12 3.57 3.48 3.53 ...

Half Time Full Time Home Teams won 421 matches in total

How many Away Teams won HT and FT

AT_FT<-filter(Data,HTR=="A" & FTR=="A")
str(AT_FT)
## 'data.frame':    273 obs. of  16 variables:
##  $ X       : int  6 7 10 11 12 13 17 26 29 34 ...
##  $ HomeTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 19 1 26 2 20 22 27 27 26 14 ...
##  $ AwayTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 8 27 15 16 9 19 13 3 7 27 ...
##  $ FTHG    : int  1 0 0 0 0 1 1 3 2 0 ...
##  $ FTAG    : int  3 2 3 1 3 3 2 4 3 3 ...
##  $ FTR     : Factor w/ 3 levels "A","D","H": 1 1 1 1 1 1 1 1 1 1 ...
##  $ HTHG    : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ HTAG    : int  1 1 2 1 2 2 2 2 3 2 ...
##  $ HTR     : Factor w/ 3 levels "A","D","H": 1 1 1 1 1 1 1 1 1 1 ...
##  $ HS      : int  17 22 9 5 17 6 10 10 15 13 ...
##  $ AS      : int  11 8 19 9 10 19 11 15 15 12 ...
##  $ HST     : int  6 6 2 1 4 2 3 4 6 1 ...
##  $ AST     : int  7 4 7 2 4 6 6 7 5 5 ...
##  $ PSH     : num  2.52 1.31 5.75 5.66 1.98 2.52 2.25 2.43 6.25 1.36 ...
##  $ PSA     : num  3.08 12 1.68 1.72 4.21 ...
##  $ PSD     : num  3.35 5.75 3.98 3.83 3.6 3.35 3.52 3.44 3.93 5.28 ...

Half Time Full Time Away Teams won 273 matches in total

How many times did Draw at HT resulted at FT as a Draw

D_D<-filter(Data,HTR=="D" & FTR=="D")
str(D_D)
## 'data.frame':    230 obs. of  16 variables:
##  $ X       : int  8 16 22 23 24 28 30 38 47 57 ...
##  $ HomeTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 18 25 13 16 19 25 1 24 26 23 ...
##  $ AwayTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 20 26 24 18 21 20 14 9 20 9 ...
##  $ FTHG    : int  2 0 1 0 1 0 0 0 0 0 ...
##  $ FTAG    : int  2 0 1 0 1 0 0 0 0 0 ...
##  $ FTR     : Factor w/ 3 levels "A","D","H": 2 2 2 2 2 2 2 2 2 2 ...
##  $ HTHG    : int  1 0 0 0 1 0 0 0 0 0 ...
##  $ HTAG    : int  1 0 0 0 1 0 0 0 0 0 ...
##  $ HTR     : Factor w/ 3 levels "A","D","H": 2 2 2 2 2 2 2 2 2 2 ...
##  $ HS      : int  9 16 13 20 21 13 19 20 8 12 ...
##  $ AS      : int  15 6 19 7 6 14 15 8 14 17 ...
##  $ HST     : int  4 5 2 8 7 0 5 6 1 3 ...
##  $ AST     : int  5 0 6 0 1 5 8 3 4 2 ...
##  $ PSH     : num  2.88 2.25 2.69 1.39 2.34 2.76 1.74 1.97 3.21 2.3 ...
##  $ PSA     : num  2.69 3.54 2.75 9.62 3.37 2.78 5.12 4.09 2.49 3.4 ...
##  $ PSD     : num  3.33 3.41 3.52 5.15 3.39 3.36 4 3.72 3.26 3.44 ...

Only 36.45% (230) of (631) matches that resulted as Draw at half time remained the same at final whistle

Home Comebacks losing at HT but winning at FT

H_C<-filter(Data,HTR=="A" & FTR=="H")
str(H_C)
## 'data.frame':    37 obs. of  16 variables:
##  $ X       : int  48 188 258 267 302 359 362 376 487 497 ...
##  $ HomeTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 13 27 1 24 20 8 22 21 12 24 ...
##  $ AwayTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 2 20 13 23 14 21 7 27 20 27 ...
##  $ FTHG    : int  3 2 2 2 3 2 3 2 2 3 ...
##  $ FTAG    : int  2 1 1 1 2 1 2 1 1 2 ...
##  $ FTR     : Factor w/ 3 levels "A","D","H": 3 3 3 3 3 3 3 3 3 3 ...
##  $ HTHG    : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ HTAG    : int  1 1 1 1 2 1 2 1 1 1 ...
##  $ HTR     : Factor w/ 3 levels "A","D","H": 1 1 1 1 1 1 1 1 1 1 ...
##  $ HS      : int  21 13 24 34 16 17 15 7 6 14 ...
##  $ AS      : int  11 15 7 10 18 12 9 20 19 11 ...
##  $ HST     : int  6 5 6 14 5 4 4 4 2 6 ...
##  $ AST     : int  4 4 3 4 9 3 8 7 7 3 ...
##  $ PSH     : num  1.86 3.57 1.71 1.48 2.71 2.07 3.02 3.48 5.73 1.5 ...
##  $ PSA     : num  4.62 2.24 5.08 8.27 2.88 3.93 2.45 2.12 1.7 7.4 ...
##  $ PSD     : num  3.74 3.41 4.16 4.5 3.29 3.53 3.55 3.82 3.88 4.58 ...

Only 37 times did Home Teams manage to be losing at half time and comeback to win at full time

Away Comebacks losing at HT but winning at FT

A_C<-filter(Data,HTR=="H" & FTR=="A")
str(A_C)
## 'data.frame':    27 obs. of  16 variables:
##  $ X       : int  70 107 159 202 209 221 224 262 280 437 ...
##  $ HomeTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 26 26 24 3 23 8 19 20 9 22 ...
##  $ AwayTeam: Factor w/ 28 levels "Arsenal","Aston Villa",..: 9 13 18 27 22 24 14 7 27 8 ...
##  $ FTHG    : int  2 2 1 1 2 1 4 1 2 2 ...
##  $ FTAG    : int  3 3 2 3 4 3 5 2 3 3 ...
##  $ FTR     : Factor w/ 3 levels "A","D","H": 1 1 1 1 1 1 1 1 1 1 ...
##  $ HTHG    : int  1 1 1 1 2 1 2 1 1 1 ...
##  $ HTAG    : int  0 0 0 0 1 0 1 0 0 0 ...
##  $ HTR     : Factor w/ 3 levels "A","D","H": 3 3 3 3 3 3 3 3 3 3 ...
##  $ HS      : int  9 14 20 11 10 11 6 7 15 11 ...
##  $ AS      : int  12 13 8 10 7 24 13 16 17 20 ...
##  $ HST     : int  4 6 8 4 5 3 5 2 8 4 ...
##  $ AST     : int  4 5 4 5 5 11 7 4 5 4 ...
##  $ PSH     : num  3.06 2.84 1.39 2.01 1.78 3.63 4.35 2.9 1.71 2.88 ...
##  $ PSA     : num  2.51 2.7 9 4.02 5.32 2.22 1.98 2.65 5.17 2.7 ...
##  $ PSD     : num  3.39 3.36 5.32 3.65 3.71 3.4 3.5 3.37 4.11 3.3 ...

Only 27 times did Away Teams manage to be losing at half time and comeback to wn at full time

Summary

Draw is the most likely event at half time occuring 41.5% of times (631) followed by Home win at 33.5% (510) and finally Away win 24.9%

At final whistle Draw while be lower by 42.8% whilst Home and Draw will be higher at 36.86% and 21.6% respectively