AW88525
07122019
The IrisExplorer is an interactive tool for exploratory data analysis and simple machine learning (prediction) based on the iris dataset in R. It enables you to show the variable (feature) distribution with boxplots, adjust parameters such as train/test split, which features to include, and lastly choose different prediction models. Finally it outputs the confusion matrix as final output.
The main product includes two parts:
library(shiny)
library(caret)
shinyUI(fluidPage(
# Application title
titlePanel("Explore the Iris"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
h4("Select trainingset portion"),
radioButtons("trainingfraction", "trainingset portion:",
c("0.9" = 0.9,
"0.8" = 0.8,
"0.7" = 0.7,
"0.6" = 0.6),
selected = 0.7
),
h4("Show boxplots for features"),
radioButtons("features", "features:",
c("Sepal Length" = "sepal_length",
"Sepal Width" = "sepal_width",
"Petal Length" = "petal_length",
"Petal Width" = "petal_width")),
h4("Select features for training"),
checkboxInput("selectSepalLength", "Sepal Length", value = TRUE),
checkboxInput("selectSepalWidth", "Sepal Width", value = TRUE),
checkboxInput("selectPetalLength", "Petal Length", value = TRUE),
checkboxInput("selectPetalWidth", "Petal Width", value = TRUE),
h4("Select Prediction Models"),
radioButtons(inputId = "SelectModels", label = "Models",
choices = c("Softmax Regression",
"Support Vector Machine",
"Random Forest"),
selected = "Softmax Regression"
),
actionButton("goButton", "Go!")
),
# Show a plot of the generated distribution
mainPanel(
h3("Table"),
tableOutput("table0"),
h3("Boxplots"),
plotOutput("featureshist"),
h3("Confusion Matrix"),
tableOutput("table")
)
)
))
<!–html_preserve–>