Librerias correspondientes

library(ggplot2)
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
## VIM is ready to use. 
##  Since version 4.0.0 the GUI is in its own package VIMGUI.
## 
##           Please use the package to use the new (and old) GUI.
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
library(Amelia)
## Loading required package: Rcpp
## ## 
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.5, built: 2018-05-07)
## ## Copyright (C) 2005-2019 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(DMwR)
## Loading required package: lattice
## 
## Attaching package: 'DMwR'
## The following object is masked from 'package:VIM':
## 
##     kNN
library(rpart)
library(caret)
library(rpart.plot)
library(nnet)

a) COMPRESIÓN DE LOS DATOS

Cargamos la Data

juegosOlimpicos<-read.csv("C:/Users/user/Documents/DataMining/DATA/dataMineria.csv",sep=";")

Describimos las variables

names(juegosOlimpicos)
##  [1] "id"          "name"        "nationality" "sex"         "dob"        
##  [6] "height"      "weight"      "sport"       "gold"        "silver"     
## [11] "bronze"
id = Identificador de los jugadores
name = Nombre del jugador
nationality = Nacionalidad del jugador
sex = Sexo del jugador
dob = Fecha de nacimiento
height = Altura
weight = Peso
sport = Deporte
gol,silver,bronze = Medallas

b)Exploración de los datos

Vemos un rápido vistaso a los datos

head(juegosOlimpicos)
##          id           name nationality    sex        dob height weight
## 1 736041664 A Jesus Garcia         ESP   male 17/10/1969   1.72     64
## 2 532037425     A Lam Shin         KOR female 23/09/1986   1.68     56
## 3 435962603    Aaron Brown         CAN   male 27/05/1992   1.98     79
## 4 521041435     Aaron Cook         MDA   male  2/01/1991   1.83     80
## 5  33922579     Aaron Gate         NZL   male 26/11/1990   1.81     71
## 6 173071782    Aaron Royle         AUS   male 26/01/1990   1.80     67
##       sport gold silver bronze
## 1 athletics    0      0      0
## 2   fencing    0      0      0
## 3 athletics    0      0      1
## 4 taekwondo    0      0      0
## 5   cycling    0      0      0
## 6 triathlon    0      0      0

Resumen de los datos

summary(juegosOlimpicos)
##           id                    name        nationality       sex      
##  10/03/5386:    1   Ahmed Mohamed :    2   USA    : 567   female:5205  
##  10/07/2667:    1   Ben Saxton    :    2   BRA    : 485   male  :6333  
##  10/08/3714:    1   Carli Lloyd   :    2   GER    : 441                
##  100107881 :    1   Daniel Vargas :    2   AUS    : 431                
##  100145266 :    1   David Graf    :    2   FRA    : 410                
##  100190722 :    1   Felipe Aguilar:    2   CHN    : 404                
##  (Other)   :11532   (Other)       :11526   (Other):8800                
##          dob            height          weight             sport     
##  18/02/1993:    9   Min.   :1.210   Min.   : 31.00   athletics:2363  
##  20/12/1990:    9   1st Qu.:1.690   1st Qu.: 60.00   aquatics :1445  
##  5/03/1988 :    9   Median :1.760   Median : 70.00   football : 611  
##  1/03/1989 :    8   Mean   :1.766   Mean   : 72.07   rowing   : 547  
##  14/12/1989:    8   3rd Qu.:1.840   3rd Qu.: 81.00   cycling  : 525  
##  19/06/1991:    8   Max.   :2.210   Max.   :170.00   hockey   : 432  
##  (Other)   :11487   NA's   :330     NA's   :659      (Other)  :5615  
##       gold             silver            bronze       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.05772   Mean   :0.05677   Mean   :0.06102  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :5.00000   Max.   :2.00000   Max.   :2.00000  
## 

Esctructura de los datos

str(juegosOlimpicos)
## 'data.frame':    11538 obs. of  11 variables:
##  $ id         : Factor w/ 11538 levels "10/03/5386","10/07/2667",..: 8119 5528 4298 5384 3100 983 2160 3624 9942 11509 ...
##  $ name       : Factor w/ 11517 levels "A Jesus Garcia",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ nationality: Factor w/ 207 levels "AFG","ALB","ALG",..: 60 103 34 120 142 11 199 11 60 62 ...
##  $ sex        : Factor w/ 2 levels "female","male": 2 1 2 2 2 2 2 2 1 1 ...
##  $ dob        : Factor w/ 5595 levels "1/01/1969","1/01/1973",..: 1602 2893 3574 2028 3486 3334 4584 3280 1093 2687 ...
##  $ height     : num  1.72 1.68 1.98 1.83 1.81 1.8 2.05 1.93 1.8 1.65 ...
##  $ weight     : int  64 56 79 80 71 67 98 100 62 54 ...
##  $ sport      : Factor w/ 28 levels "aquatics","archery",..: 3 10 3 23 8 25 26 1 3 3 ...
##  $ gold       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ silver     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ bronze     : int  0 0 1 0 0 0 1 0 0 0 ...

Este gráfico de barras nos da una referencia a la cantidad de deportistas según su género

target<-table(juegosOlimpicos$sex) 
barplot(target)

Observamos que el 55% de jugadores son hombres y 45% mujeres.
table(juegosOlimpicos$sex)
## 
## female   male 
##   5205   6333
ggplot(data=juegosOlimpicos)+
  geom_bar(mapping=aes(x=gold, color=sex))

ggplot(data=juegosOlimpicos)+
  geom_bar(mapping=aes(x=silver, color=sex))

ggplot(data=juegosOlimpicos)+
  geom_bar(mapping=aes(x=bronze, color=sex))

c)Verificación de calidad de datos

str(juegosOlimpicos)
## 'data.frame':    11538 obs. of  11 variables:
##  $ id         : Factor w/ 11538 levels "10/03/5386","10/07/2667",..: 8119 5528 4298 5384 3100 983 2160 3624 9942 11509 ...
##  $ name       : Factor w/ 11517 levels "A Jesus Garcia",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ nationality: Factor w/ 207 levels "AFG","ALB","ALG",..: 60 103 34 120 142 11 199 11 60 62 ...
##  $ sex        : Factor w/ 2 levels "female","male": 2 1 2 2 2 2 2 2 1 1 ...
##  $ dob        : Factor w/ 5595 levels "1/01/1969","1/01/1973",..: 1602 2893 3574 2028 3486 3334 4584 3280 1093 2687 ...
##  $ height     : num  1.72 1.68 1.98 1.83 1.81 1.8 2.05 1.93 1.8 1.65 ...
##  $ weight     : int  64 56 79 80 71 67 98 100 62 54 ...
##  $ sport      : Factor w/ 28 levels "aquatics","archery",..: 3 10 3 23 8 25 26 1 3 3 ...
##  $ gold       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ silver     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ bronze     : int  0 0 1 0 0 0 1 0 0 0 ...
Segun las variables que se muestran, podemos observar que la $dbo no nos sirviria asi como el $id
Observamos que hay valores NA’s
summary(juegosOlimpicos)
##           id                    name        nationality       sex      
##  10/03/5386:    1   Ahmed Mohamed :    2   USA    : 567   female:5205  
##  10/07/2667:    1   Ben Saxton    :    2   BRA    : 485   male  :6333  
##  10/08/3714:    1   Carli Lloyd   :    2   GER    : 441                
##  100107881 :    1   Daniel Vargas :    2   AUS    : 431                
##  100145266 :    1   David Graf    :    2   FRA    : 410                
##  100190722 :    1   Felipe Aguilar:    2   CHN    : 404                
##  (Other)   :11532   (Other)       :11526   (Other):8800                
##          dob            height          weight             sport     
##  18/02/1993:    9   Min.   :1.210   Min.   : 31.00   athletics:2363  
##  20/12/1990:    9   1st Qu.:1.690   1st Qu.: 60.00   aquatics :1445  
##  5/03/1988 :    9   Median :1.760   Median : 70.00   football : 611  
##  1/03/1989 :    8   Mean   :1.766   Mean   : 72.07   rowing   : 547  
##  14/12/1989:    8   3rd Qu.:1.840   3rd Qu.: 81.00   cycling  : 525  
##  19/06/1991:    8   Max.   :2.210   Max.   :170.00   hockey   : 432  
##  (Other)   :11487   NA's   :330     NA's   :659      (Other)  :5615  
##       gold             silver            bronze       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.05772   Mean   :0.05677   Mean   :0.06102  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :5.00000   Max.   :2.00000   Max.   :2.00000  
## 
Vemos el gráfico de missin
missingraf=aggr(juegosOlimpicos,numbers=T)

Mapa de perdida
missmap(juegosOlimpicos)

Valores fuera de rango

boxplot(juegosOlimpicos$height,col="skyblue",main="Diagrama de Caja (Altura)")

boxplot(juegosOlimpicos$weight,col="skyblue",main="Diagrama de Caja (Peso)")

III. Preparación de datos

a) Selección de datos

  str(juegosOlimpicos)
## 'data.frame':    11538 obs. of  11 variables:
##  $ id         : Factor w/ 11538 levels "10/03/5386","10/07/2667",..: 8119 5528 4298 5384 3100 983 2160 3624 9942 11509 ...
##  $ name       : Factor w/ 11517 levels "A Jesus Garcia",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ nationality: Factor w/ 207 levels "AFG","ALB","ALG",..: 60 103 34 120 142 11 199 11 60 62 ...
##  $ sex        : Factor w/ 2 levels "female","male": 2 1 2 2 2 2 2 2 1 1 ...
##  $ dob        : Factor w/ 5595 levels "1/01/1969","1/01/1973",..: 1602 2893 3574 2028 3486 3334 4584 3280 1093 2687 ...
##  $ height     : num  1.72 1.68 1.98 1.83 1.81 1.8 2.05 1.93 1.8 1.65 ...
##  $ weight     : int  64 56 79 80 71 67 98 100 62 54 ...
##  $ sport      : Factor w/ 28 levels "aquatics","archery",..: 3 10 3 23 8 25 26 1 3 3 ...
##  $ gold       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ silver     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ bronze     : int  0 0 1 0 0 0 1 0 0 0 ...
En nuestro caso no nos ayudaria con nuestro modelo de predicción las variables $id, $name, $dob
Redifinimos las variables a utilizar
juegosOlimpicos<-juegosOlimpicos[,3:11]
juegosOlimpicos$dob<-NULL
juegosOlimpicos$silver<-NULL
juegosOlimpicos$bronze<-NULL

b) Limpieza de datos

K-Vecinos más cercanos
juegosOlimpicos2<-knnImputation(juegosOlimpicos)
summary(juegosOlimpicos2)
##   nationality       sex           height          weight      
##  USA    : 567   female:5205   Min.   :1.210   Min.   : 31.00  
##  BRA    : 485   male  :6333   1st Qu.:1.690   1st Qu.: 60.00  
##  GER    : 441                 Median :1.760   Median : 70.00  
##  AUS    : 431                 Mean   :1.766   Mean   : 72.06  
##  FRA    : 410                 3rd Qu.:1.840   3rd Qu.: 80.62  
##  CHN    : 404                 Max.   :2.210   Max.   :170.00  
##  (Other):8800                                                 
##        sport           gold        
##  athletics:2363   Min.   :0.00000  
##  aquatics :1445   1st Qu.:0.00000  
##  football : 611   Median :0.00000  
##  rowing   : 547   Mean   :0.05772  
##  cycling  : 525   3rd Qu.:0.00000  
##  hockey   : 432   Max.   :5.00000  
##  (Other)  :5615
Observamos que ya no hay datos NA’s

b) Construcción de nuevos datos

d) Integración de datos

e) Formato de datos

Transformamos las variables a utilizar
juegosOlimpicos2$nationality<-as.numeric(juegosOlimpicos2$nationality)
juegosOlimpicos2$sex<-as.numeric(juegosOlimpicos2$sex)
juegosOlimpicos2$sport<-as.numeric(juegosOlimpicos2$sport)
str(juegosOlimpicos2)
## 'data.frame':    11538 obs. of  6 variables:
##  $ nationality: num  60 103 34 120 142 11 199 11 60 62 ...
##  $ sex        : num  2 1 2 2 2 2 2 2 1 1 ...
##  $ height     : num  1.72 1.68 1.98 1.83 1.81 1.8 2.05 1.93 1.8 1.65 ...
##  $ weight     : num  64 56 79 80 71 67 98 100 62 54 ...
##  $ sport      : num  3 10 3 23 8 25 26 1 3 3 ...
##  $ gold       : int  0 0 0 0 0 0 0 0 0 0 ...

IV. Modelamiento

a) Descripción de técnicas de modelado

Utilizaremos árbol de decisión

b) Generación de un diseño de comprobación (train y test)

Asignaremos un 70% para la data de entrenamiento y el 30% para las pruebas.
muestra<-sample(8076,3462)
train<-juegosOlimpicos2[-muestra,]
test<-juegosOlimpicos2[muestra,]
Dimensiones del train y test
dim(train)
## [1] 8076    6
dim(test)
## [1] 3462    6
modeloArbol<-rpart(sex~.,data =train,method = "class", cp=.0001)
modeloArbol
## n= 8076 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##      1) root 8076 3633 2 (0.44985141 0.55014859)  
##        2) weight< 68.44921 3733  929 1 (0.75113849 0.24886151)  
##          4) weight< 59.60603 1795  214 1 (0.88077994 0.11922006)  
##            8) height< 1.745 1678  166 1 (0.90107271 0.09892729)  
##             16) sport< 26.5 1584  136 1 (0.91414141 0.08585859)  
##               32) height< 1.709 1399   98 1 (0.92994996 0.07005004)  
##                 64) weight< 51.5 436    9 1 (0.97935780 0.02064220) *
##                 65) weight>=51.5 963   89 1 (0.90758048 0.09241952)  
##                  130) sport>=13.5 256    9 1 (0.96484375 0.03515625) *
##                  131) sport< 13.5 707   80 1 (0.88684583 0.11315417)  
##                    262) sport< 12.5 657   63 1 (0.90410959 0.09589041)  
##                      524) sport>=9.5 99    0 1 (1.00000000 0.00000000) *
##                      525) sport< 9.5 558   63 1 (0.88709677 0.11290323)  
##                       1050) nationality< 199.5 546   58 1 (0.89377289 0.10622711)  
##                         2100) nationality>=167 75    2 1 (0.97333333 0.02666667) *
##                         2101) nationality< 167 471   56 1 (0.88110403 0.11889597)  
##                           4202) nationality< 90.5 299   25 1 (0.91638796 0.08361204) *
##                           4203) nationality>=90.5 172   31 1 (0.81976744 0.18023256)  
##                             8406) sport< 2.5 47    3 1 (0.93617021 0.06382979) *
##                             8407) sport>=2.5 125   28 1 (0.77600000 0.22400000)  
##                              16814) nationality>=100.5 86   14 1 (0.83720930 0.16279070) *
##                              16815) nationality< 100.5 39   14 1 (0.64102564 0.35897436)  
##                                33630) height< 1.63 14    0 1 (1.00000000 0.00000000) *
##                                33631) height>=1.63 25   11 2 (0.44000000 0.56000000)  
##                                  67262) weight>=57.5 8    2 1 (0.75000000 0.25000000) *
##                                  67263) weight< 57.5 17    5 2 (0.29411765 0.70588235) *
##                       1051) nationality>=199.5 12    5 1 (0.58333333 0.41666667) *
##                    263) sport>=12.5 50   17 1 (0.66000000 0.34000000)  
##                      526) weight< 56.5 37    9 1 (0.75675676 0.24324324)  
##                       1052) height>=1.64 12    0 1 (1.00000000 0.00000000) *
##                       1053) height< 1.64 25    9 1 (0.64000000 0.36000000)  
##                         2106) height< 1.59 11    1 1 (0.90909091 0.09090909) *
##                         2107) height>=1.59 14    6 2 (0.42857143 0.57142857) *
##                      527) weight>=56.5 13    5 2 (0.38461538 0.61538462) *
##               33) height>=1.709 185   38 1 (0.79459459 0.20540541)  
##                 66) sport>=3.5 83    6 1 (0.92771084 0.07228916) *
##                 67) sport< 3.5 102   32 1 (0.68627451 0.31372549)  
##                  134) sport< 2.5 22    2 1 (0.90909091 0.09090909) *
##                  135) sport>=2.5 80   30 1 (0.62500000 0.37500000)  
##                    270) weight< 53.5 16    3 1 (0.81250000 0.18750000) *
##                    271) weight>=53.5 64   27 1 (0.57812500 0.42187500)  
##                      542) nationality>=151.5 17    4 1 (0.76470588 0.23529412) *
##                      543) nationality< 151.5 47   23 1 (0.51063830 0.48936170)  
##                       1086) nationality< 97 35   13 1 (0.62857143 0.37142857)  
##                         2172) weight>=58.5 8    1 1 (0.87500000 0.12500000) *
##                         2173) weight< 58.5 27   12 1 (0.55555556 0.44444444)  
##                           4346) height>=1.725 11    3 1 (0.72727273 0.27272727) *
##                           4347) height< 1.725 16    7 2 (0.43750000 0.56250000) *
##                       1087) nationality>=97 12    2 2 (0.16666667 0.83333333) *
##             17) sport>=26.5 94   30 1 (0.68085106 0.31914894)  
##               34) weight< 55.5 43    1 1 (0.97674419 0.02325581) *
##               35) weight>=55.5 51   22 2 (0.43137255 0.56862745)  
##                 70) weight>=56.5 35   15 1 (0.57142857 0.42857143)  
##                  140) sport< 27.5 11    0 1 (1.00000000 0.00000000) *
##                  141) sport>=27.5 24    9 2 (0.37500000 0.62500000)  
##                    282) weight< 58.5 17    8 1 (0.52941176 0.47058824) *
##                    283) weight>=58.5 7    0 2 (0.00000000 1.00000000) *
##                 71) weight< 56.5 16    2 2 (0.12500000 0.87500000) *
##            9) height>=1.745 117   48 1 (0.58974359 0.41025641)  
##             18) height< 1.795 91   32 1 (0.64835165 0.35164835)  
##               36) sport>=8.5 33    6 1 (0.81818182 0.18181818) *
##               37) sport< 8.5 58   26 1 (0.55172414 0.44827586)  
##                 74) nationality>=106.5 28    8 1 (0.71428571 0.28571429)  
##                  148) height>=1.755 19    2 1 (0.89473684 0.10526316) *
##                  149) height< 1.755 9    3 2 (0.33333333 0.66666667) *
##                 75) nationality< 106.5 30   12 2 (0.40000000 0.60000000)  
##                  150) nationality< 87.5 22   11 1 (0.50000000 0.50000000)  
##                    300) nationality>=63.5 7    2 1 (0.71428571 0.28571429) *
##                    301) nationality< 63.5 15    6 2 (0.40000000 0.60000000) *
##                  151) nationality>=87.5 8    1 2 (0.12500000 0.87500000) *
##             19) height>=1.795 26   10 2 (0.38461538 0.61538462)  
##               38) sport< 5.5 14    6 1 (0.57142857 0.42857143) *
##               39) sport>=5.5 12    2 2 (0.16666667 0.83333333) *
##          5) weight>=59.60603 1938  715 1 (0.63106295 0.36893705)  
##           10) sport< 2.5 287   48 1 (0.83275261 0.16724739)  
##             20) weight< 67.95 256   33 1 (0.87109375 0.12890625) *
##             21) weight>=67.95 31   15 1 (0.51612903 0.48387097)  
##               42) height>=1.755 18    5 1 (0.72222222 0.27777778) *
##               43) height< 1.755 13    3 2 (0.23076923 0.76923077) *
##           11) sport>=2.5 1651  667 1 (0.59600242 0.40399758)  
##             22) sport>=13.5 675  200 1 (0.70370370 0.29629630)  
##               44) sport< 15.5 119    8 1 (0.93277311 0.06722689)  
##                 88) nationality>=93.5 55    0 1 (1.00000000 0.00000000) *
##                 89) nationality< 93.5 64    8 1 (0.87500000 0.12500000)  
##                  178) nationality< 79.5 57    3 1 (0.94736842 0.05263158) *
##                  179) nationality>=79.5 7    2 2 (0.28571429 0.71428571) *
##               45) sport>=15.5 556  192 1 (0.65467626 0.34532374)  
##                 90) sport>=16.5 499  150 1 (0.69939880 0.30060120)  
##                  180) sport< 26.5 417  105 1 (0.74820144 0.25179856)  
##                    360) height< 1.695 122   13 1 (0.89344262 0.10655738) *
##                    361) height>=1.695 295   92 1 (0.68813559 0.31186441)  
##                      722) sport>=25.5 43    1 1 (0.97674419 0.02325581) *
##                      723) sport< 25.5 252   91 1 (0.63888889 0.36111111)  
##                       1446) sport< 20.5 105   22 1 (0.79047619 0.20952381)  
##                         2892) weight< 62.5 20    0 1 (1.00000000 0.00000000) *
##                         2893) weight>=62.5 85   22 1 (0.74117647 0.25882353)  
##                           5786) sport>=17.5 76   16 1 (0.78947368 0.21052632)  
##                            11572) sport< 19.5 27    1 1 (0.96296296 0.03703704) *
##                            11573) sport>=19.5 49   15 1 (0.69387755 0.30612245)  
##                              23146) weight>=65.5 30    5 1 (0.83333333 0.16666667) *
##                              23147) weight< 65.5 19    9 2 (0.47368421 0.52631579) *
##                           5787) sport< 17.5 9    3 2 (0.33333333 0.66666667) *
##                       1447) sport>=20.5 147   69 1 (0.53061224 0.46938776)  
##                         2894) sport>=22.5 87   31 1 (0.64367816 0.35632184)  
##                           5788) sport< 24.5 66   15 1 (0.77272727 0.22727273)  
##                            11576) sport>=23.5 36    2 1 (0.94444444 0.05555556) *
##                            11577) sport< 23.5 30   13 1 (0.56666667 0.43333333)  
##                              23154) height< 1.775 18    5 1 (0.72222222 0.27777778) *
##                              23155) height>=1.775 12    4 2 (0.33333333 0.66666667) *
##                           5789) sport>=24.5 21    5 2 (0.23809524 0.76190476)  
##                            11578) height< 1.745 7    3 1 (0.57142857 0.42857143) *
##                            11579) height>=1.745 14    1 2 (0.07142857 0.92857143) *
##                         2895) sport< 22.5 60   22 2 (0.36666667 0.63333333)  
##                           5790) weight< 67.5 50   22 2 (0.44000000 0.56000000)  
##                            11580) height< 1.755 33   15 1 (0.54545455 0.45454545)  
##                              23160) height>=1.705 24    8 1 (0.66666667 0.33333333)  
##                                46320) nationality< 128 15    3 1 (0.80000000 0.20000000) *
##                                46321) nationality>=128 9    4 2 (0.44444444 0.55555556) *
##                              23161) height< 1.705 9    2 2 (0.22222222 0.77777778) *
##                            11581) height>=1.755 17    4 2 (0.23529412 0.76470588) *
##                           5791) weight>=67.5 10    0 2 (0.00000000 1.00000000) *
##                  181) sport>=26.5 82   37 2 (0.45121951 0.54878049)  
##                    362) height< 1.645 43   18 1 (0.58139535 0.41860465)  
##                      724) weight>=62.5 22    4 1 (0.81818182 0.18181818) *
##                      725) weight< 62.5 21    7 2 (0.33333333 0.66666667) *
##                    363) height>=1.645 39   12 2 (0.30769231 0.69230769)  
##                      726) weight< 64 10    3 1 (0.70000000 0.30000000) *
##                      727) weight>=64 29    5 2 (0.17241379 0.82758621) *
##                 91) sport< 16.5 57   15 2 (0.26315789 0.73684211)  
##                  182) weight>=60.5 36   14 2 (0.38888889 0.61111111)  
##                    364) weight< 63.5 14    2 1 (0.85714286 0.14285714) *
##                    365) weight>=63.5 22    2 2 (0.09090909 0.90909091) *
##                  183) weight< 60.5 21    1 2 (0.04761905 0.95238095) *
##             23) sport< 13.5 976  467 1 (0.52151639 0.47848361)  
##               46) height< 1.766708 736  304 1 (0.58695652 0.41304348)  
##                 92) sport< 12.5 692  263 1 (0.61994220 0.38005780)  
##                  184) nationality>=7.5 671  244 1 (0.63636364 0.36363636)  
##                    368) weight< 66.06178 562  182 1 (0.67615658 0.32384342)  
##                      736) sport>=9.5 128   20 1 (0.84375000 0.15625000)  
##                       1472) nationality< 50.5 41    2 1 (0.95121951 0.04878049) *
##                       1473) nationality>=50.5 87   18 1 (0.79310345 0.20689655)  
##                         2946) nationality>=159.5 34    3 1 (0.91176471 0.08823529) *
##                         2947) nationality< 159.5 53   15 1 (0.71698113 0.28301887)  
##                           5894) sport< 10.5 12    1 1 (0.91666667 0.08333333) *
##                           5895) sport>=10.5 41   14 1 (0.65853659 0.34146341)  
##                            11790) nationality< 89.5 15    2 1 (0.86666667 0.13333333) *
##                            11791) nationality>=89.5 26   12 1 (0.53846154 0.46153846)  
##                              23582) nationality>=131 17    5 1 (0.70588235 0.29411765) *
##                              23583) nationality< 131 9    2 2 (0.22222222 0.77777778) *
##                      737) sport< 9.5 434  162 1 (0.62672811 0.37327189)  
##                       1474) nationality>=161.5 89   15 1 (0.83146067 0.16853933)  
##                         2948) nationality< 199.5 81   10 1 (0.87654321 0.12345679) *
##                         2949) nationality>=199.5 8    3 2 (0.37500000 0.62500000) *
##                       1475) nationality< 161.5 345  147 1 (0.57391304 0.42608696)  
##                         2950) sport>=3.5 168   57 1 (0.66071429 0.33928571)  
##                           5900) sport< 5.5 35    3 1 (0.91428571 0.08571429) *
##                           5901) sport>=5.5 133   54 1 (0.59398496 0.40601504)  
##                            11802) sport>=6.5 106   34 1 (0.67924528 0.32075472)  
##                              23604) height< 1.685 39    5 1 (0.87179487 0.12820513) *
##                              23605) height>=1.685 67   29 1 (0.56716418 0.43283582)  
##                                47210) nationality< 86.5 45   15 1 (0.66666667 0.33333333)  
##                                  94420) nationality>=67 12    2 1 (0.83333333 0.16666667) *
##                                  94421) nationality< 67 33   13 1 (0.60606061 0.39393939)  
##                                   188842) nationality< 57 25    8 1 (0.68000000 0.32000000) *
##                                   188843) nationality>=57 8    3 2 (0.37500000 0.62500000) *
##                                47211) nationality>=86.5 22    8 2 (0.36363636 0.63636364)  
##                                  94422) nationality>=126.5 12    4 1 (0.66666667 0.33333333) *
##                                  94423) nationality< 126.5 10    0 2 (0.00000000 1.00000000) *
##                            11803) sport< 6.5 27    7 2 (0.25925926 0.74074074) *
##                         2951) sport< 3.5 177   87 2 (0.49152542 0.50847458)  
##                           5902) height< 1.73 101   45 1 (0.55445545 0.44554455)  
##                            11804) nationality>=129.5 17    4 1 (0.76470588 0.23529412) *
##                            11805) nationality< 129.5 84   41 1 (0.51190476 0.48809524)  
##                              23610) nationality< 99.5 73   33 1 (0.54794521 0.45205479)  
##                                47220) nationality>=62.5 22    6 1 (0.72727273 0.27272727) *
##                                47221) nationality< 62.5 51   24 2 (0.47058824 0.52941176)  
##                                  94442) nationality< 51.5 37   15 1 (0.59459459 0.40540541)  
##                                   188884) weight>=62.5 16    4 1 (0.75000000 0.25000000) *
##                                   188885) weight< 62.5 21   10 2 (0.47619048 0.52380952)  
##                                     377770) nationality< 27.5 11    3 1 (0.72727273 0.27272727) *
##                                     377771) nationality>=27.5 10    2 2 (0.20000000 0.80000000) *
##                                  94443) nationality>=51.5 14    2 2 (0.14285714 0.85714286) *
##                              23611) nationality>=99.5 11    3 2 (0.27272727 0.72727273) *
##                           5903) height>=1.73 76   31 2 (0.40789474 0.59210526)  
##                            11806) nationality>=91.5 27   12 1 (0.55555556 0.44444444)  
##                              23612) nationality< 140 20    6 1 (0.70000000 0.30000000) *
##                              23613) nationality>=140 7    1 2 (0.14285714 0.85714286) *
##                            11807) nationality< 91.5 49   16 2 (0.32653061 0.67346939)  
##                              23614) weight>=62.65 28   12 2 (0.42857143 0.57142857)  
##                                47228) weight< 65.05 20    9 1 (0.55000000 0.45000000)  
##                                  94456) weight< 63.75 7    2 1 (0.71428571 0.28571429) *
##                                  94457) weight>=63.75 13    6 2 (0.46153846 0.53846154) *
##                                47229) weight>=65.05 8    1 2 (0.12500000 0.87500000) *
##                              23615) weight< 62.65 21    4 2 (0.19047619 0.80952381) *
##                    369) weight>=66.06178 109   47 2 (0.43119266 0.56880734)  
##                      738) nationality< 54 28    8 1 (0.71428571 0.28571429) *
##                      739) nationality>=54 81   27 2 (0.33333333 0.66666667)  
##                       1478) sport< 5 23   11 1 (0.52173913 0.47826087)  
##                         2956) nationality>=130.5 7    2 1 (0.71428571 0.28571429) *
##                         2957) nationality< 130.5 16    7 2 (0.43750000 0.56250000) *
##                       1479) sport>=5 58   15 2 (0.25862069 0.74137931)  
##                         2958) sport>=6.5 47   15 2 (0.31914894 0.68085106)  
##                           5916) height< 1.725 29   12 2 (0.41379310 0.58620690)  
##                            11832) nationality>=98.5 16    7 1 (0.56250000 0.43750000) *
##                            11833) nationality< 98.5 13    3 2 (0.23076923 0.76923077) *
##                           5917) height>=1.725 18    3 2 (0.16666667 0.83333333) *
##                         2959) sport< 6.5 11    0 2 (0.00000000 1.00000000) *
##                  185) nationality< 7.5 21    2 2 (0.09523810 0.90476190) *
##                 93) sport>=12.5 44    3 2 (0.06818182 0.93181818) *
##               47) height>=1.766708 240   77 2 (0.32083333 0.67916667)  
##                 94) sport>=8.5 29   13 1 (0.55172414 0.44827586)  
##                  188) weight< 64.5 8    0 1 (1.00000000 0.00000000) *
##                  189) weight>=64.5 21    8 2 (0.38095238 0.61904762)  
##                    378) sport< 10.5 11    5 1 (0.54545455 0.45454545) *
##                    379) sport>=10.5 10    2 2 (0.20000000 0.80000000) *
##                 95) sport< 8.5 211   61 2 (0.28909953 0.71090047)  
##                  190) sport< 7.5 173   57 2 (0.32947977 0.67052023)  
##                    380) sport>=4.5 11    0 1 (1.00000000 0.00000000) *
##                    381) sport< 4.5 162   46 2 (0.28395062 0.71604938)  
##                      762) nationality>=67 98   34 2 (0.34693878 0.65306122)  
##                       1524) weight< 63.5 32   15 2 (0.46875000 0.53125000)  
##                         3048) height>=1.825 8    2 1 (0.75000000 0.25000000) *
##                         3049) height< 1.825 24    9 2 (0.37500000 0.62500000) *
##                       1525) weight>=63.5 66   19 2 (0.28787879 0.71212121) *
##                      763) nationality< 67 64   12 2 (0.18750000 0.81250000)  
##                       1526) height< 1.795 27    8 2 (0.29629630 0.70370370)  
##                         3052) weight>=64.5 14    6 1 (0.57142857 0.42857143) *
##                         3053) weight< 64.5 13    0 2 (0.00000000 1.00000000) *
##                       1527) height>=1.795 37    4 2 (0.10810811 0.89189189) *
##                  191) sport>=7.5 38    4 2 (0.10526316 0.89473684) *
##        3) weight>=68.44921 4343  829 2 (0.19088188 0.80911812)  
##          6) weight< 76.00098 1637  541 2 (0.33048259 0.66951741)  
##           12) sport>=13.5 691  317 2 (0.45875543 0.54124457)  
##             24) sport< 14.5 45    2 1 (0.95555556 0.04444444) *
##             25) sport>=14.5 646  274 2 (0.42414861 0.57585139)  
##               50) sport>=25.5 138   48 1 (0.65217391 0.34782609)  
##                100) sport< 26.5 66    9 1 (0.86363636 0.13636364) *
##                101) sport>=26.5 72   33 2 (0.45833333 0.54166667)  
##                  202) height< 1.64 18    4 1 (0.77777778 0.22222222) *
##                  203) height>=1.64 54   19 2 (0.35185185 0.64814815)  
##                    406) nationality>=118.5 21   10 1 (0.52380952 0.47619048)  
##                      812) height< 1.685 9    2 1 (0.77777778 0.22222222) *
##                      813) height>=1.685 12    4 2 (0.33333333 0.66666667) *
##                    407) nationality< 118.5 33    8 2 (0.24242424 0.75757576)  
##                      814) nationality< 77 21    7 2 (0.33333333 0.66666667)  
##                       1628) nationality>=52.5 9    4 1 (0.55555556 0.44444444) *
##                       1629) nationality< 52.5 12    2 2 (0.16666667 0.83333333) *
##                      815) nationality>=77 12    1 2 (0.08333333 0.91666667) *
##               51) sport< 25.5 508  184 2 (0.36220472 0.63779528)  
##                102) height< 1.685 43   10 1 (0.76744186 0.23255814) *
##                103) height>=1.685 465  151 2 (0.32473118 0.67526882)  
##                  206) height< 1.845 390  143 2 (0.36666667 0.63333333)  
##                    412) sport< 19.5 229  105 2 (0.45851528 0.54148472)  
##                      824) sport>=17.5 119   42 1 (0.64705882 0.35294118)  
##                       1648) height< 1.8055 84   24 1 (0.71428571 0.28571429)  
##                         3296) height>=1.781717 26    4 1 (0.84615385 0.15384615) *
##                         3297) height< 1.781717 58   20 1 (0.65517241 0.34482759)  
##                           6594) nationality>=100.5 13    1 1 (0.92307692 0.07692308) *
##                           6595) nationality< 100.5 45   19 1 (0.57777778 0.42222222)  
##                            13190) height< 1.725 15    3 1 (0.80000000 0.20000000) *
##                            13191) height>=1.725 30   14 2 (0.46666667 0.53333333)  
##                              26382) weight< 70.5 8    2 1 (0.75000000 0.25000000) *
##                              26383) weight>=70.5 22    8 2 (0.36363636 0.63636364)  
##                                52766) nationality< 45.5 7    3 1 (0.57142857 0.42857143) *
##                                52767) nationality>=45.5 15    4 2 (0.26666667 0.73333333) *
##                       1649) height>=1.8055 35   17 2 (0.48571429 0.51428571)  
##                         3298) nationality>=104 13    3 1 (0.76923077 0.23076923) *
##                         3299) nationality< 104 22    7 2 (0.31818182 0.68181818) *
##                      825) sport< 17.5 110   28 2 (0.25454545 0.74545455)  
##                       1650) weight< 71.5 46   21 2 (0.45652174 0.54347826)  
##                         3300) sport>=15.5 18    7 1 (0.61111111 0.38888889) *
##                         3301) sport< 15.5 28   10 2 (0.35714286 0.64285714) *
##                       1651) weight>=71.5 64    7 2 (0.10937500 0.89062500) *
##                    413) sport>=19.5 161   38 2 (0.23602484 0.76397516)  
##                      826) sport>=22.5 40   16 2 (0.40000000 0.60000000)  
##                       1652) sport< 24.5 29   13 1 (0.55172414 0.44827586)  
##                         3304) height>=1.76 21    7 1 (0.66666667 0.33333333)  
##                           6608) nationality>=67 13    2 1 (0.84615385 0.15384615) *
##                           6609) nationality< 67 8    3 2 (0.37500000 0.62500000) *
##                         3305) height< 1.76 8    2 2 (0.25000000 0.75000000) *
##                       1653) sport>=24.5 11    0 2 (0.00000000 1.00000000) *
##                      827) sport< 22.5 121   22 2 (0.18181818 0.81818182)  
##                       1654) weight< 71.99744 44   18 2 (0.40909091 0.59090909)  
##                         3308) sport< 20.5 25    9 1 (0.64000000 0.36000000)  
##                           6616) weight< 70.5 18    4 1 (0.77777778 0.22222222) *
##                           6617) weight>=70.5 7    2 2 (0.28571429 0.71428571) *
##                         3309) sport>=20.5 19    2 2 (0.10526316 0.89473684) *
##                       1655) weight>=71.99744 77    4 2 (0.05194805 0.94805195) *
##                  207) height>=1.845 75    8 2 (0.10666667 0.89333333) *
##           13) sport< 13.5 946  224 2 (0.23678647 0.76321353)  
##             26) sport< 5.5 507  152 2 (0.29980276 0.70019724)  
##               52) sport>=4.5 32    0 1 (1.00000000 0.00000000) *
##               53) sport< 4.5 475  120 2 (0.25263158 0.74736842)  
##                106) gold>=0.5 28   10 1 (0.64285714 0.35714286)  
##                  212) sport< 2 13    2 1 (0.84615385 0.15384615) *
##                  213) sport>=2 15    7 2 (0.46666667 0.53333333) *
##                107) gold< 0.5 447  102 2 (0.22818792 0.77181208)  
##                  214) height< 1.78 180   63 2 (0.35000000 0.65000000)  
##                    428) nationality< 96 104   47 2 (0.45192308 0.54807692)  
##                      856) nationality>=90 9    0 1 (1.00000000 0.00000000) *
##                      857) nationality< 90 95   38 2 (0.40000000 0.60000000)  
##                       1714) nationality< 78.5 81   37 2 (0.45679012 0.54320988)  
##                         3428) height< 1.705 14    4 1 (0.71428571 0.28571429) *
##                         3429) height>=1.705 67   27 2 (0.40298507 0.59701493)  
##                           6858) height>=1.745 49   23 2 (0.46938776 0.53061224)  
##                            13716) height< 1.755 16    6 1 (0.62500000 0.37500000) *
##                            13717) height>=1.755 33   13 2 (0.39393939 0.60606061)  
##                              27434) nationality< 55.5 19    9 1 (0.52631579 0.47368421) *
##                              27435) nationality>=55.5 14    3 2 (0.21428571 0.78571429) *
##                           6859) height< 1.745 18    4 2 (0.22222222 0.77777778) *
##                       1715) nationality>=78.5 14    1 2 (0.07142857 0.92857143) *
##                    429) nationality>=96 76   16 2 (0.21052632 0.78947368) *
##                  215) height>=1.78 267   39 2 (0.14606742 0.85393258)  
##                    430) sport< 2.5 100   26 2 (0.26000000 0.74000000)  
##                      860) weight< 69.5 10    3 1 (0.70000000 0.30000000) *
##                      861) weight>=69.5 90   19 2 (0.21111111 0.78888889)  
##                       1722) weight< 74.5 53   16 2 (0.30188679 0.69811321)  
##                         3444) nationality>=36.5 46   16 2 (0.34782609 0.65217391)  
##                           6888) nationality< 96 22   10 2 (0.45454545 0.54545455)  
##                            13776) height< 1.835 12    4 1 (0.66666667 0.33333333) *
##                            13777) height>=1.835 10    2 2 (0.20000000 0.80000000) *
##                           6889) nationality>=96 24    6 2 (0.25000000 0.75000000)  
##                            13778) height>=1.855 8    3 1 (0.62500000 0.37500000) *
##                            13779) height< 1.855 16    1 2 (0.06250000 0.93750000) *
##                         3445) nationality< 36.5 7    0 2 (0.00000000 1.00000000) *
##                       1723) weight>=74.5 37    3 2 (0.08108108 0.91891892) *
##                    431) sport>=2.5 167   13 2 (0.07784431 0.92215569) *
##             27) sport>=5.5 439   72 2 (0.16400911 0.83599089)  
##               54) weight< 74.05124 326   64 2 (0.19631902 0.80368098)  
##                108) nationality< 77 140   37 2 (0.26428571 0.73571429)  
##                  216) nationality>=64 38   19 1 (0.50000000 0.50000000)  
##                    432) sport< 7.5 14    3 1 (0.78571429 0.21428571) *
##                    433) sport>=7.5 24    8 2 (0.33333333 0.66666667)  
##                      866) sport>=9.5 7    1 1 (0.85714286 0.14285714) *
##                      867) sport< 9.5 17    2 2 (0.11764706 0.88235294) *
##                  217) nationality< 64 102   18 2 (0.17647059 0.82352941)  
##                    434) nationality< 35 50   14 2 (0.28000000 0.72000000)  
##                      868) gold< 0.5 43   14 2 (0.32558140 0.67441860)  
##                       1736) nationality>=9 31   13 2 (0.41935484 0.58064516)  
##                         3472) sport>=10.5 8    2 1 (0.75000000 0.25000000) *
##                         3473) sport< 10.5 23    7 2 (0.30434783 0.69565217)  
##                           6946) height< 1.735 7    3 1 (0.57142857 0.42857143) *
##                           6947) height>=1.735 16    3 2 (0.18750000 0.81250000) *
##                       1737) nationality< 9 12    1 2 (0.08333333 0.91666667) *
##                      869) gold>=0.5 7    0 2 (0.00000000 1.00000000) *
##                    435) nationality>=35 52    4 2 (0.07692308 0.92307692) *
##                109) nationality>=77 186   27 2 (0.14516129 0.85483871)  
##                  218) nationality>=178.5 47   15 2 (0.31914894 0.68085106)  
##                    436) sport>=6.5 29   14 2 (0.48275862 0.51724138)  
##                      872) weight>=73.95 10    3 1 (0.70000000 0.30000000) *
##                      873) weight< 73.95 19    7 2 (0.36842105 0.63157895) *
##                    437) sport< 6.5 18    1 2 (0.05555556 0.94444444) *
##                  219) nationality< 178.5 139   12 2 (0.08633094 0.91366906) *
##               55) weight>=74.05124 113    8 2 (0.07079646 0.92920354) *
##          7) weight>=76.00098 2706  288 2 (0.10643016 0.89356984)  
##           14) height< 1.801 640  144 2 (0.22500000 0.77500000)  
##             28) sport< 3.5 125   60 2 (0.48000000 0.52000000)  
##               56) weight>=89.5 42    9 1 (0.78571429 0.21428571)  
##                112) sport>=2.5 35    5 1 (0.85714286 0.14285714) *
##                113) sport< 2.5 7    3 2 (0.42857143 0.57142857) *
##               57) weight< 89.5 83   27 2 (0.32530120 0.67469880)  
##                114) nationality< 121 54   25 2 (0.46296296 0.53703704)  
##                  228) height< 1.7805 38   16 1 (0.57894737 0.42105263)  
##                    456) sport>=1.5 26    8 1 (0.69230769 0.30769231) *
##                    457) sport< 1.5 12    4 2 (0.33333333 0.66666667) *
##                  229) height>=1.7805 16    3 2 (0.18750000 0.81250000) *
##                115) nationality>=121 29    2 2 (0.06896552 0.93103448) *
##             29) sport>=3.5 515   84 2 (0.16310680 0.83689320)  
##               58) height< 1.695 34   17 1 (0.50000000 0.50000000)  
##                116) sport< 24 18    4 1 (0.77777778 0.22222222) *
##                117) sport>=24 16    3 2 (0.18750000 0.81250000) *
##               59) height>=1.695 481   67 2 (0.13929314 0.86070686)  
##                118) weight>=107 17    7 1 (0.58823529 0.41176471) *
##                119) weight< 107 464   57 2 (0.12284483 0.87715517)  
##                  238) weight< 78.00875 109   25 2 (0.22935780 0.77064220)  
##                    476) sport< 18.5 83   23 2 (0.27710843 0.72289157)  
##                      952) sport>=15.5 13    3 1 (0.76923077 0.23076923) *
##                      953) sport< 15.5 70   13 2 (0.18571429 0.81428571) *
##                    477) sport>=18.5 26    2 2 (0.07692308 0.92307692) *
##                  239) weight>=78.00875 355   32 2 (0.09014085 0.90985915) *
##           15) height>=1.801 2066  144 2 (0.06969990 0.93030010)  
##             30) weight< 79.2 254   38 2 (0.14960630 0.85039370)  
##               60) sport>=25.5 20    9 1 (0.55000000 0.45000000)  
##                120) nationality< 45 9    3 1 (0.66666667 0.33333333) *
##                121) nationality>=45 11    5 2 (0.45454545 0.54545455) *
##               61) sport< 25.5 234   27 2 (0.11538462 0.88461538)  
##                122) nationality>=198 26    8 2 (0.30769231 0.69230769) *
##                123) nationality< 198 208   19 2 (0.09134615 0.90865385)  
##                  246) sport>=4.5 127   18 2 (0.14173228 0.85826772)  
##                    492) sport< 5.5 7    0 1 (1.00000000 0.00000000) *
##                    493) sport>=5.5 120   11 2 (0.09166667 0.90833333)  
##                      986) sport>=13 56    9 2 (0.16071429 0.83928571)  
##                       1972) sport< 19.5 29    9 2 (0.31034483 0.68965517)  
##                         3944) sport>=16 8    3 1 (0.62500000 0.37500000) *
##                         3945) sport< 16 21    4 2 (0.19047619 0.80952381) *
##                       1973) sport>=19.5 27    0 2 (0.00000000 1.00000000) *
##                      987) sport< 13 64    2 2 (0.03125000 0.96875000) *
##                  247) sport< 4.5 81    1 2 (0.01234568 0.98765432) *
##             31) weight>=79.2 1812  106 2 (0.05849890 0.94150110)  
##               62) sport< 5.5 718   68 2 (0.09470752 0.90529248)  
##                124) height< 1.833 71   23 2 (0.32394366 0.67605634)  
##                  248) weight>=98.5 10    2 1 (0.80000000 0.20000000) *
##                  249) weight< 98.5 61   15 2 (0.24590164 0.75409836)  
##                    498) nationality< 66.5 23   10 2 (0.43478261 0.56521739)  
##                      996) height< 1.824 10    3 1 (0.70000000 0.30000000) *
##                      997) height>=1.824 13    3 2 (0.23076923 0.76923077) *
##                    499) nationality>=66.5 38    5 2 (0.13157895 0.86842105) *
##                125) height>=1.833 647   45 2 (0.06955178 0.93044822)  
##                  250) sport>=4.5 126   30 2 (0.23809524 0.76190476)  
##                    500) height< 1.985 64   28 2 (0.43750000 0.56250000)  
##                     1000) nationality>=150.5 17    5 1 (0.70588235 0.29411765) *
##                     1001) nationality< 150.5 47   16 2 (0.34042553 0.65957447) *
##                    501) height>=1.985 62    2 2 (0.03225806 0.96774194) *
##                  251) sport< 4.5 521   15 2 (0.02879079 0.97120921) *
##               63) sport>=5.5 1094   38 2 (0.03473492 0.96526508)  
##                126) weight< 84.02505 277   24 2 (0.08664260 0.91335740)  
##                  252) nationality>=155.5 60   15 2 (0.25000000 0.75000000)  
##                    504) sport>=13 41   15 2 (0.36585366 0.63414634)  
##                     1008) sport< 19.5 15    6 1 (0.60000000 0.40000000) *
##                     1009) sport>=19.5 26    6 2 (0.23076923 0.76923077)  
##                       2018) sport>=25 10    4 1 (0.60000000 0.40000000) *
##                       2019) sport< 25 16    0 2 (0.00000000 1.00000000) *
##                    505) sport< 13 19    0 2 (0.00000000 1.00000000) *
##                  253) nationality< 155.5 217    9 2 (0.04147465 0.95852535) *
##                127) weight>=84.02505 817   14 2 (0.01713586 0.98286414) *
prp(modeloArbol, type = 2, extra = 2)
## Warning: labs do not fit even at cex 0.15, there may be some overplotting