Data Prevalencia VIH (2008-2012)
link1="https://docs.google.com/spreadsheets/d/e/2PACX-1vQ51CAVKCjF_48ylMXr4FJkuVOHpXlUhaGmIA44cdQeWt4cBNjfekSgrPMjZMXrZg/pub?gid=14954305&single=true&output=csv"
DataVIH=read.csv(link1, stringsAsFactors = F)
DataVIH1 = DataVIH[,c(1,53:57)]
names(DataVIH1) = c("Pais","2008","2009","2010","2011","2012")
DataVIH1$`2009` = gsub("\\,", ".", DataVIH1$`2009`)
DataVIH1$`2010` = gsub("\\,", ".", DataVIH1$`2010`)
DataVIH1$`2008` = gsub("\\,", ".", DataVIH1$`2008`)
DataVIH1$`2011` = gsub("\\,", ".", DataVIH1$`2011`)
DataVIH1$`2012` = gsub("\\,", ".", DataVIH1$`2012`)
DataVIH1[,c(2:6)]=lapply(DataVIH1[,c(2:6)],as.numeric) #volver numerico en grupo
DataVIH1 = DataVIH1[complete.cases(DataVIH1),]
row.names(DataVIH1) = NULL
DataVIH1$VIH = rowMeans(DataVIH1[,2:6])
DataVIH1 = DataVIH1[,c (1,7)]
Data Población Activa Mujeres
link2="https://docs.google.com/spreadsheets/d/e/2PACX-1vQ-T56gOlA6lVVHHnrqUR6bc_doAmUewuvSlG4CcNgYyeZVUbPiozpcciPpDS3SyQ/pub?gid=1993384276&single=true&output=csv"
DataAct=read.csv(link2,stringsAsFactors = F)
DataAct1 = DataAct[,c(1,48:52)]
names(DataAct1) = c("Pais","2003","2004","2005", "2006", "2007")
DataAct1$`2003` = gsub("\\,", ".", DataAct1$`2003`)
DataAct1$`2004` = gsub("\\,", ".", DataAct1$`2004`)
DataAct1$`2005` = gsub("\\,", ".", DataAct1$`2005`)
DataAct1$`2006` = gsub("\\,", ".", DataAct1$`2006`)
DataAct1$`2007` = gsub("\\,", ".", DataAct1$`2007`)
DataAct1[,c(2:6)]=lapply(DataAct1[,c(2:6)],as.numeric) #volver numerico en grupo
DataAct1 = DataAct1[complete.cases(DataAct1),]
row.names(DataAct1) = NULL
DataAct1$PoblacionActiva = rowMeans(DataAct1[,2:6])
DataAct1= DataAct1[,c (1,7)]
Data Participación en la Fuerza Laboral Mujeres
link3="https://docs.google.com/spreadsheets/d/e/2PACX-1vTDcvi_z6RrnoATATdOGBLj2WlKRmVxqvx2hc4lUqkMwCcF3j9BLklmz0VjjIX4vA/pub?gid=1181245938&single=true&output=csv"
DataFLM= read.csv(link3, stringsAsFactors = F)
DataFLM1 = DataFLM[,c(1,48:52)]
names(DataFLM1) = c("Pais","2003","2004","2005", "2006", "2007")
DataFLM1$`2003` = gsub("\\,", ".", DataFLM1$`2003`)
DataFLM1$`2004` = gsub("\\,", ".", DataFLM1$`2004`)
DataFLM1$`2005` = gsub("\\,", ".", DataFLM1$`2005`)
DataFLM1$`2006` = gsub("\\,", ".", DataFLM1$`2006`)
DataFLM1$`2007` = gsub("\\,", ".", DataFLM1$`2007`)
DataFLM1[,c(2:6)]=lapply(DataFLM1[,c(2:6)],as.numeric)
DataFLM1$FLM = rowMeans(DataFLM1[,2:6],na.rm = TRUE)
DataFLM1= DataFLM1[,c (1,7)]
DataFLM1 = DataFLM1[complete.cases(DataFLM1),]
row.names(DataFLM1) = NULL
Data Prevalencia de Métodos anticoceptivos
link4="https://docs.google.com/spreadsheets/d/e/2PACX-1vRI-hkw-v7fdeFY_c1aS0c_DD86WJ-0k_G9Ti2lE_0_P3nGcPHagckLPhVM9SzD5g/pub?gid=932337199&single=true&output=csv"
DataMetodos= read.csv(link4, stringsAsFactors = F)
DataMetodos1 = DataMetodos[,c(1,48:52)]
names(DataMetodos1) = c("Pais","2003","2004","2005", "2006", "2007")
DataMetodos1$`2003` = gsub("\\,", ".", DataMetodos1$`2003`)
DataMetodos1$`2004` = gsub("\\,", ".", DataMetodos1$`2004`)
DataMetodos1$`2005` = gsub("\\,", ".", DataMetodos1$`2005`)
DataMetodos1$`2006` = gsub("\\,", ".", DataMetodos1$`2006`)
DataMetodos1$`2007` = gsub("\\,", ".", DataMetodos1$`2007`)
DataMetodos1[,c(2:6)]=lapply(DataMetodos1[,c(2:6)],as.numeric)
DataMetodos1$Metodos = rowMeans(DataMetodos1[,2:6],na.rm = TRUE)
DataMetodos1= DataMetodos1[,c (1,7)]
DataMetodos1 = DataMetodos1[complete.cases(DataMetodos1),]
row.names(DataMetodos1) = NULL
Data de población en barrios de tugurios
link5="https://docs.google.com/spreadsheets/d/e/2PACX-1vQnghOacrnZH200jpcJc-Vym7n8rrfuQlupJ470spsBTvZ0WUWvl63x2AYL1W92sw/pub?gid=1538383881&single=true&output=csv"
DataTugurios= read.csv(link5, stringsAsFactors = F)
DataTugurios1 = DataTugurios[,c(1,48:52)]
names(DataTugurios1) = c("Pais","2003","2004","2005", "2006", "2007")
DataTugurios1$`2003` = gsub("\\,", ".", DataTugurios1$`2003`)
DataTugurios1$`2004` = gsub("\\,", ".", DataTugurios1$`2004`)
DataTugurios1$`2005` = gsub("\\,", ".", DataTugurios1$`2005`)
DataTugurios1$`2006` = gsub("\\,", ".", DataTugurios1$`2006`)
DataTugurios1$`2007` = gsub("\\,", ".", DataTugurios1$`2007`)
DataTugurios1[,c(2:6)]=lapply(DataTugurios1[,c(2:6)],as.numeric)
DataTugurios1$BarriosTugurios = rowMeans(DataTugurios1[,2:6],na.rm = TRUE)
DataTugurios1= DataTugurios1[,c (1,7)]
DataTugurios1 = DataTugurios1[complete.cases(DataTugurios1),]
row.names(DataTugurios1) = NULL
Data de Gini
link6="https://docs.google.com/spreadsheets/d/e/2PACX-1vSOdz-vUkw9_yctGztLL_PS87cCS7GoU10PiLA3ywnO8-iNXG1OBi_8OBOpZ0r3AQ/pub?gid=826191890&single=true&output=csv"
DataGini= read.csv(link6, stringsAsFactors = F)
DataGini1 = DataGini[,c(1,48:52)]
names(DataGini1) = c("Pais","2003","2004","2005", "2006", "2007")
DataGini1$`2003` = gsub("\\,", ".", DataGini1$`2003`)
DataGini1$`2004` = gsub("\\,", ".", DataGini1$`2004`)
DataGini1$`2005` = gsub("\\,", ".", DataGini1$`2005`)
DataGini1$`2006` = gsub("\\,", ".", DataGini1$`2006`)
DataGini1$`2007` = gsub("\\,", ".", DataGini1$`2007`)
DataGini1[,c(2:6)]=lapply(DataGini1[,c(2:6)],as.numeric)
DataGini1$Gini = rowMeans(DataGini1[,2:6],na.rm = TRUE)
DataGini1= DataGini1[,c (1,7)]
DataGini1= DataGini1[complete.cases(DataGini1),]
row.names(DataGini1) = NULL
DATA ALFABETIZACIÓN
link7="https://docs.google.com/spreadsheets/d/e/2PACX-1vTTojodRJwkAu-98fKnnuzUCJZE-Wj4tDFm7F2XQLDeT3CSifu-yWiHZuZv-uzL2Q/pub?gid=1142139153&single=true&output=csv"
EDU=read.csv(link7,stringsAsFactors = F)
EDU1=EDU[,c(1,48:52)]
names(EDU1)=c("Pais","2003","2004","2005","2006","2007")
EDU1$`2003`= gsub("\\,", ".",EDU1$`2003`)
EDU1$`2004`= gsub("\\,", ".",EDU1$`2004`)
EDU1$`2005`= gsub("\\,", ".",EDU1$`2005`)
EDU1$`2006`= gsub("\\,", ".",EDU1$`2006`)
EDU1$`2007`= gsub("\\,", ".",EDU1$`2007`)
EDU1[c(2:6)] = lapply(EDU1[c(2:6)], as.numeric)
EDU1$EDU = rowMeans(EDU1[,2:6],na.rm = TRUE)
EDU1= EDU1[,c (1,7)]
EDU1= EDU1[complete.cases(EDU1),]
row.names(EDU1) = NULL
DATA DE ACCESO A LA ELECTRICIDAD
link8="https://docs.google.com/spreadsheets/d/e/2PACX-1vQrlQtEYBGaf0IhPz_H9oaM8uD1UaVoR1J_xP6bYe8ZqNAVSRJiLh4DXq52KomGsQ/pub?gid=2059415238&single=true&output=csv"
ENER=read.csv(link8,stringsAsFactors = F)
ENER1=ENER[,c(1,48:52)]
names(ENER1)=c("Pais","2003","2004","2005","2006","2007")
ENER1$`2003`= gsub("\\,", ".",ENER1$`2003`)
ENER1$`2004`= gsub("\\,", ".",ENER1$`2004`)
ENER1$`2005`= gsub("\\,", ".",ENER1$`2005`)
ENER1$`2006`= gsub("\\,", ".",ENER1$`2006`)
ENER1$`2007`= gsub("\\,", ".",ENER1$`2007`)
ENER1[c(2:6)] = lapply(ENER1[c(2:6)], as.numeric)
ENER1$ENER = rowMeans(ENER1[,2:6],na.rm = TRUE)
ENER1= ENER1[,c (1,7)]
ENER1= ENER1[complete.cases(ENER1),]
row.names(ENER1) = NULL
DATA DE GASTO
link9="https://docs.google.com/spreadsheets/d/e/2PACX-1vQ6hJgrir9ZBg6Qo5dfwQGluWp4oZLEfSVgz-sVzHEqav1pulMwix_2jNcjxcCkjw/pub?gid=1845220649&single=true&output=csv"
GAST=read.csv(link9,stringsAsFactors = F)
GAST1=GAST[,c(1,48:52)]
names(GAST1)=c("Pais","2003","2004","2005","2006","2007")
GAST1$`2003`= gsub("\\,", ".",GAST1$`2003`)
GAST1$`2004`= gsub("\\,", ".",GAST1$`2004`)
GAST1$`2005`= gsub("\\,", ".",GAST1$`2005`)
GAST1$`2006`= gsub("\\,", ".",GAST1$`2006`)
GAST1$`2007`= gsub("\\,", ".",GAST1$`2007`)
GAST1[c(2:6)] = lapply(GAST1[c(2:6)], as.numeric)
GAST1$GAST = rowMeans(GAST1[,2:6],na.rm = TRUE)
GAST1= GAST1[,c (1,7)]
GAST1= GAST1[complete.cases(GAST1),]
row.names(GAST1) = NULL
BANDA ANCHA
link10="https://docs.google.com/spreadsheets/d/e/2PACX-1vTJo2T8oxMssc3utiol3H4IZDOw4jq1sNu12vGh4LUz2aZU-BTtDvkhDaESiIwCJQ/pub?gid=508597872&single=true&output=csv"
ban=read.csv(link10,stringsAsFactors = F)
ban1=ban[,c(1,48:52)]
names(ban1)=c("Pais","2003","2004","2005","2006","2007")
ban1$`2003`= gsub("\\,", ".",ban1$`2003`)
ban1$`2004`= gsub("\\,", ".",ban1$`2004`)
ban1$`2005`= gsub("\\,", ".",ban1$`2005`)
ban1$`2006`= gsub("\\,", ".",ban1$`2006`)
ban1$`2007`= gsub("\\,", ".",ban1$`2007`)
ban1[c(2:6)] = lapply(ban1[c(2:6)], as.numeric)
ban1$ban = rowMeans(ban1[,2:6],na.rm = TRUE)
ban1= ban1[,c (1,7)]
ban1= ban1[complete.cases(ban1),]
row.names(ban1) = NULL
Cobertura de tratamiento antirretroviral
link11="https://docs.google.com/spreadsheets/d/e/2PACX-1vQ7mf0BRsmhcre-RKQseWRY_aGZrVve25Wmmm85m4OMF2Eb8_NyqGhDjrRmePcuWg/pub?gid=26033417&single=true&output=csv"
antiRetrov=read.csv(link11, stringsAsFactors = F)
antiRetrov1=antiRetrov[,c(1,48:52)]
names(antiRetrov1) = c("Pais","2003","2004","2005", "2006", "2007")
antiRetrov1[,c(2:6)]=lapply(antiRetrov1[,c(2:6)],as.numeric) #volver numerico en grupo
## Warning in lapply(antiRetrov1[, c(2:6)], as.numeric): NAs introduced by
## coercion
## Warning in lapply(antiRetrov1[, c(2:6)], as.numeric): NAs introduced by
## coercion
## Warning in lapply(antiRetrov1[, c(2:6)], as.numeric): NAs introduced by
## coercion
## Warning in lapply(antiRetrov1[, c(2:6)], as.numeric): NAs introduced by
## coercion
## Warning in lapply(antiRetrov1[, c(2:6)], as.numeric): NAs introduced by
## coercion
antiRetrov1$CobARet = rowMeans(antiRetrov1[,2:6], na.rm = TRUE)
antiRetrov1= antiRetrov1[,c (1,7)]
antiRetrov1 = antiRetrov1[complete.cases(antiRetrov1),]
row.names(antiRetrov1) = NULL
Esperanza de vida en mujeres
link12="https://docs.google.com/spreadsheets/d/e/2PACX-1vQoWu6HPrX8qbiqsewwImM89BxWol-bI-b_ubT6v_hxbPG9JTxXFxaxX5nUJTm-bg/pub?gid=72965045&single=true&output=csv"
EspVida=read.csv(link12, stringsAsFactors = F)
EspVida1=EspVida[,c(1,48:52)]
names(EspVida1) = c("Pais","2003","2004","2005", "2006", "2007")
EspVida1$`2003` = gsub("\\,", ".", EspVida1$`2003`)
EspVida1$`2004` = gsub("\\,", ".", EspVida1$`2004`)
EspVida1$`2005` = gsub("\\,", ".", EspVida1$`2005`)
EspVida1$`2006` = gsub("\\,", ".", EspVida1$`2006`)
EspVida1$`2007` = gsub("\\,", ".", EspVida1$`2007`)
EspVida1[,c(2:6)]=lapply(EspVida1[,c(2:6)],as.numeric) #volver numerico en grupo
EspVida1$VidaM = rowMeans(EspVida1[,2:6], na.rm = TRUE)
EspVida1= EspVida1[,c (1,7)]
EspVida1 = EspVida1[complete.cases(EspVida1),]
row.names(EspVida1) = NULL
Migracion neta
link13="https://docs.google.com/spreadsheets/d/e/2PACX-1vSri2T-73zRzhVczOzNqkAKmQ_qLcWrQHzuVl7QIFUE7fJRUbtKoDCeJ1zixpCjRA/pub?gid=1968467072&single=true&output=csv"
neta=read.csv(link13, stringsAsFactors = F)
migra1=neta[,c(1,52)]
names(migra1) = c("Pais","Migracion")
migra1 = migra1[complete.cases(migra1),]
row.names(migra1) = NULL
migra1[,c(2)]=as.numeric(migra1[,c(2)]) #volver numerico
ODA
link14="https://docs.google.com/spreadsheets/d/e/2PACX-1vQMbPO51JV-DhQLOOX9GnTSN7Z4hlKuFjX6Ft9QRS07q1i28GeqAsAAhdfXkNq-uA/pub?gid=1457611805&single=true&output=csv"
ODA=read.csv(link14, stringsAsFactors = F)
ODA1=ODA[,c(1,48:52)]
names(ODA1) = c("Pais","2003","2004","2005", "2006", "2007")
ODA1$`2003` = gsub("\\,", ".", ODA1$`2003`)
ODA1$`2004` = gsub("\\,", ".", ODA1$`2004`)
ODA1$`2005` = gsub("\\,", ".", ODA1$`2005`)
ODA1$`2006` = gsub("\\,", ".", ODA1$`2006`)
ODA1$`2007` = gsub("\\,", ".", ODA1$`2007`)
ODA1[,c(2:6)]=lapply(ODA1[,c(2:6)],as.numeric) #volver numerico en grupo
ODA1$ODA = rowMeans(ODA1[,2:6], na.rm = TRUE)
ODA1= ODA1[,c (1,7)]
ODA1 = ODA1[complete.cases(ODA1),]
row.names(ODA1) = NULL
PAIS AFRICANO
link15="https://docs.google.com/spreadsheets/d/e/2PACX-1vT-0H84cFoinLuU8HZaFS1Yln8HhKYcVtaKCbcKn3iShculk-vuU3QJ888lCbUd_Q/pub?gid=1165629081&single=true&output=csv"
AFRICA=read.csv(link15, stringsAsFactors = F)
names(AFRICA)=c("Pais", "Africa")
Población total de mujeres
link16="https://docs.google.com/spreadsheets/d/e/2PACX-1vTnOQNQQsmZQ1Ru-bqF5mBAlnpbxQOOH_IUuMv7XylSyOIvQ_Ij1OB64-a-pXaSgg/pub?gid=871901844&single=true&output=csv"
women=read.csv(link16, stringsAsFactors = F)
women1=women[,c(1,48:52)]
names(women1) = c("Pais","2003","2004","2005", "2006", "2007")
women1$`2003` = gsub("\\,", ".", women1$`2003`)
women1$`2004` = gsub("\\,", ".", women1$`2004`)
women1$`2005` = gsub("\\,", ".", women1$`2005`)
women1$`2006` = gsub("\\,", ".", women1$`2006`)
women1$`2007` = gsub("\\,", ".", women1$`2007`)
women1[,c(2:6)]=lapply(women1[,c(2:6)],as.numeric) #volver numerico en grupo
women1$Women = rowMeans(women1[,2:6], na.rm = TRUE)
women1= women1[,c (1,7)]
women1 = women1[complete.cases(women1),]
row.names(women1) = NULL
Act1FLM1=merge(DataAct1,DataFLM1,all.x=T,all.y=T)
desigualdad1=merge(DataTugurios1,DataGini1,all.x=T,all.y=T)
est1=merge(EDU1,ENER1,all.x=T,all.y=T)
estado1=merge(est1,GAST1,all.x=T,all.y=T)
densidad1=merge(estado1,ban1,all.x=T,all.y=T)
Calidad1=merge(desigualdad1,densidad1,all.x=T,all.y=T)
salud1=merge(EspVida1,antiRetrov1, all.x=T,all.y=T)
Act1FLM1_x=Act1FLM1
row.names(Act1FLM1) = Act1FLM1$Pais
Act1FLM1$Pais = NULL
head(Act1FLM1)
## PoblacionActiva FLM
## Afghanistan 43.55220 NA
## Albania 48.17600 29.15748
## Algeria 12.87380 NA
## Angola 75.08880 62.67960
## Arab World 19.62438 20.61435
## Argentina 49.57260 49.55246
Act1FLM1[is.na(Act1FLM1$PoblacionActiva), "PoblacionActiva"]=mean(Act1FLM1$PoblacionActiva, na.rm=T)
Act1FLM1[is.na(Act1FLM1$FLM), "FLM"]=mean(Act1FLM1$FLM, na.rm=T)
Act1FLM1=as.data.frame(scale(Act1FLM1[,c(1,2)]))
head(Act1FLM1)
## PoblacionActiva FLM
## Afghanistan -0.43930039 0.00000000
## Albania -0.13370714 -1.37188100
## Algeria -2.46687804 0.00000000
## Angola 1.64499686 0.96623135
## Arab World -2.02072269 -1.96774987
## Argentina -0.04140391 0.05063512
library(psych)
pearson1 = cor(Act1FLM1) #sacar la correlación de los puntajes estandarizadas
pearson1
## PoblacionActiva FLM
## PoblacionActiva 1.0000000 0.7868555
## FLM 0.7868555 1.0000000
cor.plot(pearson1,
numbers=T,
upper=FALSE,
main = "Correlation",
show.legend = FALSE) #verlo en un gráfico
KMO(Act1FLM1) #nos indica que mientras más cercano a uno hay una división subyacente, a partir de 0.7. Que tan buena idea es juntarlos en un indice. ver el Overall MSA(más cercano a 1)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = Act1FLM1)
## Overall MSA = 0.5
## MSA for each item =
## PoblacionActiva FLM
## 0.5 0.5
#Prueba de esfericidad de bartlett
library(psych)
cortest.bartlett(Act1FLM1, n=nrow(Act1FLM1))
## R was not square, finding R from data
## $chisq
## [1] 231.196
##
## $p.value
## [1] 3.2698e-52
##
## $df
## [1] 1
fa.parallel(pearson1, fm="pa", fa="fa", main = "Scree Plot",n.obs = nrow(Act1FLM1)) #cuantos indices deberia formar
## Parallel analysis suggests that the number of factors = 1 and the number of components = NA
Act1FLM1 = fa(Act1FLM1,
nfactors=1,
rotate="varimax") #codigo para el analisis factorial solo cambiar la data y el numero de factores
Act1FLM1$loadings
##
## Loadings:
## MR1
## PoblacionActiva 0.887
## FLM 0.887
##
## MR1
## SS loadings 1.574
## Proportion Var 0.787
fa.diagram(Act1FLM1)
#Para ver el tipo de análisis factorial:
# mientras mas grande mejor (lo que aporta)
sort(Act1FLM1$communalities)
## PoblacionActiva FLM
## 0.7868555 0.7868555
# mientras mas grande peor (lo que mantiene)
sort(Act1FLM1$uniquenesses)
## PoblacionActiva FLM
## 0.2131445 0.2131445
sort(Act1FLM1$complexity)
## PoblacionActiva FLM
## 1 1
Act1FLM1$scores
## MR1
## Afghanistan -0.218081911
## Albania -0.747419191
## Algeria -1.224632385
## Angola 1.296292143
## Arab World -1.979997621
## Argentina 0.004582650
## Armenia -0.310238745
## Aruba 0.367840847
## Australia 0.498514225
## Austria 0.105783795
## Azerbaijan 0.302854548
## Bahamas, The 0.623402726
## Bahrain -0.853641697
## Bangladesh -1.472732756
## Barbados 0.960750286
## Belarus 0.329622731
## Belgium -0.306988194
## Belize -0.867062954
## Benin 1.580277249
## Bhutan 0.567385718
## Bolivia 0.743099218
## Bosnia and Herzegovina -1.034565215
## Botswana 0.336834077
## Brazil 0.394759215
## Brunei Darussalam 0.195202744
## Bulgaria -0.243377536
## Burkina Faso 1.389544683
## Burundi 1.045368902
## Cabo Verde 0.136991681
## Cambodia 1.808782549
## Cameroon 1.760772259
## Canada 0.819332764
## Caribbean small states 0.072862091
## Cayman Islands 1.053765461
## Central African Republic 0.509861315
## Central Europe and the Baltics -0.125440772
## Chad 0.448841779
## Channel Islands 0.001251200
## Chile -0.593441335
## China 0.546450719
## Colombia 0.227261289
## Comoros -1.114769780
## Congo, Dem. Rep. 1.415986742
## Congo, Rep. 1.166573364
## Costa Rica -0.397352481
## Cote d'Ivoire -0.061868183
## Croatia -0.336865361
## Cuba -0.959734638
## Cyprus 0.310985908
## Czech Republic 0.069977696
## Denmark 0.739197542
## Djibouti -0.037241149
## Dominican Republic -0.655151160
## Early-demographic dividend -0.865927088
## East Asia & Pacific 0.386330446
## East Asia & Pacific (excluding high income) 0.442014163
## East Asia & Pacific (IDA & IBRD countries) 0.436908551
## Ecuador 0.176081095
## Egypt, Arab Rep. -2.005033677
## El Salvador -0.264923711
## Equatorial Guinea 0.060289066
## Eritrea 0.744175438
## Estonia 0.277800750
## Eswatini -0.498152426
## Ethiopia 1.679320454
## Euro area -0.106349196
## Europe & Central Asia -0.006807899
## Europe & Central Asia (excluding high income) -0.001337942
## Europe & Central Asia (IDA & IBRD countries) -0.019361503
## European Union -0.039837413
## Fiji -0.946866807
## Finland 0.515624322
## Fragile and conflict affected situations -0.034553476
## France 0.052207623
## French Polynesia -0.151777904
## Gabon -0.271022288
## Gambia, The -0.054741891
## Georgia 0.411265626
## Germany 0.092597943
## Ghana 1.324422734
## Greece -0.488210709
## Guam 0.340044186
## Guatemala -0.378624796
## Guinea 0.416189510
## Guinea-Bissau 0.491520630
## Guyana -0.513258095
## Haiti 0.195356957
## Heavily indebted poor countries (HIPC) 0.485561463
## High income 0.149685853
## Honduras -0.589130873
## Hong Kong SAR, China 0.171289897
## Hungary -0.456806438
## IBRD only -0.023631135
## Iceland 1.693784620
## IDA & IBRD total -0.018782865
## IDA blend -0.806941564
## IDA only 0.161754091
## IDA total 0.001778396
## India -1.185765411
## Indonesia -0.162841980
## Iran, Islamic Rep. -2.112360416
## Iraq -2.536029376
## Ireland 0.238920337
## Isle of Man 0.256001551
## Israel 0.377123027
## Italy -0.782635384
## Jamaica 0.421407379
## Japan -0.072704909
## Jordan -2.490151045
## Kazakhstan 1.027408228
## Kenya 0.735505219
## Kiribati -0.985310951
## Korea, Dem. People’s Rep. 0.830878402
## Korea, Rep. 0.034976626
## Kosovo -0.698268280
## Kuwait 0.046047582
## Kyrgyz Republic 0.300847727
## Lao PDR 1.999875482
## Late-demographic dividend 0.388485135
## Latin America & Caribbean 0.041142445
## Latin America & Caribbean (excluding high income) 0.075280389
## Latin America & the Caribbean (IDA & IBRD countries) 0.065569377
## Latvia 0.128623266
## Least developed countries: UN classification 0.216709160
## Lebanon -1.946961775
## Lesotho -0.137693307
## Liberia 0.765510910
## Libya -0.941884570
## Liechtenstein 0.141807689
## Lithuania 0.134496532
## Low & middle income -0.014293141
## Low income 0.508704767
## Lower middle income -0.818704121
## Luxembourg -0.227072385
## Macao SAR, China 0.539375369
## Madagascar 2.273801315
## Malawi 1.975846557
## Malaysia -0.280719425
## Maldives -0.319897128
## Mali 0.730988288
## Malta -1.298600132
## Mauritania -0.703685818
## Mauritius -0.575270084
## Mexico -0.573230839
## Middle East & North Africa -1.975443501
## Middle East & North Africa (excluding high income) -2.028850299
## Middle East & North Africa (IDA & IBRD countries) -2.025291777
## Middle income -0.060565269
## Moldova -0.238247760
## Mongolia 0.432687495
## Montenegro -0.414569055
## Morocco -1.568033163
## Mozambique 2.542142687
## Myanmar 0.199796113
## Namibia -0.249277877
## Nepal 2.538850436
## Netherlands 0.521080833
## New Caledonia 0.334361949
## New Zealand 0.725181542
## Nicaragua -0.361433382
## Niger 0.251317114
## Nigeria -0.091427247
## North America 0.648117672
## North Macedonia -0.468344263
## Northern Mariana Islands 1.125439692
## Norway 1.054652072
## OECD members 0.039050741
## Oman -1.671541746
## Other small states -0.024994858
## Pacific island small states -0.169651496
## Pakistan -2.086227681
## Palau 0.321096783
## Panama -0.182764593
## Papua New Guinea 0.305338522
## Paraguay 0.319355648
## Peru 0.900286201
## Philippines -0.147202953
## Poland -0.151082728
## Portugal 0.382453534
## Post-demographic dividend 0.202798162
## Pre-demographic dividend 0.260775226
## Puerto Rico -0.831745121
## Qatar -0.272388758
## Romania -0.120953027
## Russian Federation 0.597349047
## Rwanda 2.350623422
## Samoa -1.374880549
## San Marino 0.172208561
## Sao Tome and Principe -1.019860577
## Saudi Arabia -2.129877574
## Senegal -1.054152738
## Serbia -0.308830749
## Sierra Leone 1.023502680
## Singapore 0.186636237
## Slovak Republic 0.138050914
## Slovenia 0.203810232
## Small states -0.010767330
## Solomon Islands 0.444523960
## Somalia -1.074265326
## South Africa -0.416041508
## South Asia -1.199783982
## South Asia (IDA & IBRD) -1.199783982
## South Sudan 0.664178656
## Spain -0.221935582
## Sri Lanka -0.897814432
## St. Lucia 0.649728560
## St. Vincent and the Grenadines 0.131420593
## Sub-Saharan Africa 0.379954847
## Sub-Saharan Africa (excluding high income) 0.379954847
## Sub-Saharan Africa (IDA & IBRD countries) 0.379954847
## Sudan -0.843744066
## Suriname -0.436831030
## Sweden 0.641036800
## Switzerland 0.680393591
## Syrian Arab Republic -2.245588328
## Tajikistan -0.674952343
## Tanzania 2.512556173
## Thailand 1.073992684
## Timor-Leste -0.395653700
## Togo 2.104439749
## Tonga -0.658657852
## Trinidad and Tobago 0.152339251
## Tunisia -1.785198120
## Turkey -1.729348682
## Turkmenistan 0.063497873
## Uganda 0.677071249
## Ukraine 0.250958153
## United Arab Emirates -0.805208024
## United Kingdom 0.368314436
## United States 0.628777497
## Upper middle income 0.246886943
## Uruguay 0.147303509
## Uzbekistan -0.351101194
## Vanuatu 0.365019405
## Venezuela, RB -0.001698803
## Vietnam 1.399045475
## Virgin Islands (U.S.) 0.282411076
## West Bank and Gaza -2.388327075
## World -0.003717115
## Yemen, Rep. -2.505323817
## Zambia 0.760219351
## Zimbabwe 1.866854539
scores1=as.data.frame(Act1FLM1$scores)
names(scores1) = c("Empoderamiento")
head(scores1)
## Empoderamiento
## Afghanistan -0.21808191
## Albania -0.74741919
## Algeria -1.22463238
## Angola 1.29629214
## Arab World -1.97999762
## Argentina 0.00458265
scores1$Pais=row.names(scores1)
row.names(scores1) = NULL
#Ponemos las variables en forma intuitiva restando con el mayor valor
Calidad1$BarriosTugurios= 100 - Calidad1$BarriosTugurios
Calidad1$Gini= 65 - Calidad1$Gini
Calidad1_X=Calidad1
row.names(Calidad1) = Calidad1$Pais
Calidad1$Pais = NULL
head(Calidad1)
## BarriosTugurios Gini EDU ENER GAST
## Afghanistan NA NA NA 22.79312 NA
## Albania NA 34.4 NA 100.00000 0.0873700
## Algeria NA NA 72.64868 98.80855 0.1419467
## American Samoa NA NA NA NA 0.3170075
## Andorra NA NA NA 100.00000 NA
## Angola 18.65 NA NA 29.52772 NA
## ban
## Afghanistan 0.00137906
## Albania 0.16976576
## Algeria 0.38217637
## American Samoa NA
## Andorra 13.34488004
## Angola 0.04626376
Calidad1[is.na(Calidad1$BarriosTugurios), "BarriosTugurios"]=mean(Calidad1$BarriosTugurios, na.rm=T)
Calidad1[is.na(Calidad1$Gini), "Gini"]=mean(Calidad1$Gini, na.rm=T)
Calidad1[is.na(Calidad1$EDU), "EDU"]=mean(Calidad1$EDU, na.rm=T)
Calidad1[is.na(Calidad1$ENER), "ENER"]=mean(Calidad1$ENER, na.rm=T)
Calidad1[is.na(Calidad1$GAST), "GAST"]=mean(Calidad1$GAST, na.rm=T)
Calidad1[is.na(Calidad1$ban), "ban"]=mean(Calidad1$ban, na.rm=T)
Calidad1=as.data.frame(scale(Calidad1[,c(1:6)]))
head(Calidad1)
## BarriosTugurios Gini EDU ENER GAST
## Afghanistan 0.000000 0.000000 0.0000000 -1.7233986 0.0000000
## Albania 0.000000 1.394347 0.0000000 0.7551778 -1.1905817
## Algeria 0.000000 0.000000 -0.2212941 0.7169287 -1.1038070
## American Samoa 0.000000 0.000000 0.0000000 0.0000000 -0.8254673
## Andorra 0.000000 0.000000 0.0000000 0.7551778 0.0000000
## Angola -2.469433 0.000000 0.0000000 -1.5071972 0.0000000
## ban
## Afghanistan -0.6777603
## Albania -0.6512634
## Algeria -0.6178389
## American Samoa 0.0000000
## Andorra 1.4219446
## Angola -0.6706974
library(psych)
promedio1 = cor(Calidad1) #sacar la correlación de los puntajes estandarizadas
promedio1
## BarriosTugurios Gini EDU ENER
## BarriosTugurios 1.000000000 -0.13270600 0.49417768 0.5779805
## Gini -0.132706004 1.00000000 -0.09252552 0.2145609
## EDU 0.494177679 -0.09252552 1.00000000 0.5721154
## ENER 0.577980511 0.21456087 0.57211541 1.0000000
## GAST -0.007642321 0.27747953 0.04709207 0.1967345
## ban 0.011836126 0.31819474 0.10412853 0.3545951
## GAST ban
## BarriosTugurios -0.007642321 0.01183613
## Gini 0.277479531 0.31819474
## EDU 0.047092075 0.10412853
## ENER 0.196734526 0.35459509
## GAST 1.000000000 0.62000846
## ban 0.620008458 1.00000000
cor.plot(promedio1,
numbers=T,
upper=FALSE,
main = "Correlation",
show.legend = FALSE) #verlo en un gráfico
KMO(Calidad1) #nos indica que mientras más cercano a uno hay una división subyacente, a partir de 0.7. Que tan buena idea es juntarlos en un indice. ver el Overall MSA(más cercano a 1)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = Calidad1)
## Overall MSA = 0.6
## MSA for each item =
## BarriosTugurios Gini EDU ENER
## 0.62 0.54 0.70 0.58
## GAST ban
## 0.59 0.58
fa.parallel(promedio1, fm="pa", fa="fa", main = "Scree Plot",n.obs = nrow(Calidad1)) #cuantos indices deberia formar
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs
## = np.obs, : The estimated weights for the factor scores are probably
## incorrect. Try a different factor extraction method.
## Parallel analysis suggests that the number of factors = 3 and the number of components = NA
Calidad1 = fa(Calidad1,
nfactors=3,
rotate="varimax") #codigo para el analisis factorial solo cambiar la data y el numero de factores
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : An ultra-Heywood case was detected. Examine the results carefully
Calidad1$loadings
##
## Loadings:
## MR1 MR2 MR3
## BarriosTugurios 0.717 -0.143
## Gini 0.241 0.551
## EDU 0.677
## ENER 0.888 0.157 0.432
## GAST 0.863 0.118
## ban 0.121 0.673 0.313
##
## MR1 MR2 MR3
## SS loadings 1.782 1.285 0.632
## Proportion Var 0.297 0.214 0.105
## Cumulative Var 0.297 0.511 0.616
fa.diagram(Calidad1)
#Para ver el tipo de análisis factorial:
# mientras mas grande mejor (lo que aporta)
sort(Calidad1$communalities)
## Gini EDU BarriosTugurios ban
## 0.3668824 0.4712142 0.5351012 0.5657713
## GAST ENER
## 0.7585527 0.9950000
# mientras mas grande peor (lo que mantiene)
sort(Calidad1$uniquenesses)
## ENER GAST ban BarriosTugurios
## -0.0006972736 0.2413269718 0.4340153963 0.4648857180
## EDU Gini
## 0.5288417029 0.6330720986
sort(Calidad1$complexity)
## GAST EDU BarriosTugurios Gini
## 1.038257 1.055293 1.080547 1.408544
## ban ENER
## 1.487721 1.520918
Calidad1$scores
## MR1
## Afghanistan -1.28872296
## Albania 0.47328987
## Algeria 0.63538286
## American Samoa 0.02928735
## Andorra 0.45131879
## Angola -1.54618516
## Antigua and Barbuda 0.87478567
## Arab World 0.37962060
## Argentina 1.26624404
## Armenia 0.52788649
## Aruba 0.31144886
## Australia 0.29572552
## Austria 0.10617704
## Azerbaijan 0.58259044
## Bahamas, The 0.52927301
## Bahrain 0.61196199
## Bangladesh -1.47593965
## Barbados 0.70408381
## Belarus 0.36794990
## Belgium 0.03415665
## Belize 0.69510370
## Benin -1.98448749
## Bermuda 0.12295387
## Bhutan -0.70295308
## Bolivia 0.58528978
## Bosnia and Herzegovina 0.53055154
## Botswana -0.84727758
## Brazil 1.35087042
## Brunei Darussalam 0.67504403
## Bulgaria 0.53877126
## Burkina Faso -2.10020389
## Burundi -2.17378997
## Cabo Verde 0.10482152
## Cambodia -1.66772678
## Cameroon -0.64171528
## Canada 0.12337850
## Caribbean small states 0.55891719
## Cayman Islands 0.83042617
## Central African Republic -2.18979013
## Central Europe and the Baltics 0.58641461
## Chad -2.81787378
## Channel Islands 0.59464125
## Chile 1.29221255
## China 0.73851168
## Colombia 1.47579858
## Comoros -0.38736668
## Congo, Dem. Rep. -2.03120474
## Congo, Rep. -0.99528190
## Costa Rica 1.30392674
## Cote d'Ivoire -0.63845748
## Croatia 0.60387032
## Cuba 0.64590704
## Curacao 0.59464125
## Cyprus 0.39557968
## Czech Republic 0.19795345
## Denmark -0.18758402
## Djibouti -0.47181901
## Dominica 0.26900652
## Dominican Republic 1.21052802
## Early-demographic dividend 0.07268648
## East Asia & Pacific 0.66249277
## East Asia & Pacific (excluding high income) 0.73458314
## East Asia & Pacific (IDA & IBRD countries) 0.75694924
## Ecuador 1.41726441
## Egypt, Arab Rep. 0.73174179
## El Salvador 0.88835512
## Equatorial Guinea -0.50421759
## Eritrea -1.06508883
## Estonia 0.30025367
## Eswatini -1.05000765
## Ethiopia -2.49421098
## Euro area 0.63086605
## Europe & Central Asia 0.70916626
## Europe & Central Asia (excluding high income) 0.84447754
## Europe & Central Asia (IDA & IBRD countries) 0.84506294
## European Union 0.65020917
## Faroe Islands 0.41899491
## Fiji 0.22077322
## Finland -0.11250373
## Fragile and conflict affected situations -1.23880669
## France 0.12113052
## French Polynesia 0.59118472
## Gabon 0.34357663
## Gambia, The -0.73692487
## Georgia 0.61040154
## Germany 0.13578600
## Ghana -0.35724373
## Gibraltar 0.59464125
## Greece 0.67609049
## Greenland 0.50864662
## Grenada 0.96658799
## Guam 0.66853342
## Guatemala 0.64850773
## Guinea -1.87316603
## Guinea-Bissau -2.14797483
## Guyana 0.19093545
## Haiti -1.60348315
## Heavily indebted poor countries (HIPC) -1.74380376
## High income 0.34907271
## Honduras 0.57011946
## Hong Kong SAR, China 0.29062705
## Hungary 0.29210942
## IBRD only 0.57996366
## Iceland -0.11265529
## IDA & IBRD total 0.21730463
## IDA blend -0.44649028
## IDA only -1.48465665
## IDA total -1.13635754
## India -0.30704108
## Indonesia 0.62143023
## Iran, Islamic Rep. 1.01081734
## Iraq 0.26255170
## Ireland 0.34338351
## Isle of Man 0.59464125
## Israel 0.27011902
## Italy 0.33678435
## Jamaica 0.33957689
## Japan 0.25298583
## Jordan 0.96984775
## Kazakhstan 0.51310632
## Kenya -1.25419578
## Kiribati -0.31494032
## Korea, Dem. People’s Rep. -1.42845827
## Korea, Rep. -0.05648612
## Kosovo 0.25791023
## Kuwait 0.86760922
## Kyrgyz Republic 0.53437903
## Lao PDR -0.98977441
## Late-demographic dividend 0.86466749
## Latin America & Caribbean 0.86535543
## Latin America & Caribbean (excluding high income) 0.84915828
## Latin America & the Caribbean (IDA & IBRD countries) 0.85893282
## Latvia 0.54913602
## Least developed countries: UN classification -1.69519780
## Lebanon 0.69299911
## Lesotho -1.52439532
## Liberia -2.31629524
## Libya 0.67416460
## Liechtenstein 0.30930217
## Lithuania 0.43919362
## Low & middle income 0.19720627
## Low income -1.75727091
## Lower middle income -0.11636657
## Luxembourg 0.15262039
## Macao SAR, China 0.66434442
## Madagascar -1.79495531
## Malawi -1.94670000
## Malaysia 0.79011432
## Maldives 0.65082253
## Mali -2.15849881
## Malta 0.37533013
## Marshall Islands -0.05030317
## Mauritania -1.50561264
## Mauritius 0.55225015
## Mexico 1.38852627
## Micronesia, Fed. Sts. -0.37486694
## Middle East & North Africa 0.69788251
## Middle East & North Africa (excluding high income) 0.65634623
## Middle East & North Africa (IDA & IBRD countries) 0.65288652
## Middle income 0.39082017
## Moldova 0.55469328
## Monaco 0.27095935
## Mongolia -0.09745198
## Montenegro 0.60195399
## Morocco 0.41115604
## Mozambique -2.24022606
## Myanmar -0.66759847
## Namibia -0.03481467
## Nauru 0.58503834
## Nepal -0.75003491
## Netherlands -0.03316193
## New Caledonia 0.59263892
## New Zealand 0.50010167
## Nicaragua 0.31084864
## Niger -2.48974118
## Nigeria -1.01291027
## North America 0.29694702
## North Macedonia 0.62233366
## Northern Mariana Islands 0.59464125
## Norway 0.01619126
## OECD members 0.36242030
## Oman 0.71428723
## Other small states -0.37371102
## Pacific island small states -0.32538152
## Pakistan -0.19247573
## Palau 0.61747321
## Panama 0.97063199
## Papua New Guinea -1.56504359
## Paraguay 1.45990858
## Peru 0.67546043
## Philippines 0.43908948
## Poland 0.47860696
## Portugal 0.47708332
## Post-demographic dividend 0.33697908
## Pre-demographic dividend -1.54547211
## Puerto Rico 0.61309036
## Qatar 0.76566564
## Romania 0.61917325
## Russian Federation 0.67829303
## Rwanda -1.58772460
## Samoa 0.47755835
## San Marino 0.59846417
## Sao Tome and Principe -0.45879920
## Saudi Arabia 1.07603800
## Senegal -1.02471482
## Serbia 0.46794911
## Seychelles 0.56230626
## Sierra Leone -2.58758124
## Singapore 0.35540711
## Sint Maarten (Dutch part) 0.59464125
## Slovak Republic 0.28001107
## Slovenia 0.32304036
## Small states -0.18116503
## Solomon Islands -1.28031868
## Somalia -1.94086688
## South Africa 1.22630549
## South Asia -0.29271171
## South Asia (IDA & IBRD) -0.29271171
## South Sudan -1.92960790
## Spain 0.52657555
## Sri Lanka 0.31471714
## St. Kitts and Nevis 0.34076772
## St. Lucia 0.77375456
## St. Martin (French part) -0.43812641
## St. Vincent and the Grenadines 0.26280349
## Sub-Saharan Africa -1.44087447
## Sub-Saharan Africa (excluding high income) -1.44110644
## Sub-Saharan Africa (IDA & IBRD countries) -1.44087447
## Sudan -0.99364835
## Suriname 1.10695892
## Sweden -0.18950717
## Switzerland 0.08076505
## Syrian Arab Republic 0.78990348
## Tajikistan 0.51670612
## Tanzania -1.72998746
## Thailand 0.97906030
## Timor-Leste -1.59996695
## Togo -1.50179459
## Tonga 0.62244336
## Trinidad and Tobago 0.80215679
## Tunisia 0.60999492
## Turkey 1.08646735
## Turkmenistan 0.58593378
## Turks and Caicos Islands 0.42401618
## Tuvalu 0.52636842
## Uganda -1.74553044
## Ukraine 0.34677614
## United Arab Emirates 0.75863772
## United Kingdom 0.26678538
## United States 0.35139421
## Upper middle income 0.90063013
## Uruguay 1.02914988
## Uzbekistan 0.58813642
## Vanuatu -1.10820402
## Venezuela, RB 1.27890147
## Vietnam 0.46795125
## Virgin Islands (U.S.) 0.65726233
## West Bank and Gaza 0.72894882
## World 0.23193789
## Yemen, Rep. -1.13072094
## Zambia -1.17865742
## Zimbabwe -0.68533868
## MR2
## Afghanistan 0.038673556
## Albania -1.141039814
## Algeria -1.066187218
## American Samoa -0.596071750
## Andorra 0.283324544
## Angola -0.057611355
## Antigua and Barbuda -0.036392766
## Arab World -0.183969970
## Argentina -0.457542618
## Armenia -0.943961150
## Aruba 0.177247485
## Australia 1.460774186
## Austria 1.968257989
## Azerbaijan -0.872896588
## Bahamas, The -0.078658359
## Bahrain -0.142086253
## Bangladesh -0.225756689
## Barbados 0.360420947
## Belarus -0.422674500
## Belgium 1.633200756
## Belize -0.119811492
## Benin -0.230122721
## Bermuda 0.501509377
## Bhutan -0.018350604
## Bolivia -0.088063431
## Bosnia and Herzegovina -1.184580709
## Botswana -0.340734870
## Brazil 0.130761512
## Brunei Darussalam -1.116576217
## Bulgaria -0.555813083
## Burkina Faso -0.892291173
## Burundi -0.479159014
## Cabo Verde -0.093544371
## Cambodia -0.041797330
## Cameroon -0.082428270
## Canada 1.891593845
## Caribbean small states -0.073788621
## Cayman Islands 0.003016415
## Central African Republic 0.191304163
## Central Europe and the Baltics -0.168878154
## Chad 0.005344313
## Channel Islands -0.096217949
## Chile -0.593597253
## China 0.385816828
## Colombia -0.846490324
## Comoros -0.101454119
## Congo, Dem. Rep. -0.648856511
## Congo, Rep. 0.179012241
## Costa Rica -0.665401900
## Cote d'Ivoire -0.110569877
## Croatia -0.083026606
## Cuba -0.631253489
## Curacao -0.096217949
## Cyprus -0.661495798
## Czech Republic 0.415452766
## Denmark 2.594244773
## Djibouti -0.091467854
## Dominica -0.005702867
## Dominican Republic -0.083529206
## Early-demographic dividend -0.371289965
## East Asia & Pacific 1.799223841
## East Asia & Pacific (excluding high income) 0.309168324
## East Asia & Pacific (IDA & IBRD countries) 0.305156655
## Ecuador -0.952885612
## Egypt, Arab Rep. -0.910446395
## El Salvador -0.962811287
## Equatorial Guinea -0.169953945
## Eritrea 0.172340320
## Estonia 0.412675050
## Eswatini 0.169900059
## Ethiopia -0.949868930
## Euro area 1.479329669
## Europe & Central Asia 1.126543872
## Europe & Central Asia (excluding high income) -0.143604277
## Europe & Central Asia (IDA & IBRD countries) -0.173638980
## European Union 1.402028670
## Faroe Islands 0.393879398
## Fiji -0.162821343
## Finland 3.445077161
## Fragile and conflict affected situations 0.083130493
## France 1.783262297
## French Polynesia -0.087064473
## Gabon -0.659268842
## Gambia, The 0.014934555
## Georgia -0.975507084
## Germany 2.141283612
## Ghana -0.775304309
## Gibraltar -0.096217949
## Greece -0.399083943
## Greenland -0.127756291
## Grenada 0.118049191
## Guam -0.867542228
## Guatemala -1.057025754
## Guinea 0.029361244
## Guinea-Bissau 0.201196511
## Guyana -0.147604999
## Haiti 0.032591706
## Heavily indebted poor countries (HIPC) -0.090908368
## High income 1.940143363
## Honduras -0.804265058
## Hong Kong SAR, China 0.617148333
## Hungary 0.148211597
## IBRD only -0.103249413
## Iceland 2.912597749
## IDA & IBRD total -0.113469380
## IDA blend -0.717257212
## IDA only -0.111048709
## IDA total -0.126674662
## India -0.223974750
## Indonesia -0.130333434
## Iran, Islamic Rep. -0.505986899
## Iraq -1.204075513
## Ireland 0.474287072
## Isle of Man -0.096217949
## Israel 4.178094497
## Italy 0.453768093
## Jamaica -0.178293277
## Japan 3.143684121
## Jordan -0.135870655
## Kazakhstan -0.942233950
## Kenya -0.529287367
## Kiribati -0.113211581
## Korea, Dem. People’s Rep. 0.231136548
## Korea, Rep. 2.920839185
## Kosovo -0.092597574
## Kuwait -0.991964148
## Kyrgyz Republic -0.991741225
## Lao PDR -0.179464201
## Late-demographic dividend 0.136836954
## Latin America & Caribbean -0.358214098
## Latin America & Caribbean (excluding high income) -0.337341831
## Latin America & the Caribbean (IDA & IBRD countries) -0.356369239
## Latvia -0.448307153
## Least developed countries: UN classification -0.112001232
## Lebanon -0.222165075
## Lesotho -0.801214149
## Liberia 0.166900102
## Libya -0.047277648
## Liechtenstein 0.659408947
## Lithuania -0.035043486
## Low & middle income -0.089096894
## Low income -0.091611216
## Lower middle income -0.407146159
## Luxembourg 1.233445607
## Macao SAR, China -0.490710996
## Madagascar -0.720709798
## Malawi 0.065261626
## Malaysia -0.439603013
## Maldives -0.089877854
## Mali -0.903897635
## Malta -0.118937774
## Marshall Islands 0.008139475
## Mauritania -0.095554341
## Mauritius -0.770523574
## Mexico -0.557484070
## Micronesia, Fed. Sts. -0.087187079
## Middle East & North Africa -0.189530020
## Middle East & North Africa (excluding high income) -0.219404712
## Middle East & North Africa (IDA & IBRD countries) -0.220215144
## Middle income -0.093949608
## Moldova -0.756074758
## Monaco -0.036862855
## Mongolia -0.900740075
## Montenegro 0.109209165
## Morocco -0.461744104
## Mozambique -0.537220431
## Myanmar -0.065475439
## Namibia 0.022964864
## Nauru -0.094664119
## Nepal -0.078425541
## Netherlands 1.806020389
## New Caledonia -0.090915436
## New Zealand 0.459543824
## Nicaragua -0.143254254
## Niger -0.176345947
## Nigeria -0.902908831
## North America 2.350717020
## North Macedonia -0.891880407
## Northern Mariana Islands -0.096217949
## Norway 1.382424532
## OECD members 1.878486670
## Oman -0.235193576
## Other small states 0.032677782
## Pacific island small states -0.095241171
## Pakistan -0.670270791
## Palau -0.251454186
## Panama -0.763408637
## Papua New Guinea 0.253237200
## Paraguay -0.976977489
## Peru -0.856131578
## Philippines -0.925876097
## Poland -0.408627324
## Portugal 0.173693825
## Post-demographic dividend 2.031560590
## Pre-demographic dividend -0.104061880
## Puerto Rico -0.145074361
## Qatar -0.070090611
## Romania -0.600563764
## Russian Federation 0.134042632
## Rwanda 0.066749205
## Samoa -0.245410754
## San Marino -0.106341704
## Sao Tome and Principe -0.090399048
## Saudi Arabia -1.064260348
## Senegal -0.187050785
## Serbia -0.618589436
## Seychelles -0.730837807
## Sierra Leone -0.015009675
## Singapore 1.851834413
## Sint Maarten (Dutch part) -0.096217949
## Slovak Republic -0.507357440
## Slovenia 0.866347934
## Small states 0.015180312
## Solomon Islands 0.083274903
## Somalia 0.203971234
## South Africa -0.046605946
## South Asia -0.254725198
## South Asia (IDA & IBRD) -0.254725198
## South Sudan 0.312226770
## Spain 0.605472539
## Sri Lanka -0.867624443
## St. Kitts and Nevis 0.279233760
## St. Lucia -0.025436339
## St. Martin (French part) 0.070892534
## St. Vincent and the Grenadines -0.069702830
## Sub-Saharan Africa -0.476288869
## Sub-Saharan Africa (excluding high income) -0.476296136
## Sub-Saharan Africa (IDA & IBRD countries) -0.476288869
## Sudan -0.605447725
## Suriname -0.098510133
## Sweden 3.637355430
## Switzerland 2.739352668
## Syrian Arab Republic -0.177805992
## Tajikistan -1.147706733
## Tanzania -0.527397330
## Thailand -0.797765656
## Timor-Leste -0.123815067
## Togo -0.085046474
## Tonga -0.113593468
## Trinidad and Tobago -1.024744966
## Tunisia -0.432702257
## Turkey -0.351652098
## Turkmenistan -0.094809008
## Turks and Caicos Islands -0.068609380
## Tuvalu -0.185046003
## Uganda -0.596488142
## Ukraine -0.051874817
## United Arab Emirates -0.082306122
## United Kingdom 1.236198046
## United States 2.390895483
## Upper middle income -0.017229040
## Uruguay -0.563391821
## Uzbekistan -0.960016648
## Vanuatu 0.026823609
## Venezuela, RB -0.773894179
## Vietnam -0.223627404
## Virgin Islands (U.S.) -1.065345509
## West Bank and Gaza -0.900469413
## World 1.321749952
## Yemen, Rep. -0.242455987
## Zambia -0.952795992
## Zimbabwe 0.039555393
## MR3
## Afghanistan -1.383960928
## Albania 1.178861819
## Algeria 0.754605654
## American Samoa 0.128088771
## Andorra 0.683137249
## Angola -0.236433583
## Antigua and Barbuda -0.683118279
## Arab World -0.179963663
## Argentina -0.942786035
## Armenia 0.963556281
## Aruba 0.459208943
## Australia 0.651910080
## Austria 0.831483487
## Azerbaijan 0.786529608
## Bahamas, The 0.526419633
## Bahrain 0.574474833
## Bangladesh 0.764994519
## Barbados 0.128232469
## Belarus 1.160071049
## Belgium 1.038849324
## Belize -0.370858809
## Benin 0.522825990
## Bermuda 1.091048380
## Bhutan 0.015232477
## Bolivia -1.234556271
## Bosnia and Herzegovina 1.024539946
## Botswana -1.069705024
## Brazil -1.221833260
## Brunei Darussalam 0.762116022
## Bulgaria 0.841523706
## Burkina Faso -0.149873263
## Burundi -0.819435531
## Cabo Verde -0.845431725
## Cambodia -0.382786898
## Cameroon -0.801709174
## Canada 0.769278501
## Caribbean small states -0.105548614
## Cayman Islands 0.054513173
## Central African Republic -0.632472148
## Central Europe and the Baltics 0.618695037
## Chad 0.470415508
## Channel Islands 0.586190945
## Chile -0.852608812
## China -0.040508722
## Colombia -1.328451123
## Comoros -0.943916083
## Congo, Dem. Rep. -0.581961726
## Congo, Rep. -1.354452257
## Costa Rica -0.786354981
## Cote d'Ivoire -0.292241319
## Croatia 0.569214302
## Cuba 0.583579714
## Curacao 0.586190945
## Cyprus 1.152618643
## Czech Republic 1.184434735
## Denmark 1.132539236
## Djibouti -0.577301661
## Dominica 0.290470676
## Dominican Republic -1.345349390
## Early-demographic dividend -0.316100657
## East Asia & Pacific -0.716923160
## East Asia & Pacific (excluding high income) -0.437616863
## East Asia & Pacific (IDA & IBRD countries) -0.412530805
## Ecuador -1.143672951
## Egypt, Arab Rep. 0.431403759
## El Salvador -0.603729738
## Equatorial Guinea 0.217032222
## Eritrea -1.049953113
## Estonia 0.936862620
## Eswatini -1.035086251
## Ethiopia 1.004805727
## Euro area -0.078829412
## Europe & Central Asia -0.105810970
## Europe & Central Asia (excluding high income) 0.046998852
## Europe & Central Asia (IDA & IBRD countries) 0.057283047
## European Union -0.086086701
## Faroe Islands 0.697883506
## Fiji 0.132666700
## Finland 0.748508138
## Fragile and conflict affected situations -0.355859383
## France 0.846353003
## French Polynesia 0.588529012
## Gabon -0.179273317
## Gambia, The -1.687206678
## Georgia 0.770867295
## Germany 0.718331186
## Ghana -0.679193777
## Gibraltar 0.586190945
## Greece 0.500045908
## Greenland 0.718312028
## Grenada -1.276780628
## Guam 0.700404055
## Guatemala -0.689192163
## Guinea -0.326705660
## Guinea-Bissau -0.650666462
## Guyana -0.335769989
## Haiti 0.113529884
## Heavily indebted poor countries (HIPC) -0.362488848
## High income 0.345650041
## Honduras -1.444686610
## Hong Kong SAR, China 0.817993167
## Hungary 1.076314940
## IBRD only -0.349395494
## Iceland 0.889037429
## IDA & IBRD total -0.364471552
## IDA blend 0.138062611
## IDA only -0.237938503
## IDA total -0.185638204
## India -0.033948424
## Indonesia -0.323572689
## Iran, Islamic Rep. -0.252916997
## Iraq 1.449952559
## Ireland 0.869974599
## Isle of Man 0.586190945
## Israel -0.202936334
## Italy 0.871391219
## Jamaica 0.342901540
## Japan 0.151225406
## Jordan -0.298676127
## Kazakhstan 0.988832083
## Kenya -1.364526917
## Kiribati -0.253662086
## Korea, Dem. People’s Rep. -1.408158796
## Korea, Rep. 0.762875295
## Kosovo 0.967715353
## Kuwait 0.324087068
## Kyrgyz Republic 0.977190058
## Lao PDR 0.619132617
## Late-demographic dividend -0.345568118
## Latin America & Caribbean -0.392300789
## Latin America & Caribbean (excluding high income) -0.396025578
## Latin America & the Caribbean (IDA & IBRD countries) -0.391042338
## Latvia 0.778301578
## Least developed countries: UN classification -0.151443646
## Lebanon 0.441057518
## Lesotho -1.649729968
## Liberia -1.006682271
## Libya 0.320822834
## Liechtenstein 0.779200255
## Lithuania 0.843147136
## Low & middle income -0.375756194
## Low income -0.356444171
## Lower middle income -0.198881175
## Luxembourg 0.960119455
## Macao SAR, China 0.471478055
## Madagascar -0.517044049
## Malawi -1.253257793
## Malaysia 0.183166587
## Maldives -0.186738700
## Mali 0.358788767
## Malta 0.937184926
## Marshall Islands -0.049588321
## Mauritania -0.704343048
## Mauritius 0.816614067
## Mexico -1.045446428
## Micronesia, Fed. Sts. -0.760889089
## Middle East & North Africa -0.033870126
## Middle East & North Africa (excluding high income) 0.020981082
## Middle East & North Africa (IDA & IBRD countries) 0.023876188
## Middle income -0.326434824
## Moldova 0.831938072
## Monaco 1.032701150
## Mongolia 0.671252783
## Montenegro 0.454084268
## Morocco -0.217708272
## Mozambique -0.004036439
## Myanmar -0.732649978
## Namibia -2.562420851
## Nauru 0.576724508
## Nepal -0.656085832
## Netherlands 1.077840606
## New Caledonia 0.587545363
## New Zealand 0.563026743
## Nicaragua -0.641379681
## Niger 0.250479955
## Nigeria 0.378940499
## North America 0.314466352
## North Macedonia 0.683715113
## Northern Mariana Islands 0.586190945
## Norway 1.141598448
## OECD members 0.336713186
## Oman 0.413776918
## Other small states -0.560287944
## Pacific island small states -0.419627022
## Pakistan 1.178012067
## Palau 0.507388095
## Panama -1.064040118
## Papua New Guinea -1.542803135
## Paraguay -1.308855259
## Peru -0.980928543
## Philippines -0.417693447
## Poland 0.907377573
## Portugal 0.688788610
## Post-demographic dividend 0.346218254
## Pre-demographic dividend -0.260756521
## Puerto Rico 0.573711582
## Qatar 0.224126264
## Romania 0.700843001
## Russian Federation 0.371514089
## Rwanda -1.770416315
## Samoa 0.358366615
## San Marino 0.583605041
## Sao Tome and Principe -0.562343942
## Saudi Arabia -0.129714659
## Senegal -0.117831889
## Serbia 0.988274980
## Seychelles 0.586335510
## Sierra Leone 0.688862756
## Singapore 0.373064303
## Sint Maarten (Dutch part) 0.586190945
## Slovak Republic 1.330889297
## Slovenia 0.737181709
## Small states -0.444235755
## Solomon Islands -1.952007208
## Somalia -0.810146772
## South Africa -2.135850646
## South Asia -0.129643613
## South Asia (IDA & IBRD) -0.129643613
## South Sudan -1.902186720
## Spain 0.412542452
## Sri Lanka -0.281662162
## St. Kitts and Nevis 0.559463640
## St. Lucia -0.497928704
## St. Martin (French part) -0.431900302
## St. Vincent and the Grenadines 0.240898853
## Sub-Saharan Africa -0.326364007
## Sub-Saharan Africa (excluding high income) -0.326425128
## Sub-Saharan Africa (IDA & IBRD countries) -0.326364007
## Sudan -0.991866448
## Suriname -1.021303372
## Sweden 0.826477655
## Switzerland 0.583417148
## Syrian Arab Republic -0.317970857
## Tajikistan 1.037788850
## Tanzania -1.028535221
## Thailand -0.489601496
## Timor-Leste 0.039750570
## Togo -0.571379380
## Tonga -0.256525312
## Trinidad and Tobago 0.090949028
## Tunisia 0.623837993
## Turkey -0.607938503
## Turkmenistan 0.577607216
## Turks and Caicos Islands 0.417990591
## Tuvalu 0.452118712
## Uganda -1.127900527
## Ukraine 1.057440069
## United Arab Emirates 0.244735236
## United Kingdom 0.730646427
## United States 0.198425817
## Upper middle income -0.324783747
## Uruguay -0.259468252
## Uzbekistan 0.877257285
## Vanuatu -1.295507926
## Venezuela, RB -0.704418912
## Vietnam 0.394349770
## Virgin Islands (U.S.) 0.772962562
## West Bank and Gaza 0.519147512
## World -0.611312688
## Yemen, Rep. 0.871877662
## Zambia -1.424985708
## Zimbabwe -1.744006562
promedio1=as.data.frame(Calidad1$scores)
names(promedio1) = c("Densidad","Informacion", "Desigualdad")
head(promedio1)
## Densidad Informacion Desigualdad
## Afghanistan -1.28872296 0.03867356 -1.3839609
## Albania 0.47328987 -1.14103981 1.1788618
## Algeria 0.63538286 -1.06618722 0.7546057
## American Samoa 0.02928735 -0.59607175 0.1280888
## Andorra 0.45131879 0.28332454 0.6831372
## Angola -1.54618516 -0.05761135 -0.2364336
promedio1$Pais=row.names(promedio1)
row.names(promedio1) = NULL
salud1_X=salud1
row.names(salud1) = salud1$Pais
salud1$Pais = NULL
head(salud1)
## VidaM CobARet
## Afghanistan 59.71540 NA
## Albania 78.16240 6.2
## Algeria 74.10120 14.6
## Angola 55.38620 1.4
## Antigua and Barbuda 76.90380 NA
## Arab World 70.78677 NA
salud1[is.na(salud1$VidaM), "VidaM"]=mean(salud1$VidaM, na.rm=T)
salud1[is.na(salud1$CobARet), "CobARet"]=mean(salud1$CobARet, na.rm=T)
salud1=as.data.frame(scale(salud1[,c(1,2)]))
head(salud1)
## VidaM CobARet
## Afghanistan -1.133702486 0.00000000
## Albania 0.739051823 -0.64026360
## Algeria 0.326755526 -0.05502504
## Angola -1.573206359 -0.97468563
## Antigua and Barbuda 0.611277737 0.00000000
## Arab World -0.009727659 0.00000000
library(psych)
puntaje1 = cor(salud1) #sacar la correlación de los puntajes estandarizadas
puntaje1
## VidaM CobARet
## VidaM 1.0000000 0.4826546
## CobARet 0.4826546 1.0000000
cor.plot(puntaje1,
numbers=T,
upper=FALSE,
main = "Correlation",
show.legend = FALSE) #verlo en un gráfico
KMO(salud1) #nos indica que mientras más cercano a uno hay una división subyacente, a partir de 0.7. Que tan buena idea es juntarlos en un indice. ver el Overall MSA(más cercano a 1)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = salud1)
## Overall MSA = 0.5
## MSA for each item =
## VidaM CobARet
## 0.5 0.5
fa.parallel(puntaje1, fm="pa", fa="fa", main = "Scree Plot",n.obs = nrow(salud1)) #cuantos indices deberia formar
## Parallel analysis suggests that the number of factors = 1 and the number of components = NA
salud1 = fa(salud1,
nfactors=1,
rotate="varimax") #codigo para el analisis factorial solo cambiar la data y el numero de factores
salud1$loadings
##
## Loadings:
## MR1
## VidaM 0.695
## CobARet 0.695
##
## MR1
## SS loadings 0.965
## Proportion Var 0.483
fa.diagram(salud1)
#Para ver el tipo de análisis factorial:
# mientras mas grande mejor (lo que aporta)
sort(salud1$communalities)
## VidaM CobARet
## 0.4826546 0.4826546
# mientras mas grande peor (lo que mantiene)
sort(salud1$uniquenesses)
## VidaM CobARet
## 0.5173454 0.5173454
sort(salud1$complexity)
## VidaM CobARet
## 1 1
salud1$scores
## MR1
## Afghanistan -0.531223568
## Albania 0.046289599
## Algeria 0.127325856
## Angola -1.193876075
## Antigua and Barbuda 0.286428886
## Arab World -0.004558128
## Argentina 1.136605835
## Armenia -0.250722761
## Aruba 0.277495237
## Australia 1.816622019
## Austria 1.746740690
## Azerbaijan -0.446383479
## Bahamas, The 0.435434166
## Bahrain 0.263627063
## Bangladesh -0.594973180
## Barbados 0.976052458
## Belarus -0.037640984
## Belgium 0.526952398
## Belize -0.084709744
## Benin -1.077452549
## Bermuda 0.499361789
## Bhutan -0.279283252
## Bolivia -0.678960846
## Bosnia and Herzegovina 0.329260928
## Botswana -0.695994685
## Brazil 0.825928745
## Brunei Darussalam 0.337909157
## Bulgaria 0.492009979
## Burkina Faso -1.065722512
## Burundi -1.079721209
## Cabo Verde -0.195891973
## Cambodia -0.248401824
## Cameroon -1.165292105
## Canada 0.554543007
## Caribbean small states 0.153951841
## Central African Republic -1.648226807
## Central Europe and the Baltics 0.336295082
## Chad -1.441149955
## Channel Islands 0.487478799
## Chile 2.008619424
## China 0.221505329
## Colombia -0.048372110
## Comoros -0.868593956
## Congo, Dem. Rep. -1.188587936
## Congo, Rep. -1.110690571
## Costa Rica 0.745081791
## Cote d'Ivoire -1.347554179
## Croatia 0.383481231
## Cuba 0.679105473
## Curacao 0.374252648
## Cyprus 1.123172427
## Czech Republic 1.442572154
## Denmark 1.516128510
## Djibouti -0.950432434
## Dominican Republic -0.219300325
## Early-demographic dividend -0.150445711
## East Asia & Pacific 0.213396793
## East Asia & Pacific (excluding high income) 0.160686354
## East Asia & Pacific (IDA & IBRD countries) 0.162369841
## Ecuador -0.045767225
## Egypt, Arab Rep. -0.405086485
## El Salvador 0.176765861
## Equatorial Guinea -1.152752955
## Eritrea -0.832730127
## Estonia 0.093521685
## Eswatini -1.289354093
## Ethiopia -0.991857074
## Euro area 0.557465684
## Europe & Central Asia 0.348775182
## Europe & Central Asia (excluding high income) 0.136991308
## Europe & Central Asia (IDA & IBRD countries) 0.162594996
## European Union 0.506593020
## Faroe Islands 0.526000998
## Fiji 0.021397302
## Finland 0.548834605
## Fragile and conflict affected situations -0.522476279
## France 2.233242721
## French Polynesia 0.281196184
## Gabon -0.621277868
## Gambia, The -1.015193583
## Georgia -0.086135140
## Germany 2.014868172
## Ghana -0.991006365
## Greece 1.522321820
## Greenland 0.043545901
## Grenada 0.139171146
## Guam 0.406923735
## Guatemala 0.058762705
## Guinea -1.228136671
## Guinea-Bissau -1.264182912
## Guyana 0.030613334
## Haiti -0.788298757
## Heavily indebted poor countries (HIPC) -0.671600820
## High income 0.509147448
## Honduras 0.049510519
## Hong Kong SAR, China 0.668711044
## Hungary 0.944261599
## IBRD only 0.053640720
## Iceland 0.581182216
## IDA & IBRD total -0.078103905
## IDA blend -0.607383275
## IDA only -0.489339559
## IDA total -0.527963387
## India -0.701492628
## Indonesia -0.562927395
## Iran, Islamic Rep. -0.358385842
## Iraq 0.008334576
## Ireland 1.857774963
## Israel 0.541223403
## Italy 1.484023077
## Jamaica -0.118597895
## Japan 1.871170737
## Jordan 0.157533172
## Kazakhstan -0.388250968
## Kenya -0.951841847
## Kiribati -0.144555454
## Korea, Dem. People’s Rep. 0.034288776
## Korea, Rep. 0.511729993
## Kosovo 0.003682228
## Kuwait 2.062804848
## Kyrgyz Republic -0.423014465
## Lao PDR -0.707901162
## Late-demographic dividend 0.223937384
## Latin America & Caribbean 0.256480255
## Latin America & Caribbean (excluding high income) 0.237142353
## Latin America & the Caribbean (IDA & IBRD countries) 0.250725234
## Latvia 0.286248120
## Least developed countries: UN classification -0.519093785
## Lebanon 0.429039473
## Lesotho -1.408489722
## Liberia -1.177488693
## Libya 0.130580001
## Liechtenstein 0.600210222
## Lithuania -0.012289095
## Low & middle income -0.086007665
## Low income -0.605906529
## Lower middle income -0.236671017
## Luxembourg 1.805112027
## Macao SAR, China 0.636116069
## Madagascar -0.887243354
## Malawi -1.266635266
## Malaysia 0.011518846
## Maldives 0.224378558
## Mali -1.194080502
## Malta 0.506021591
## Mauritania -0.830770549
## Mauritius 0.237155864
## Mexico 0.641142284
## Micronesia, Fed. Sts. -0.106309162
## Middle East & North Africa 0.099066974
## Middle East & North Africa (excluding high income) 0.078120053
## Middle East & North Africa (IDA & IBRD countries) 0.077658702
## Middle income -0.027404434
## Moldova -0.357086387
## Mongolia -0.505037002
## Montenegro 0.593335394
## Morocco -0.157634214
## Mozambique -1.278797091
## Myanmar -0.694994564
## Namibia -0.848907283
## Nepal -0.653252364
## Netherlands 1.679844135
## New Caledonia 0.387096553
## New Zealand 1.470218565
## Nicaragua -0.233348239
## Niger -1.237056537
## Nigeria -1.436488093
## North America 0.452428819
## North Macedonia 0.013030596
## Norway 2.579758332
## OECD members 0.491026088
## Oman 0.271177939
## Other small states -0.364012688
## Pacific island small states -0.017075781
## Pakistan -0.707142970
## Palau 0.057912046
## Panama 0.430264157
## Papua New Guinea -0.642356878
## Paraguay -0.263644117
## Peru -0.109136401
## Philippines -0.419045173
## Poland 0.403270358
## Portugal 1.121744350
## Post-demographic dividend 0.507833903
## Pre-demographic dividend -0.760460376
## Puerto Rico 0.549405445
## Qatar 1.609931278
## Romania 2.189087140
## Russian Federation -0.299733353
## Rwanda -0.845681366
## Samoa 0.170472216
## Sao Tome and Principe -0.209773945
## Saudi Arabia 0.183972587
## Senegal -0.792198828
## Serbia 1.342320787
## Seychelles 0.271025715
## Sierra Leone -1.716780444
## Singapore 0.178774408
## Sint Maarten (Dutch part) 0.286248120
## Slovak Republic 1.040259842
## Slovenia 0.920420235
## Small states -0.232259117
## Solomon Islands -0.162213444
## Somalia -1.293614968
## South Africa -1.110207003
## South Asia -0.241991799
## South Asia (IDA & IBRD) -0.241991799
## South Sudan -1.387028696
## Spain 1.694730622
## Sri Lanka -0.146130080
## St. Lucia 0.210706935
## St. Martin (French part) 0.490799186
## St. Vincent and the Grenadines 0.129229013
## Sub-Saharan Africa -0.777661864
## Sub-Saharan Africa (excluding high income) -0.777775639
## Sub-Saharan Africa (IDA & IBRD countries) -0.777661864
## Sudan -0.912118204
## Suriname -0.104952250
## Sweden 0.565008410
## Switzerland 0.614481226
## Syrian Arab Republic 0.276610435
## Tajikistan -0.501243844
## Tanzania -1.014317989
## Thailand 0.242204151
## Timor-Leste -0.256877774
## Togo -1.120817739
## Tonga 0.154545775
## Trinidad and Tobago 0.107926134
## Tunisia 0.356074937
## Turkey 0.241798697
## Turkmenistan -0.094644994
## Uganda -1.040429046
## Ukraine -0.304992281
## United Arab Emirates 0.282804051
## United Kingdom 0.489847786
## United States 0.441326370
## Upper middle income 0.190969536
## Uruguay 0.572336401
## Uzbekistan -0.448759358
## Vanuatu 0.016278768
## Venezuela, RB 0.314019495
## Vietnam -0.021868355
## Virgin Islands (U.S.) 0.479382383
## West Bank and Gaza 0.120485644
## World -0.239476561
## Yemen, Rep. -0.362502237
## Zambia -1.163770229
## Zimbabwe -1.545252176
puntaje1=as.data.frame(salud1$scores)
names(puntaje1) = c("Salud")
head(puntaje1)
## Salud
## Afghanistan -0.531223568
## Albania 0.046289599
## Algeria 0.127325856
## Angola -1.193876075
## Antigua and Barbuda 0.286428886
## Arab World -0.004558128
puntaje1$Pais=row.names(puntaje1)
row.names(puntaje1) = NULL
responsabilidad1 = merge(scores1, DataMetodos1, by= "Pais")
dendes1 = merge(responsabilidad1, promedio1, by= "Pais")
sal1 = merge(dendes1, puntaje1, by= "Pais")
movilidad1 = merge(sal1, migra1, by= "Pais")
movi1 = merge(movilidad1, ODA1, by= "Pais")
control1 = merge(movi1, women1, by= "Pais")
final1 = merge(control1, AFRICA, by= "Pais")
VIH1 = merge(final1, DataVIH1,by= "Pais")
VIH1[is.na(VIH1$Metodos), "Metodos"]=mean(VIH1$Metodos, na.rm=T)
VIH1[is.na(VIH1$Migracion), "Migracion"]=mean(VIH1$Migracion, na.rm=T)
VIH1[is.na(VIH1$ODA), "ODA"]=mean(VIH1$ODA, na.rm=T)
VIH1[is.na(VIH1$Women), "Women"]=mean(VIH1$Women, na.rm=T)
VIH1[is.na(VIH1$Africa), "Africa"]=mean(VIH1$Africa, na.rm=T)
## Warning in mean.default(VIH1$Africa, na.rm = T): argument is not numeric or
## logical: returning NA
VIH1$Metodos=scale(VIH1$Metodos)
VIH1$Migracion=scale(VIH1$Migracion)
VIH1$ODA=scale(VIH1$ODA)
VIH1$Women=scale(VIH1$Women)
VIH1=VIH1[-grep("San|high|Pacific|French|Caribbean|Early|Late|Island|Small|West|Sint|Other|OECD|North|World|Euro|Latin|Upper|High|Heavily|IBR|IDA|Least|Low|Middle|East|Central|Fragile|Post|Pre",VIH1$Pais),] #Eliminamos los casos que no son paÃses
row.names(VIH1)=NULL
VIH1$VIH=VIH1$VIH/100
summary(VIH1)
## Pais Empoderamiento Metodos.V1
## Length:90 Min. :-2.1124 Min. :-1.7936258
## Class :character 1st Qu.:-0.4316 1st Qu.:-0.7444031
## Mode :character Median : 0.1976 Median : 0.1163042
## Mean : 0.2201 Mean : 0.0269795
## 3rd Qu.: 0.8666 3rd Qu.: 0.8617479
## Max. : 2.5421 Max. : 2.2222902
## Densidad Informacion Desigualdad Salud
## Min. :-2.8179 Min. :-1.1477 Min. :-2.5624 Min. :-1.71678
## 1st Qu.:-1.5047 1st Qu.:-0.8537 1st Qu.:-1.0176 1st Qu.:-1.05940
## Median : 0.1479 Median :-0.4596 Median :-0.3533 Median :-0.53398
## Mean :-0.3188 Mean :-0.4443 Mean :-0.3037 Mean :-0.50162
## 3rd Qu.: 0.6187 3rd Qu.:-0.0858 3rd Qu.: 0.4663 3rd Qu.:-0.08507
## Max. : 1.4758 Max. : 0.2532 Max. : 1.1789 Max. : 1.34232
## Migracion.V1 ODA.V1 Women.V1
## Min. :-5.823900 Min. :-0.885939 Min. :-2.383372
## 1st Qu.:-0.021024 1st Qu.:-0.778577 1st Qu.:-0.595795
## Median : 0.265644 Median :-0.341706 Median :-0.116951
## Mean :-0.006229 Mean : 0.001995 Mean : 0.002270
## 3rd Qu.: 0.381999 3rd Qu.: 0.466889 3rd Qu.: 0.392172
## Max. : 1.635120 Max. : 4.205506 Max. : 3.287269
## Africa VIH
## Length:90 Min. :0.00100
## Class :character 1st Qu.:0.00100
## Mode :character Median :0.00200
## Mean :0.01488
## 3rd Qu.:0.01100
## Max. :0.21720
table(VIH1$Africa)
##
## NO SI
## 52 38
library(betareg)
modelo1=betareg(VIH ~ Empoderamiento + Metodos + Densidad + Desigualdad + Salud + Informacion + Migracion + ODA + Women + Africa,data=VIH1)
summary(modelo1)
##
## Call:
## betareg(formula = VIH ~ Empoderamiento + Metodos + Densidad + Desigualdad +
## Salud + Informacion + Migracion + ODA + Women + Africa, data = VIH1)
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.4120 -0.6356 -0.0050 0.6321 3.9196
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.94355 0.20460 -29.050 < 2e-16 ***
## Empoderamiento -0.16459 0.08228 -2.001 0.045443 *
## Metodos 0.48632 0.15781 3.082 0.002059 **
## Densidad -0.46753 0.13852 -3.375 0.000738 ***
## Desigualdad -0.53010 0.09153 -5.791 6.98e-09 ***
## Salud -1.45091 0.19841 -7.313 2.62e-13 ***
## Informacion -0.05573 0.17983 -0.310 0.756655
## Migracion 0.38492 0.10307 3.734 0.000188 ***
## ODA -0.36620 0.10634 -3.444 0.000574 ***
## Women 0.29142 0.08753 3.329 0.000871 ***
## AfricaSI 0.07138 0.18483 0.386 0.699346
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 126.92 22.15 5.73 1e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 352.4 on 12 Df
## Pseudo R-squared: 0.6222
## Number of iterations: 53 (BFGS) + 8 (Fisher scoring)
library(margins)
(modelo1M = margins(modelo1))
## Average marginal effects
## betareg(formula = VIH ~ Empoderamiento + Metodos + Densidad + Desigualdad + Salud + Informacion + Migracion + ODA + Women + Africa, data = VIH1)
## Empoderamiento Metodos Densidad Desigualdad Salud Informacion
## -0.002342 0.00692 -0.006652 -0.007542 -0.02064 -0.0007929
## Migracion ODA Women AfricaSI
## 0.005477 -0.00521 0.004146 0.001007
resultado = summary(modelo1M)
#salen los limites de su error
bet=summary(modelo1M)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
ggplot(bet,aes(x=factor, y=AME)) + geom_point() + geom_errorbar(aes(ymin=lower, ymax=upper))
VIH1_x=VIH1
row.names(VIH1_x) = VIH1_x$Pais
VIH1_x$Pais=NULL
head(VIH1_x) #resultado final
## Empoderamiento Metodos Densidad Informacion Desigualdad
## Albania -0.74741919 0.6753870 0.4732899 -1.1410398 1.1788618
## Algeria -1.22463238 0.7314029 0.6353829 -1.0661872 0.7546057
## Argentina 0.00458265 1.4854644 1.2662440 -0.4575426 -0.9427860
## Armenia -0.31023875 0.3737624 0.5278865 -0.9439612 0.9635563
## Azerbaijan 0.30285455 0.2875839 0.5825904 -0.8728966 0.7865296
## Bangladesh -1.47273276 0.5482737 -1.4759396 -0.2257567 0.7649945
## Salud Migracion ODA Women Africa VIH
## Albania 0.0462896 0.01754680 -0.3312780 -0.6752982 NO 0.001
## Algeria 0.1273259 -0.22628024 -0.8194162 -1.0730844 SI 0.001
## Argentina 1.1366058 0.24809750 -0.8542239 0.6493450 NO 0.001
## Armenia -0.2507228 0.07676433 -0.1883990 2.6460604 NO 0.001
## Azerbaijan -0.4463835 0.48947898 -0.5907136 0.2936687 NO 0.001
## Bangladesh -0.5949732 -5.82389983 -0.6128485 -1.4247675 NO 0.001
VIH1_x =dist(VIH1_x[-c(10)])
VIH1_map = cmdscale(VIH1_x,eig=TRUE, k=2) # k sugiere dimensiones
VIH1_map$GOF # mientras mas cerca a 1 mejor.
## [1] 0.6340295 0.6340295
titulo="Mapa de Similitudes entre paises"
x = VIH1_map$points[,1]
y = VIH1_map$points[,2]
plot(x, y, main=titulo)
plot(x, y, xlab="Dimensión 1", ylab="Dimensión 2", main=titulo,
type="n") # 'n' evita que se pongan los puntos.
# etiquetas y colores de los puntos
text(x, y,labels = rownames(VIH1_map$points),cex=1)
VIH1_map_DF=as.data.frame(VIH1_map$points)
install.packages("ggrepel")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
library(ggrepel)
base=ggplot(VIH1_map_DF,aes(x=V1,y=V2))
base+geom_point() + geom_text_repel(aes(label=row.names(VIH1_map_DF)),size=2.6)
VIH1_x=VIH1
row.names(VIH1_x) = VIH1_x$Pais
VIH1_x$Pais=NULL
head(VIH1_x) #resultado final
## Empoderamiento Metodos Densidad Informacion Desigualdad
## Albania -0.74741919 0.6753870 0.4732899 -1.1410398 1.1788618
## Algeria -1.22463238 0.7314029 0.6353829 -1.0661872 0.7546057
## Argentina 0.00458265 1.4854644 1.2662440 -0.4575426 -0.9427860
## Armenia -0.31023875 0.3737624 0.5278865 -0.9439612 0.9635563
## Azerbaijan 0.30285455 0.2875839 0.5825904 -0.8728966 0.7865296
## Bangladesh -1.47273276 0.5482737 -1.4759396 -0.2257567 0.7649945
## Salud Migracion ODA Women Africa VIH
## Albania 0.0462896 0.01754680 -0.3312780 -0.6752982 NO 0.001
## Algeria 0.1273259 -0.22628024 -0.8194162 -1.0730844 SI 0.001
## Argentina 1.1366058 0.24809750 -0.8542239 0.6493450 NO 0.001
## Armenia -0.2507228 0.07676433 -0.1883990 2.6460604 NO 0.001
## Azerbaijan -0.4463835 0.48947898 -0.5907136 0.2936687 NO 0.001
## Bangladesh -0.5949732 -5.82389983 -0.6128485 -1.4247675 NO 0.001
VIH1_d = as.data.frame(scale(VIH1_x[,-c(10)])) #Estandarizamos y eliminamos la variable categórica
set.seed(15) #Para que todos los grupos tengan el mismo punto de inicio, el 15 es inventado
Pedimos las distancias como un criterio de agrupamiento
#Para pedir la distancia
VIH1_d=dist(VIH1_d[c(1:10)])
#Pedimos el numero de grupos:
VIH1_clus=kmeans(VIH1_d,centers = 5) #El 5 hace referencia al numero de grupos que se piden
VIH1_clus$cluster
## Albania Algeria Argentina
## 5 5 1
## Armenia Azerbaijan Bangladesh
## 5 5 3
## Belarus Belize Benin
## 5 1 2
## Bolivia Botswana Brazil
## 1 4 1
## Burkina Faso Burundi Cabo Verde
## 2 4 1
## Cambodia Cameroon Chad
## 2 2 2
## Colombia Congo, Dem. Rep. Congo, Rep.
## 1 2 2
## Costa Rica Cote d'Ivoire Cuba
## 1 2 1
## Dominican Republic Ecuador Egypt, Arab Rep.
## 1 1 1
## El Salvador Eswatini Ethiopia
## 5 3 2
## Georgia Ghana Guinea
## 5 2 2
## Guinea-Bissau Guyana Haiti
## 2 1 2
## Honduras India Indonesia
## 1 3 1
## Iran, Islamic Rep. Kazakhstan Kenya
## 1 5 2
## Kyrgyz Republic Lao PDR Lebanon
## 5 2 1
## Lesotho Liberia Madagascar
## 4 4 2
## Malawi Malaysia Mali
## 4 1 2
## Mauritania Mexico Moldova
## 2 1 5
## Mongolia Montenegro Morocco
## 5 1 1
## Mozambique Myanmar Namibia
## 4 2 4
## Nepal Nicaragua Niger
## 2 1 2
## Nigeria Pakistan Papua New Guinea
## 2 5 2
## Paraguay Peru Philippines
## 1 1 1
## Rwanda Senegal Serbia
## 4 2 5
## Sierra Leone South Africa Sri Lanka
## 4 4 1
## Sudan Suriname Tajikistan
## 2 1 5
## Tanzania Thailand Togo
## 2 1 2
## Trinidad and Tobago Tunisia Uganda
## 1 1 2
## Ukraine Uruguay Uzbekistan
## 5 1 5
## Vietnam Zambia Zimbabwe
## 1 2 4
#Para ver la cantidad de paises en cada grupo:
table(VIH1_clus$cluster)
##
## 1 2 3 4 5
## 31 29 3 11 16
#Graficamos el mapa:
library(rgdal)
## Loading required package: sp
## rgdal: version: 1.4-4, (SVN revision 833)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 2.1.3, released 2017/20/01
## Path to GDAL shared files: /usr/share/gdal/2.1
## GDAL binary built with GEOS: TRUE
## Loaded PROJ.4 runtime: Rel. 4.9.2, 08 September 2015, [PJ_VERSION: 492]
## Path to PROJ.4 shared files: (autodetected)
## Linking to sp version: 1.3-1
folderMap='MapaMundo' #Nombre del archivo que contiene al mapa
fileName='world_map.shp'
fileToRead=file.path(folderMap,fileName)
mapamundo = readOGR(fileToRead,stringsAsFactors=FALSE)
## OGR data source with driver: ESRI Shapefile
## Source: "/cloud/project/MapaMundo/world_map.shp", layer: "world_map"
## with 246 features
## It has 11 fields
## Integer64 fields read as strings: POP2005
plot(mapamundo, border='grey')
#Creamos un objeto (cluster) que mezcla la informacion de los grupos con el mapa:
grupos1=as.data.frame(VIH1_clus$cluster)
grupos1
## VIH1_clus$cluster
## Albania 5
## Algeria 5
## Argentina 1
## Armenia 5
## Azerbaijan 5
## Bangladesh 3
## Belarus 5
## Belize 1
## Benin 2
## Bolivia 1
## Botswana 4
## Brazil 1
## Burkina Faso 2
## Burundi 4
## Cabo Verde 1
## Cambodia 2
## Cameroon 2
## Chad 2
## Colombia 1
## Congo, Dem. Rep. 2
## Congo, Rep. 2
## Costa Rica 1
## Cote d'Ivoire 2
## Cuba 1
## Dominican Republic 1
## Ecuador 1
## Egypt, Arab Rep. 1
## El Salvador 5
## Eswatini 3
## Ethiopia 2
## Georgia 5
## Ghana 2
## Guinea 2
## Guinea-Bissau 2
## Guyana 1
## Haiti 2
## Honduras 1
## India 3
## Indonesia 1
## Iran, Islamic Rep. 1
## Kazakhstan 5
## Kenya 2
## Kyrgyz Republic 5
## Lao PDR 2
## Lebanon 1
## Lesotho 4
## Liberia 4
## Madagascar 2
## Malawi 4
## Malaysia 1
## Mali 2
## Mauritania 2
## Mexico 1
## Moldova 5
## Mongolia 5
## Montenegro 1
## Morocco 1
## Mozambique 4
## Myanmar 2
## Namibia 4
## Nepal 2
## Nicaragua 1
## Niger 2
## Nigeria 2
## Pakistan 5
## Papua New Guinea 2
## Paraguay 1
## Peru 1
## Philippines 1
## Rwanda 4
## Senegal 2
## Serbia 5
## Sierra Leone 4
## South Africa 4
## Sri Lanka 1
## Sudan 2
## Suriname 1
## Tajikistan 5
## Tanzania 2
## Thailand 1
## Togo 2
## Trinidad and Tobago 1
## Tunisia 1
## Uganda 2
## Ukraine 5
## Uruguay 1
## Uzbekistan 5
## Vietnam 1
## Zambia 2
## Zimbabwe 4
names(grupos1)='cluster'
grupos1$NAME=row.names(grupos1)
head(grupos1)
## cluster NAME
## Albania 5 Albania
## Algeria 5 Algeria
## Argentina 1 Argentina
## Armenia 5 Armenia
## Azerbaijan 5 Azerbaijan
## Bangladesh 3 Bangladesh
#Creamos el objeto final:
mapamundo_VIH1=merge(mapamundo,grupos1)
library("RColorBrewer")
plot(mapamundo,col='gray',border=NA)
plot(mapamundo,
col=brewer.pal(n = 5, name = "Set2")[mapamundo_VIH1$cluster],
border='gray',add=T)
#Para tener un mapa interactivo asignando colores a cada grupo:
library(leaflet)
#newMaps!
c1=mapamundo_VIH1[!is.na(mapamundo_VIH1$cluster) & mapamundo_VIH1$cluster==1,]
c2=mapamundo_VIH1[!is.na(mapamundo_VIH1$cluster) & mapamundo_VIH1$cluster==2,]
c3=mapamundo_VIH1[!is.na(mapamundo_VIH1$cluster) & mapamundo_VIH1$cluster==3,]
c4=mapamundo_VIH1[!is.na(mapamundo_VIH1$cluster) & mapamundo_VIH1$cluster==4,]
c5=mapamundo_VIH1[!is.na(mapamundo_VIH1$cluster) & mapamundo_VIH1$cluster==5,]
title="Clusters"
# base Layer
base= leaflet() %>% addProviderTiles("CartoDB.Positron")
layer1= base %>%
addPolygons(data=c1,color="firebrick",fillOpacity = 1,stroke = F,
group = "1")
layer_12= layer1%>%addPolygons(data=c2,color="darkred",fillOpacity = 1,stroke = F,
group = "2")
layer_123= layer_12%>%addPolygons(data=c3,color="indianred",fillOpacity = 1,stroke = F,
group = "3")
layer_1234= layer_123%>%addPolygons(data=c4,color="red",fillOpacity = 1,stroke = F,
group = "4")
layer_12345= layer_1234%>%addPolygons(data=c5,color="tomato",fillOpacity = 1,stroke = F,
group = "5")
layer_12345
layer_12345%>% addLayersControl(
overlayGroups = c("1", "2","3","4","5"),
options = layersControlOptions(collapsed = FALSE))
VIH1_x=merge(VIH1_x, grupos1[-2], by=0)
row.names(VIH1_x) = VIH1_x$Row.names
VIH1_x=VIH1_x[-1]
head(VIH1_x)
## Empoderamiento Metodos Densidad Informacion Desigualdad
## Albania -0.74741919 0.6753870 0.4732899 -1.1410398 1.1788618
## Algeria -1.22463238 0.7314029 0.6353829 -1.0661872 0.7546057
## Argentina 0.00458265 1.4854644 1.2662440 -0.4575426 -0.9427860
## Armenia -0.31023875 0.3737624 0.5278865 -0.9439612 0.9635563
## Azerbaijan 0.30285455 0.2875839 0.5825904 -0.8728966 0.7865296
## Bangladesh -1.47273276 0.5482737 -1.4759396 -0.2257567 0.7649945
## Salud Migracion ODA Women Africa VIH
## Albania 0.0462896 0.01754680 -0.3312780 -0.6752982 NO 0.001
## Algeria 0.1273259 -0.22628024 -0.8194162 -1.0730844 SI 0.001
## Argentina 1.1366058 0.24809750 -0.8542239 0.6493450 NO 0.001
## Armenia -0.2507228 0.07676433 -0.1883990 2.6460604 NO 0.001
## Azerbaijan -0.4463835 0.48947898 -0.5907136 0.2936687 NO 0.001
## Bangladesh -0.5949732 -5.82389983 -0.6128485 -1.4247675 NO 0.001
## cluster
## Albania 5
## Algeria 5
## Argentina 1
## Armenia 5
## Azerbaijan 5
## Bangladesh 3
agg1=aggregate(cbind(Empoderamiento,Metodos,Densidad,Informacion,Desigualdad,Salud,Migracion,ODA,Women,VIH) ~ cluster, data=VIH1_x,FUN=mean)
names(agg1)=c("cluster", "Empoderamiento","Metodos","Densidad","DesarrolloTecno","Desigualdad","Salud","Migracion", "ODA", "Women","VIH")
agg1
## cluster Empoderamiento Metodos Densidad DesarrolloTecno Desigualdad
## 1 1 -0.3548007 0.8507184 0.8148660 -0.47705777 -0.4850922
## 2 2 0.8969817 -0.9414249 -1.5074389 -0.33230315 -0.4234698
## 3 3 -1.0522169 0.4114654 -0.9443295 -0.09327713 -0.1013467
## 4 4 1.0094246 -0.4619728 -1.3379853 -0.16895572 -1.2115162
## 5 5 -0.1969331 0.4502816 0.4573547 -0.83902038 0.8511718
## Salud Migracion ODA Women VIH
## 1 0.07629879 0.06216519 -0.5236006 -0.3123196 0.002167742
## 2 -1.00648177 0.03956145 0.4115030 -0.1910575 0.013303448
## 3 -0.86193997 -3.37249651 -0.7179959 -0.8676613 0.073066667
## 4 -1.17945045 0.46550216 1.1246357 0.5304265 0.058727273
## 5 -0.17273172 0.08512182 -0.3587131 0.7621978 0.001337500
Hacemos una data aparte donde solo se encuentren las variables significativas.
VIH_Sig=VIH1_x
VIH_Sig=VIH_Sig[-c(4,10)]
VIH1_ds = as.data.frame(scale(VIH_Sig)) #Estandarizamos
set.seed(15) #Para que todos los grupos tengan el mismo punto de inicio, el 15 es inventado
Pedimos las distancias como un criterio de agrupamiento
#Para pedir la distancia
VIH1_ds=dist(VIH1_ds[c(1:9)])
#Pedimos el numero de grupos:
VIH1s_clus=kmeans(VIH1_ds,centers = 5) #El 5 hace referencia al numero de grupos que se piden
VIH1s_clus$cluster
## Albania Algeria Argentina
## 1 1 1
## Armenia Azerbaijan Bangladesh
## 5 1 3
## Belarus Belize Benin
## 5 1 2
## Bolivia Botswana Brazil
## 1 4 1
## Burkina Faso Burundi Cabo Verde
## 2 4 1
## Cambodia Cameroon Chad
## 2 2 2
## Colombia Congo, Dem. Rep. Congo, Rep.
## 1 2 2
## Costa Rica Cote d'Ivoire Cuba
## 1 2 1
## Dominican Republic Ecuador Egypt, Arab Rep.
## 1 1 1
## El Salvador Eswatini Ethiopia
## 1 3 2
## Georgia Ghana Guinea
## 5 2 2
## Guinea-Bissau Guyana Haiti
## 2 1 2
## Honduras India Indonesia
## 1 3 1
## Iran, Islamic Rep. Kazakhstan Kenya
## 1 5 2
## Kyrgyz Republic Lao PDR Lebanon
## 1 2 1
## Lesotho Liberia Madagascar
## 4 4 2
## Malawi Malaysia Mali
## 4 1 2
## Mauritania Mexico Moldova
## 2 1 5
## Mongolia Montenegro Morocco
## 1 1 1
## Mozambique Myanmar Namibia
## 4 2 4
## Nepal Nicaragua Niger
## 2 1 2
## Nigeria Pakistan Papua New Guinea
## 2 5 2
## Paraguay Peru Philippines
## 1 1 1
## Rwanda Senegal Serbia
## 4 2 5
## Sierra Leone South Africa Sri Lanka
## 4 4 1
## Sudan Suriname Tajikistan
## 2 1 1
## Tanzania Thailand Togo
## 2 1 2
## Trinidad and Tobago Tunisia Uganda
## 1 1 2
## Ukraine Uruguay Uzbekistan
## 5 1 1
## Vietnam Zambia Zimbabwe
## 1 2 4
#Para ver la cantidad de paises en cada grupo:
table(VIH1s_clus$cluster)
##
## 1 2 3 4 5
## 39 29 3 11 8
#Creamos un objeto (cluster) que mezcla la informacion de los grupos con el mapa:
grupos1s=as.data.frame(VIH1s_clus$cluster)
grupos1s
## VIH1s_clus$cluster
## Albania 1
## Algeria 1
## Argentina 1
## Armenia 5
## Azerbaijan 1
## Bangladesh 3
## Belarus 5
## Belize 1
## Benin 2
## Bolivia 1
## Botswana 4
## Brazil 1
## Burkina Faso 2
## Burundi 4
## Cabo Verde 1
## Cambodia 2
## Cameroon 2
## Chad 2
## Colombia 1
## Congo, Dem. Rep. 2
## Congo, Rep. 2
## Costa Rica 1
## Cote d'Ivoire 2
## Cuba 1
## Dominican Republic 1
## Ecuador 1
## Egypt, Arab Rep. 1
## El Salvador 1
## Eswatini 3
## Ethiopia 2
## Georgia 5
## Ghana 2
## Guinea 2
## Guinea-Bissau 2
## Guyana 1
## Haiti 2
## Honduras 1
## India 3
## Indonesia 1
## Iran, Islamic Rep. 1
## Kazakhstan 5
## Kenya 2
## Kyrgyz Republic 1
## Lao PDR 2
## Lebanon 1
## Lesotho 4
## Liberia 4
## Madagascar 2
## Malawi 4
## Malaysia 1
## Mali 2
## Mauritania 2
## Mexico 1
## Moldova 5
## Mongolia 1
## Montenegro 1
## Morocco 1
## Mozambique 4
## Myanmar 2
## Namibia 4
## Nepal 2
## Nicaragua 1
## Niger 2
## Nigeria 2
## Pakistan 5
## Papua New Guinea 2
## Paraguay 1
## Peru 1
## Philippines 1
## Rwanda 4
## Senegal 2
## Serbia 5
## Sierra Leone 4
## South Africa 4
## Sri Lanka 1
## Sudan 2
## Suriname 1
## Tajikistan 1
## Tanzania 2
## Thailand 1
## Togo 2
## Trinidad and Tobago 1
## Tunisia 1
## Uganda 2
## Ukraine 5
## Uruguay 1
## Uzbekistan 1
## Vietnam 1
## Zambia 2
## Zimbabwe 4
names(grupos1s)='cluster'
grupos1s$NAME=row.names(grupos1s)
head(grupos1s)
## cluster NAME
## Albania 1 Albania
## Algeria 1 Algeria
## Argentina 1 Argentina
## Armenia 5 Armenia
## Azerbaijan 1 Azerbaijan
## Bangladesh 3 Bangladesh
#Creamos el objeto final:
mapamundo_VIH1s=merge(mapamundo,grupos1s)
library("RColorBrewer")
plot(mapamundo,col='gray',border=NA)
plot(mapamundo,
col=brewer.pal(n = 5, name = "Accent")[mapamundo_VIH1s$cluster],
border='gray',add=T)
#Para tener un mapa interactivo asignando colores a cada grupo:
library(leaflet)
#newMaps!
c1=mapamundo_VIH1s[!is.na(mapamundo_VIH1s$cluster) & mapamundo_VIH1s$cluster==1,]
c2=mapamundo_VIH1s[!is.na(mapamundo_VIH1s$cluster) & mapamundo_VIH1s$cluster==2,]
c3=mapamundo_VIH1s[!is.na(mapamundo_VIH1s$cluster) & mapamundo_VIH1s$cluster==3,]
c4=mapamundo_VIH1s[!is.na(mapamundo_VIH1s$cluster) & mapamundo_VIH1s$cluster==4,]
c5=mapamundo_VIH1s[!is.na(mapamundo_VIH1s$cluster) & mapamundo_VIH1s$cluster==5,]
title="Clusters"
# base Layer
base= leaflet() %>% addProviderTiles("CartoDB.Positron")
layer1= base %>%
addPolygons(data=c1,color="lightseagreen",fillOpacity = 1,stroke = F,
group = "1")
layer_12= layer1%>%addPolygons(data=c2,color="slateblue",fillOpacity = 1,stroke = F,
group = "2")
layer_123= layer_12%>%addPolygons(data=c3,color="navy",fillOpacity = 1,stroke = F,
group = "3")
layer_1234= layer_123%>%addPolygons(data=c4,color="royalblue",fillOpacity = 1,stroke = F,
group = "4")
layer_12345= layer_1234%>%addPolygons(data=c5,color="turquoise",fillOpacity = 1,stroke = F,
group = "5")
layer_12345
layer_12345%>% addLayersControl(
overlayGroups = c("1", "2","3","4","5"),
options = layersControlOptions(collapsed = FALSE))
agg12=aggregate(cbind(Empoderamiento,Metodos,Densidad,Desigualdad,Salud,Migracion,VIH) ~ cluster, data=VIH1_x,FUN=mean)
names(agg12)=c("cluster","Empoderamiento","Metodos","Densidad","Desigualdad","Salud","Migracion","VIH")
agg12
## cluster Empoderamiento Metodos Densidad Desigualdad Salud
## 1 1 -0.3548007 0.8507184 0.8148660 -0.4850922 0.07629879
## 2 2 0.8969817 -0.9414249 -1.5074389 -0.4234698 -1.00648177
## 3 3 -1.0522169 0.4114654 -0.9443295 -0.1013467 -0.86193997
## 4 4 1.0094246 -0.4619728 -1.3379853 -1.2115162 -1.17945045
## 5 5 -0.1969331 0.4502816 0.4573547 0.8511718 -0.17273172
## Migracion VIH
## 1 0.06216519 0.002167742
## 2 0.03956145 0.013303448
## 3 -3.37249651 0.073066667
## 4 0.46550216 0.058727273
## 5 0.08512182 0.001337500
Hacemos una data aparte donde solo se encuentre la relación entre las hipotesis
En esta hipotesis encontraremos las varibales de Empoderamiento y Uso de métodos anticonceptivos.
VIH_H1=VIH1_x[c(1,2,11)]
VIH1_dH1 = as.data.frame(scale(VIH_H1)) #Estandarizamos y nos quedamos con las variables de la hipótesis y la dependiente
set.seed(15) #Para que todos los grupos tengan el mismo punto de inicio, el 15 es inventado
#Para pedir la distancia
VIH1_dH1=dist(VIH1_dH1[c(1:3)])
#Pedimos las distancias como un criterio de agrupamiento
#Pedimos el numero de grupos:
VIH1H_clus=kmeans(VIH1_dH1,centers = 5) #El 5 hace referencia al numero de grupos que se piden
VIH1H_clus$cluster
## Albania Algeria Argentina
## 1 3 1
## Armenia Azerbaijan Bangladesh
## 5 5 3
## Belarus Belize Benin
## 1 5 2
## Bolivia Botswana Brazil
## 5 4 1
## Burkina Faso Burundi Cabo Verde
## 2 2 1
## Cambodia Cameroon Chad
## 2 2 2
## Colombia Congo, Dem. Rep. Congo, Rep.
## 1 2 5
## Costa Rica Cote d'Ivoire Cuba
## 3 2 3
## Dominican Republic Ecuador Egypt, Arab Rep.
## 1 1 3
## El Salvador Eswatini Ethiopia
## 1 4 2
## Georgia Ghana Guinea
## 5 2 2
## Guinea-Bissau Guyana Haiti
## 2 5 5
## Honduras India Indonesia
## 1 3 1
## Iran, Islamic Rep. Kazakhstan Kenya
## 3 5 5
## Kyrgyz Republic Lao PDR Lebanon
## 5 2 3
## Lesotho Liberia Madagascar
## 4 2 2
## Malawi Malaysia Mali
## 2 5 2
## Mauritania Mexico Moldova
## 2 1 1
## Mongolia Montenegro Morocco
## 1 5 3
## Mozambique Myanmar Namibia
## 2 5 5
## Nepal Nicaragua Niger
## 2 1 2
## Nigeria Pakistan Papua New Guinea
## 2 3 5
## Paraguay Peru Philippines
## 1 1 5
## Rwanda Senegal Serbia
## 2 2 5
## Sierra Leone South Africa Sri Lanka
## 2 4 1
## Sudan Suriname Tajikistan
## 2 5 5
## Tanzania Thailand Togo
## 2 1 2
## Trinidad and Tobago Tunisia Uganda
## 5 3 2
## Ukraine Uruguay Uzbekistan
## 1 1 1
## Vietnam Zambia Zimbabwe
## 1 2 2
#Para ver la cantidad de paises en cada grupo:
table(VIH1H_clus$cluster)
##
## 1 2 3 4 5
## 23 31 11 4 21
#Creamos un objeto (cluster) que mezcla la informacion de los grupos con el mapa:
grupos1H=as.data.frame(VIH1H_clus$cluster)
grupos1H
## VIH1H_clus$cluster
## Albania 1
## Algeria 3
## Argentina 1
## Armenia 5
## Azerbaijan 5
## Bangladesh 3
## Belarus 1
## Belize 5
## Benin 2
## Bolivia 5
## Botswana 4
## Brazil 1
## Burkina Faso 2
## Burundi 2
## Cabo Verde 1
## Cambodia 2
## Cameroon 2
## Chad 2
## Colombia 1
## Congo, Dem. Rep. 2
## Congo, Rep. 5
## Costa Rica 3
## Cote d'Ivoire 2
## Cuba 3
## Dominican Republic 1
## Ecuador 1
## Egypt, Arab Rep. 3
## El Salvador 1
## Eswatini 4
## Ethiopia 2
## Georgia 5
## Ghana 2
## Guinea 2
## Guinea-Bissau 2
## Guyana 5
## Haiti 5
## Honduras 1
## India 3
## Indonesia 1
## Iran, Islamic Rep. 3
## Kazakhstan 5
## Kenya 5
## Kyrgyz Republic 5
## Lao PDR 2
## Lebanon 3
## Lesotho 4
## Liberia 2
## Madagascar 2
## Malawi 2
## Malaysia 5
## Mali 2
## Mauritania 2
## Mexico 1
## Moldova 1
## Mongolia 1
## Montenegro 5
## Morocco 3
## Mozambique 2
## Myanmar 5
## Namibia 5
## Nepal 2
## Nicaragua 1
## Niger 2
## Nigeria 2
## Pakistan 3
## Papua New Guinea 5
## Paraguay 1
## Peru 1
## Philippines 5
## Rwanda 2
## Senegal 2
## Serbia 5
## Sierra Leone 2
## South Africa 4
## Sri Lanka 1
## Sudan 2
## Suriname 5
## Tajikistan 5
## Tanzania 2
## Thailand 1
## Togo 2
## Trinidad and Tobago 5
## Tunisia 3
## Uganda 2
## Ukraine 1
## Uruguay 1
## Uzbekistan 1
## Vietnam 1
## Zambia 2
## Zimbabwe 2
names(grupos1H)='cluster'
grupos1H$NAME=row.names(grupos1H)
head(grupos1H)
## cluster NAME
## Albania 1 Albania
## Algeria 3 Algeria
## Argentina 1 Argentina
## Armenia 5 Armenia
## Azerbaijan 5 Azerbaijan
## Bangladesh 3 Bangladesh
#Creamos el objeto final:
mapamundo_VIH1H=merge(mapamundo,grupos1H)
library("RColorBrewer")
plot(mapamundo,col='gray',border=NA)
plot(mapamundo,
col=brewer.pal(n = 5, name = "PiYG")[mapamundo_VIH1H$cluster],
border='gray',add=T)
#Para tener un mapa interactivo asignando colores a cada grupo:
library(leaflet)
#newMaps!
c1=mapamundo_VIH1H[!is.na(mapamundo_VIH1H$cluster) & mapamundo_VIH1H$cluster==1,]
c2=mapamundo_VIH1H[!is.na(mapamundo_VIH1H$cluster) & mapamundo_VIH1H$cluster==2,]
c3=mapamundo_VIH1H[!is.na(mapamundo_VIH1H$cluster) & mapamundo_VIH1H$cluster==3,]
c4=mapamundo_VIH1H[!is.na(mapamundo_VIH1H$cluster) & mapamundo_VIH1H$cluster==4,]
c5=mapamundo_VIH1H[!is.na(mapamundo_VIH1H$cluster) & mapamundo_VIH1H$cluster==5,]
title="Clusters"
# base Layer
base= leaflet() %>% addProviderTiles("CartoDB.Positron")
layer1= base %>%
addPolygons(data=c1,color="darkmagenta",fillOpacity = 1,stroke = F,
group = "1")
layer_12= layer1%>%addPolygons(data=c2,color="darkorchid",fillOpacity = 1,stroke = F,
group = "2")
layer_123= layer_12%>%addPolygons(data=c3,color="deeppink",fillOpacity = 1,stroke = F,
group = "3")
layer_1234= layer_123%>%addPolygons(data=c4,color="hotpink",fillOpacity = 1,stroke = F,
group = "4")
layer_12345= layer_1234%>%addPolygons(data=c5,color="mediumvioletred",fillOpacity = 1,stroke = F,
group = "5")
layer_12345
layer_12345%>% addLayersControl(
overlayGroups = c("1", "2","3","4","5"),
options = layersControlOptions(collapsed = FALSE))
agg1H=aggregate(cbind(Empoderamiento,Metodos,VIH) ~ cluster, data=VIH1_x,FUN=mean)
names(agg1H)=c("cluster","Empoderamiento","Metodos","VIH")
agg1H
## cluster Empoderamiento Metodos VIH
## 1 1 -0.3548007 0.8507184 0.002167742
## 2 2 0.8969817 -0.9414249 0.013303448
## 3 3 -1.0522169 0.4114654 0.073066667
## 4 4 1.0094246 -0.4619728 0.058727273
## 5 5 -0.1969331 0.4502816 0.001337500
En esta hipotesis encontraremos las varibales de Densidad Estatal, Salud y Desigualdad.
VIH_H2=VIH1_x[c(3,5,6,11)]
VIH1_dH2 = as.data.frame(scale(VIH_H2)) #Estandarizamos y eliminamos la variable no significativa y la categórica
set.seed(15) #Para que todos los grupos tengan el mismo punto de inicio, el 15 es inventado
#Para pedir la distancia
VIH1_dH2=dist(VIH1_dH2[c(1:4)])
#Pedimos las distancias como un criterio de agrupamiento
#Pedimos el numero de grupos:
VIH1H2_clus=kmeans(VIH1_dH2,centers = 5) #El 5 hace referencia al numero de grupos que se piden
VIH1H2_clus$cluster
## Albania Algeria Argentina
## 5 5 1
## Armenia Azerbaijan Bangladesh
## 5 5 2
## Belarus Belize Benin
## 5 3 2
## Bolivia Botswana Brazil
## 3 4 1
## Burkina Faso Burundi Cabo Verde
## 2 2 3
## Cambodia Cameroon Chad
## 3 2 2
## Colombia Congo, Dem. Rep. Congo, Rep.
## 1 2 2
## Costa Rica Cote d'Ivoire Cuba
## 1 2 5
## Dominican Republic Ecuador Egypt, Arab Rep.
## 1 1 5
## El Salvador Eswatini Ethiopia
## 1 4 2
## Georgia Ghana Guinea
## 5 3 2
## Guinea-Bissau Guyana Haiti
## 2 3 2
## Honduras India Indonesia
## 1 3 3
## Iran, Islamic Rep. Kazakhstan Kenya
## 3 5 2
## Kyrgyz Republic Lao PDR Lebanon
## 5 3 5
## Lesotho Liberia Madagascar
## 4 2 2
## Malawi Malaysia Mali
## 2 5 2
## Mauritania Mexico Moldova
## 2 1 5
## Mongolia Montenegro Morocco
## 5 5 3
## Mozambique Myanmar Namibia
## 2 3 4
## Nepal Nicaragua Niger
## 3 3 2
## Nigeria Pakistan Papua New Guinea
## 2 5 2
## Paraguay Peru Philippines
## 1 3 3
## Rwanda Senegal Serbia
## 2 3 1
## Sierra Leone South Africa Sri Lanka
## 2 4 3
## Sudan Suriname Tajikistan
## 2 1 5
## Tanzania Thailand Togo
## 2 1 2
## Trinidad and Tobago Tunisia Uganda
## 5 5 2
## Ukraine Uruguay Uzbekistan
## 5 1 5
## Vietnam Zambia Zimbabwe
## 5 2 4
#Para ver la cantidad de paises en cada grupo:
table(VIH1H2_clus$cluster)
##
## 1 2 3 4 5
## 14 30 18 6 22
#Creamos un objeto (cluster) que mezcla la informacion de los grupos con el mapa:
grupos1H2=as.data.frame(VIH1H2_clus$cluster)
grupos1H2
## VIH1H2_clus$cluster
## Albania 5
## Algeria 5
## Argentina 1
## Armenia 5
## Azerbaijan 5
## Bangladesh 2
## Belarus 5
## Belize 3
## Benin 2
## Bolivia 3
## Botswana 4
## Brazil 1
## Burkina Faso 2
## Burundi 2
## Cabo Verde 3
## Cambodia 3
## Cameroon 2
## Chad 2
## Colombia 1
## Congo, Dem. Rep. 2
## Congo, Rep. 2
## Costa Rica 1
## Cote d'Ivoire 2
## Cuba 5
## Dominican Republic 1
## Ecuador 1
## Egypt, Arab Rep. 5
## El Salvador 1
## Eswatini 4
## Ethiopia 2
## Georgia 5
## Ghana 3
## Guinea 2
## Guinea-Bissau 2
## Guyana 3
## Haiti 2
## Honduras 1
## India 3
## Indonesia 3
## Iran, Islamic Rep. 3
## Kazakhstan 5
## Kenya 2
## Kyrgyz Republic 5
## Lao PDR 3
## Lebanon 5
## Lesotho 4
## Liberia 2
## Madagascar 2
## Malawi 2
## Malaysia 5
## Mali 2
## Mauritania 2
## Mexico 1
## Moldova 5
## Mongolia 5
## Montenegro 5
## Morocco 3
## Mozambique 2
## Myanmar 3
## Namibia 4
## Nepal 3
## Nicaragua 3
## Niger 2
## Nigeria 2
## Pakistan 5
## Papua New Guinea 2
## Paraguay 1
## Peru 3
## Philippines 3
## Rwanda 2
## Senegal 3
## Serbia 1
## Sierra Leone 2
## South Africa 4
## Sri Lanka 3
## Sudan 2
## Suriname 1
## Tajikistan 5
## Tanzania 2
## Thailand 1
## Togo 2
## Trinidad and Tobago 5
## Tunisia 5
## Uganda 2
## Ukraine 5
## Uruguay 1
## Uzbekistan 5
## Vietnam 5
## Zambia 2
## Zimbabwe 4
names(grupos1H2)='cluster'
grupos1H2$NAME=row.names(grupos1H2)
head(grupos1H2)
## cluster NAME
## Albania 5 Albania
## Algeria 5 Algeria
## Argentina 1 Argentina
## Armenia 5 Armenia
## Azerbaijan 5 Azerbaijan
## Bangladesh 2 Bangladesh
#Creamos el objeto final:
mapamundo_VIH1H2=merge(mapamundo,grupos1H2)
library("RColorBrewer")
plot(mapamundo,col='gray',border=NA)
plot(mapamundo,
col=brewer.pal(n = 5, name = "BrBG")[mapamundo_VIH1H2$cluster],
border='gray',add=T)
#Para tener un mapa interactivo asignando colores a cada grupo:
library(leaflet)
#newMaps!
c1=mapamundo_VIH1H2[!is.na(mapamundo_VIH1H2$cluster) & mapamundo_VIH1H2$cluster==1,]
c2=mapamundo_VIH1H2[!is.na(mapamundo_VIH1H2$cluster) & mapamundo_VIH1H2$cluster==2,]
c3=mapamundo_VIH1H2[!is.na(mapamundo_VIH1H2$cluster) & mapamundo_VIH1H2$cluster==3,]
c4=mapamundo_VIH1H2[!is.na(mapamundo_VIH1H2$cluster) & mapamundo_VIH1H2$cluster==4,]
c5=mapamundo_VIH1H2[!is.na(mapamundo_VIH1H2$cluster) & mapamundo_VIH1H2$cluster==5,]
title="Clusters"
# base Layer
base= leaflet() %>% addProviderTiles("CartoDB.Positron")
layer1= base %>%
addPolygons(data=c1,color="chocolate",fillOpacity = 1,stroke = F,
group = "1")
layer_12= layer1%>%addPolygons(data=c2,color="gold",fillOpacity = 1,stroke = F,
group = "2")
layer_123= layer_12%>%addPolygons(data=c3,color="sienna",fillOpacity = 1,stroke = F,
group = "3")
layer_1234= layer_123%>%addPolygons(data=c4,color="peru",fillOpacity = 1,stroke = F,
group = "4")
layer_12345= layer_1234%>%addPolygons(data=c5,color="orange",fillOpacity = 1,stroke = F,
group = "5")
layer_12345
layer_12345%>% addLayersControl(
overlayGroups = c("1", "2","3","4","5"),
options = layersControlOptions(collapsed = FALSE))
agg1H2=aggregate(cbind(Densidad,Desigualdad,Salud,VIH) ~ cluster, data=VIH1_x,FUN=mean)
names(agg1H2)=c("cluster","Densidad","Desigualdad","Salud","VIH")
agg1H2
## cluster Densidad Desigualdad Salud VIH
## 1 1 0.8148660 -0.4850922 0.07629879 0.002167742
## 2 2 -1.5074389 -0.4234698 -1.00648177 0.013303448
## 3 3 -0.9443295 -0.1013467 -0.86193997 0.073066667
## 4 4 -1.3379853 -1.2115162 -1.17945045 0.058727273
## 5 5 0.4573547 0.8511718 -0.17273172 0.001337500
En este analisis de conglomerados pondremos los componentes la hipoteisis tres que son el indice de Desarrollo tecnológico y migración
VIH_H3=VIH1_x[c(4,7,11)]
VIH1_dH3 = as.data.frame(scale(VIH_H3)) #Estandarizamos
set.seed(15) #Para que todos los grupos tengan el mismo punto de inicio, el 15 es inventado
#Para pedir la distancia
VIH1_dH3=dist(VIH1_dH3[c(1:3)])
#Pedimos las distancias como un criterio de agrupamiento
#Pedimos el numero de grupos:
VIH1H3_clus=kmeans(VIH1_dH3,centers = 5) #El 5 hace referencia al numero de grupos que se piden
VIH1H3_clus$cluster
## Albania Algeria Argentina
## 5 5 1
## Armenia Azerbaijan Bangladesh
## 5 5 3
## Belarus Belize Benin
## 1 2 2
## Bolivia Botswana Brazil
## 2 4 2
## Burkina Faso Burundi Cabo Verde
## 5 1 2
## Cambodia Cameroon Chad
## 2 2 2
## Colombia Congo, Dem. Rep. Congo, Rep.
## 5 1 2
## Costa Rica Cote d'Ivoire Cuba
## 1 2 1
## Dominican Republic Ecuador Egypt, Arab Rep.
## 2 5 5
## El Salvador Eswatini Ethiopia
## 5 3 5
## Georgia Ghana Guinea
## 5 5 2
## Guinea-Bissau Guyana Haiti
## 2 2 2
## Honduras India Indonesia
## 5 3 2
## Iran, Islamic Rep. Kazakhstan Kenya
## 1 5 1
## Kyrgyz Republic Lao PDR Lebanon
## 5 2 2
## Lesotho Liberia Madagascar
## 4 2 1
## Malawi Malaysia Mali
## 2 1 5
## Mauritania Mexico Moldova
## 2 1 5
## Mongolia Montenegro Morocco
## 5 2 1
## Mozambique Myanmar Namibia
## 4 4 2
## Nepal Nicaragua Niger
## 2 2 2
## Nigeria Pakistan Papua New Guinea
## 5 4 2
## Paraguay Peru Philippines
## 5 5 4
## Rwanda Senegal Serbia
## 2 2 1
## Sierra Leone South Africa Sri Lanka
## 2 4 5
## Sudan Suriname Tajikistan
## 1 2 5
## Tanzania Thailand Togo
## 1 5 2
## Trinidad and Tobago Tunisia Uganda
## 5 1 1
## Ukraine Uruguay Uzbekistan
## 2 1 5
## Vietnam Zambia Zimbabwe
## 2 4 4
#Para ver la cantidad de paises en cada grupo:
table(VIH1H3_clus$cluster)
##
## 1 2 3 4 5
## 18 34 3 9 26
#Creamos un objeto (cluster) que mezcla la informacion de los grupos con el mapa:
grupos1H3=as.data.frame(VIH1H3_clus$cluster)
grupos1H3
## VIH1H3_clus$cluster
## Albania 5
## Algeria 5
## Argentina 1
## Armenia 5
## Azerbaijan 5
## Bangladesh 3
## Belarus 1
## Belize 2
## Benin 2
## Bolivia 2
## Botswana 4
## Brazil 2
## Burkina Faso 5
## Burundi 1
## Cabo Verde 2
## Cambodia 2
## Cameroon 2
## Chad 2
## Colombia 5
## Congo, Dem. Rep. 1
## Congo, Rep. 2
## Costa Rica 1
## Cote d'Ivoire 2
## Cuba 1
## Dominican Republic 2
## Ecuador 5
## Egypt, Arab Rep. 5
## El Salvador 5
## Eswatini 3
## Ethiopia 5
## Georgia 5
## Ghana 5
## Guinea 2
## Guinea-Bissau 2
## Guyana 2
## Haiti 2
## Honduras 5
## India 3
## Indonesia 2
## Iran, Islamic Rep. 1
## Kazakhstan 5
## Kenya 1
## Kyrgyz Republic 5
## Lao PDR 2
## Lebanon 2
## Lesotho 4
## Liberia 2
## Madagascar 1
## Malawi 2
## Malaysia 1
## Mali 5
## Mauritania 2
## Mexico 1
## Moldova 5
## Mongolia 5
## Montenegro 2
## Morocco 1
## Mozambique 4
## Myanmar 4
## Namibia 2
## Nepal 2
## Nicaragua 2
## Niger 2
## Nigeria 5
## Pakistan 4
## Papua New Guinea 2
## Paraguay 5
## Peru 5
## Philippines 4
## Rwanda 2
## Senegal 2
## Serbia 1
## Sierra Leone 2
## South Africa 4
## Sri Lanka 5
## Sudan 1
## Suriname 2
## Tajikistan 5
## Tanzania 1
## Thailand 5
## Togo 2
## Trinidad and Tobago 5
## Tunisia 1
## Uganda 1
## Ukraine 2
## Uruguay 1
## Uzbekistan 5
## Vietnam 2
## Zambia 4
## Zimbabwe 4
names(grupos1H3)='cluster'
grupos1H3$NAME=row.names(grupos1H3)
head(grupos1H3)
## cluster NAME
## Albania 5 Albania
## Algeria 5 Algeria
## Argentina 1 Argentina
## Armenia 5 Armenia
## Azerbaijan 5 Azerbaijan
## Bangladesh 3 Bangladesh
#Creamos el objeto final:
mapamundo_VIH1H3=merge(mapamundo,grupos1H3)
library("RColorBrewer")
plot(mapamundo,col='gray',border=NA)
plot(mapamundo,
col=brewer.pal(n = 5, name = "Greens")[mapamundo_VIH1H3$cluster],
border='gray',add=T)
#Para tener un mapa interactivo asignando colores a cada grupo:
library(leaflet)
#newMaps!
c1=mapamundo_VIH1H3[!is.na(mapamundo_VIH1H3$cluster) & mapamundo_VIH1H3$cluster==1,]
c2=mapamundo_VIH1H3[!is.na(mapamundo_VIH1H3$cluster) & mapamundo_VIH1H3$cluster==2,]
c3=mapamundo_VIH1H3[!is.na(mapamundo_VIH1H3$cluster) & mapamundo_VIH1H3$cluster==3,]
c4=mapamundo_VIH1H3[!is.na(mapamundo_VIH1H3$cluster) & mapamundo_VIH1H3$cluster==4,]
c5=mapamundo_VIH1H3[!is.na(mapamundo_VIH1H3$cluster) & mapamundo_VIH1H3$cluster==5,]
title="Clusters"
# base Layer
base= leaflet() %>% addProviderTiles("CartoDB.Positron")
layer1= base %>%
addPolygons(data=c1,color="darkgreen",fillOpacity = 1,stroke = F,
group = "1")
layer_12= layer1%>%addPolygons(data=c2,color="yellowgreen",fillOpacity = 1,stroke = F,
group = "2")
layer_123= layer_12%>%addPolygons(data=c3,color="forestgreen",fillOpacity = 1,stroke = F,
group = "3")
layer_1234= layer_123%>%addPolygons(data=c4,color="limegreen",fillOpacity = 1,stroke = F,
group = "4")
layer_12345= layer_1234%>%addPolygons(data=c5,color="lightgreen",fillOpacity = 1,stroke = F,
group = "5")
layer_12345
layer_12345%>% addLayersControl(
overlayGroups = c("1", "2","3","4","5"),
options = layersControlOptions(collapsed = FALSE))
agg1H3=aggregate(cbind(Informacion,Migracion,VIH) ~ cluster, data=VIH1_x,FUN=mean)
names(agg1H3)=c("cluster","DesarrolloTecno","Migracion","VIH")
agg1H3
## cluster DesarrolloTecno Migracion VIH
## 1 1 -0.47705777 0.06216519 0.002167742
## 2 2 -0.33230315 0.03956145 0.013303448
## 3 3 -0.09327713 -3.37249651 0.073066667
## 4 4 -0.16895572 0.46550216 0.058727273
## 5 5 -0.83902038 0.08512182 0.001337500