#library(plyr)
#library(dplyr)

STUDENT DETAILS

ABHAS CHANDRA(S3664811) AND NICKY BOIT(S3646703)

PROBLEM STATEMENT

The collapse of reinforced concrete structures has caused a heavy damage to property and lives of the people in the recent decades. Investigations lead to the fact that the quality of concrete was below standards. It was therefore needed to achieve the required compressive strength and ductility of concrete in the design to attain the reliability of structures. Also, if the compressive strength of concrete greatly exceeds the specified strength, it seriously affects the ductile ratio of the structure. This also creates dead load in the structure.

Hence, we can state 3 things: 1.It is needed to achieve the required compressive strength and ductility of concrete in the design. 2. If the compressive strength of concrete greatly exceeds the specified strength, it will seriously affect the ductile ratio of the structure 3. If the deviation of compressive strength of concrete is over the limit, it causes imbalance to the ductile ratio of structure, and adversely influence the seismic capability of the structure.

Due to variability in the strength properties of concrete, the compliance with the desired specifications is not met. Variations in strength may occur due to improper mixing of materials, varied w/c ratio for different batches, change in batching plant operator, proportions of raw materials etc. The compressive strength of the concrete obtained after 28 days of ageing, goes drastically high. That excessive value creates a dead load in the structure. And ultimately takes the cost of production high, incurring loss to the company in the long run.

Here, we address this issue. This will be done using various visualisations and analysis. The aim is to predict compressive strength of the concrete based on a particular combination of values of fields/parameters. We will create models using different algorithms and choose the best, based on accuracy. There will be thorough inter models as well as intra( i.e hyperparamter tuning) model comparison. We will be building three classification models – Logistic regression model, Kernel Support Vector Machine (SVM) (Gaussian) model, and Random Forest Classification model and test the accuracy of prediction.Finally we will draw a comparison amongst all the models in the result section of the report.

LOAD PACKAGES

#install.packages('caTools')
#install.packages('caret')
#install.packages('e1071')
#install.packages('randomForest')

library(readxl)
library(caTools)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(e1071)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin

DATA

The dataset is sourced from Simplex Infrastructures Ltd. which is a diversified company established in 1924 and executing projects in several sectors like Transport, Energy & Power, Mining, Buildings, Marine, Real Estate etc. It is named with the heading - “CONCRETE CUBE REGISTER FOR TOWER 5 & 6 & POD/MRSS CUBES STRENGTH DETAILS”. Following is the link for the data named Simplex_Cube_Register.

https://drive.google.com/open?id=1_gCfyRD3TgWspTkn2CYopoD1CG1fxhL0

This is a private data obtained from Mr.Rishi Kathed, enrolled in Project Management course at RMIT University. His undergraduate research thesis, that drove us to delve deeper into this data. is at the following link:

https://drive.google.com/open?id=1hPvsxyLPxNNJrcSFymAPyqQvFIkmz0MN

Details about the data: 1. It contains a total of 2986 rows and 16 columns. 2. This data set contains details about the strength of different concrete grades, taken from different location and aged 7 days and 28 days respectively. The details of each concrete grade are spanned amongst 16 columns – grade, location, structure, source, weight, quantity, average strength, density, compressive strength, etc.

cube <- read_excel("C:/Users/Nicky Boit/Desktop/Machine learning main/simplex Cube  Register.xlsx",
                                                                                               skip=2)
head(cube)
## # A tibble: 6 x 18
##   Sr.No `CUBE ID` `Date of Casting` `Concrete Grade` Location Structure   
##   <dbl>     <dbl> <chr>             <chr>            <chr>    <chr>       
## 1     1         1 42314             M-15             T-5      T-5 @ B4 LE~
## 2    NA         2 <NA>              <NA>             <NA>     <NA>        
## 3    NA         3 <NA>              <NA>             <NA>     <NA>        
## 4    NA         4 <NA>              <NA>             <NA>     <NA>        
## 5    NA         5 <NA>              <NA>             <NA>     <NA>        
## 6    NA         6 <NA>              <NA>             <NA>     <NA>        
## # ... with 12 more variables: `Concrete Source` <chr>, Qty. <chr>, `Date
## #   of Testing` <chr>, Age <dbl>, `Weight in Kg.` <dbl>, `Density in
## #   MT/m3` <dbl>, `Load in KN` <dbl>, `Comp. Strength in N/mm2` <dbl>,
## #   `Avg. Strength in N/mm2` <dbl>, `Comp. Strength in %` <dbl>,
## #   Remark <lgl>, X__1 <lgl>

DATA CLEANING

Certain columns were dropped from the table which were not of significance for model building. Since the data has been imported as an excel file, it contains a lot of ‘NA’ values which needs to be cleaned. In excel file, some columns have rowspans because of common values among some rows. R reads the rowspans in a different way, suppose if there is a rowspan of n rows(or same value for n rows), it takes the rowspan value and assign it to 1st row and 2:n will get values as NA. As we can see the similiar pattern throughout the sheets, which can be fixed by small chunk of while code chunk, which takes the row value at first row and fill remaining rows with that value until we get row with already having new value. The target feature contained some impossible values such as Compressive strength in % being equal to 0 and values greater than 200 which have been removed. Concrete source and concrete grade columns contained similar labels which have been made uniform. Trimming of Qty column was done and made uniform. Encoding for concrete source and concrete grade column was performed. Age was converted to categorical feature. Missing data from certain columns were removed. Numerical data columns were converted double. Encoding of target feature as factor was done by splitting it into two range of values - 1) 0-100 and, 2) 100-200 and ten labelling them.

#Columns dropped
cube$Sr.No <- NULL
cube$Remark <- NULL
cube$`CUBE ID` <- NULL
cube$`Date of Testing` <- NULL
cube$`Date of Casting` <- NULL
cube$X__1 <- NULL
cube <- cube[,-(2:3),drop=FALSE]
cube <- cube[,-(8:9),drop=FALSE]

#subdivision of rowspan and replicating the rowspan value into the newly created 'NA'
columnsModification <- function(colname){
  i <- 1
  temp <- ""
  while (i < length(cube[[colname]])) {
    if(!is.na(cube[[colname]][i])){
      temp <- cube[[colname]][i]
    } else{
      cube[[colname]][i] <- temp
    }
    i <- i+1 }
  return(cube)
}
colNames <- c('Concrete Grade', 'Location', 'Structure','Age','Qty.','Concrete Source','Avg. Str
ength in N/mm2','Comp. Strength in %')
for(i in 1:length(colNames))
  cube <- columnsModification(colNames[i])

#Removing impossible values
cube<-cube[!(cube$`Comp. Strength in %`==0 | cube$`Comp. Strength in %`>=200),]
cube<-cube[!(is.na(cube$Age)>0),] #One corrupt row with NA values removed  
summary(cube)
##  Concrete Grade     Concrete Source        Qty.                Age       
##  Length:2313        Length:2313        Length:2313        Min.   : 7.00  
##  Class :character   Class :character   Class :character   1st Qu.: 7.00  
##  Mode  :character   Mode  :character   Mode  :character   Median : 7.00  
##                                                           Mean   :17.69  
##                                                           3rd Qu.:28.00  
##                                                           Max.   :56.00  
##                                                                          
##  Weight in Kg.   Density in MT/m3   Load in KN     Comp. Strength in %
##  Min.   :7.705   Min.   :   0     Min.   :  27.5   Min.   : 18.87     
##  1st Qu.:8.402   1st Qu.:2489     1st Qu.: 696.4   1st Qu.: 73.07     
##  Median :8.520   Median :2524     Median : 983.0   Median : 88.32     
##  Mean   :8.515   Mean   :2519     Mean   : 977.0   Mean   : 93.16     
##  3rd Qu.:8.642   3rd Qu.:2560     3rd Qu.:1279.7   3rd Qu.:113.45     
##  Max.   :9.088   Max.   :2693     Max.   :2222.2   Max.   :166.38     
##  NA's   :3                        NA's   :5
#Making the column uniform 
cube$`Concrete Source` <- gsub('ACC PLANT', 'ACC', cube$`Concrete Source`)
cube$`Concrete Source` <- gsub('ACC PLANT GGBS', 'ACC', cube$`Concrete Source`)
cube$`Concrete Source` <- gsub('ACC GGBS', 'ACC', cube$`Concrete Source`)
cube$`Concrete Grade` <- gsub('M-40', 'M40', cube$`Concrete Grade`)
cube$`Concrete Grade` <- gsub('M-50', 'M50', cube$`Concrete Grade`)
cube$`Concrete Grade` <- gsub('M-70', 'M70', cube$`Concrete Grade`)
cube$`Concrete Grade` <- gsub('M-10', 'M10', cube$`Concrete Grade`)
cube$`Concrete Grade` <- gsub('M-15', 'M15', cube$`Concrete Grade`)

#Trimming of Qty column
cube$Qty. <- gsub('m3' , '' , cube$Qty.)
cube$Qty. <- gsub('M3' , '' , cube$Qty.)
trimws(cube$Qty., which = c("both", "left", "right"))
##    [1] "84"    "84"    "84"    "84"    "84"    "84"    "84"    "84"   
##    [9] "84"    "84"    "84"    "84"    "113"   "113"   "113"   "113"  
##   [17] "113"   "113"   "113"   "113"   "113"   "113"   "113"   "113"  
##   [25] "20"    "20"    "20"    "20"    "20"    "20"    "120"   "120"  
##   [33] "120"   "120"   "120"   "120"   "120"   "120"   "120"   "120"  
##   [41] "120"   "120"   "120"   "120"   "120"   "120"   "120"   "120"  
##   [49] "131"   "131"   "131"   "131"   "131"   "131"   "131"   "131"  
##   [57] "131"   "131"   "131"   "131"   "131"   "131"   "131"   "131"  
##   [65] "131"   "131"   "50"    "50"    "50"    "50"    "50"    "50"   
##   [73] "50"    "50"    "50"    "50"    "50"    "50"    "36"    "36"   
##   [81] "36"    "36"    "36"    "36"    "36"    "36"    "36"    "36"   
##   [89] "36"    "36"    "32"    "32"    "32"    "32"    "32"    "32"   
##   [97] "32"    "32"    "32"    "32"    "32"    "32"    "32"    "32"   
##  [105] "32"    "32"    "32"    "32"    "72"    "72"    "72"    "72"   
##  [113] "72"    "72"    "72"    "72"    "72"    "72"    "72"    "72"   
##  [121] "27"    "27"    "27"    "27"    "27"    "27"    "27"    "27"   
##  [129] "27"    "27"    "27"    "27"    "38"    "38"    "38"    "38"   
##  [137] "38"    "38"    "38"    "38"    "38"    "38"    "38"    "38"   
##  [145] "17"    "17"    "17"    "17"    "17"    "17"    "17"    "17"   
##  [153] "17"    "17"    "17"    "17"    "22"    "22"    "22"    "22"   
##  [161] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "22"   
##  [169] "22"    "22"    "22"    "45"    "45"    "45"    "45"    "45"   
##  [177] "45"    "45"    "45"    "45"    "45"    "45"    "45"    "46"   
##  [185] "46"    "46"    "46"    "46"    "46"    "46"    "46"    "46"   
##  [193] "46"    "46"    "46"    "21"    "21"    "21"    "21"    "21"   
##  [201] "21"    "21"    "21"    "21"    "21"    "21"    "21"    "28"   
##  [209] "28"    "28"    "28"    "28"    "28"    "28"    "28"    "28"   
##  [217] "28"    "28"    "28"    "38"    "38"    "38"    "38"    "38"   
##  [225] "38"    "38"    "38"    "38"    "38"    "38"    "38"    "16"   
##  [233] "16"    "16"    "16"    "16"    "16"    "22"    "22"    "22"   
##  [241] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "22"   
##  [249] "22"    "21.5"  "21.5"  "21.5"  "21.5"  "21.5"  "21.5"  "21.5" 
##  [257] "21.5"  "21.5"  "21.5"  "21.5"  "21.5"  "22.5"  "22.5"  "22.5" 
##  [265] "22.5"  "22.5"  "22.5"  "22.5"  "22.5"  "22.5"  "22.5"  "22.5" 
##  [273] "22.5"  "18"    "18"    "18"    "18"    "18"    "18"    "18"   
##  [281] "18"    "18"    "18"    "18"    "18"    "32"    "32"    "32"   
##  [289] "32"    "32"    "32"    "32"    "32"    "32"    "32"    "32"   
##  [297] "32"    "52"    "52"    "52"    "52"    "52"    "52"    "52"   
##  [305] "52"    "52"    "52"    "52"    "52"    "50"    "50"    "50"   
##  [313] "50"    "50"    "50"    "50"    "50"    "50"    "50"    "50"   
##  [321] "50"    "25"    "25"    "25"    "25"    "25"    "25"    "25"   
##  [329] "25"    "25"    "25"    "25"    "25"    "17"    "17"    "17"   
##  [337] "17"    "17"    "17"    "17"    "17"    "17"    "17"    "17"   
##  [345] "17"    "33"    "33"    "33"    "33"    "33"    "33"    "33"   
##  [353] "33"    "33"    "33"    "33"    "33"    "28"    "28"    "28"   
##  [361] "28"    "28"    "28"    "28"    "28"    "28"    "28"    "28"   
##  [369] "28"    "29.5"  "29.5"  "29.5"  "29.5"  "29.5"  "29.5"  "29.5" 
##  [377] "29.5"  "29.5"  "29.5"  "29.5"  "29.5"  "178"   "178"   "178"  
##  [385] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
##  [393] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
##  [401] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
##  [409] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
##  [417] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "11"   
##  [425] "11"    "11"    "11"    "11"    "11"    "11"    "11"    "11"   
##  [433] "11"    "11"    "11"    "22"    "22"    "22"    "22"    "22"   
##  [441] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "16"   
##  [449] "16"    "16"    "16"    "16"    "16"    "16"    "16"    "16"   
##  [457] "16"    "16"    "16"    "155"   "155"   "155"   "155"   "155"  
##  [465] "155"   "155"   "155"   "155"   "155"   "155"   "155"   "155"  
##  [473] "155"   "155"   "155"   "155"   "155"   "155"   "155"   "155"  
##  [481] "155"   "155"   "155"   "155"   "155"   "155"   "155"   "155"  
##  [489] "155"   "155"   "155"   "155"   "155"   "155"   "155"   "155"  
##  [497] "155"   "155"   "155"   "155"   "155"   "40"    "40"    "40"   
##  [505] "40"    "40"    "40"    "40"    "40"    "40"    "40"    "40"   
##  [513] "40"    "40"    "40"    "40"    "40"    "40"    "40"    "25"   
##  [521] "25"    "25"    "25"    "25"    "25"    "25"    "25"    "25"   
##  [529] "25"    "25"    "25"    "25"    "25"    "25"    "25"    "25"   
##  [537] "25"    "104"   "104"   "104"   "104"   "104"   "104"   "104"  
##  [545] "104"   "104"   "104"   "104"   "104"   "104"   "104"   "104"  
##  [553] "104"   "104"   "104"   "104"   "104"   "104"   "104"   "104"  
##  [561] "104"   "104"   "104"   "104"   "192"   "192"   "192"   "192"  
##  [569] "192"   "192"   "192"   "192"   "192"   "192"   "192"   "192"  
##  [577] "192"   "192"   "192"   "192"   "192"   "192"   "192"   "192"  
##  [585] "192"   "192"   "192"   "192"   "192"   "192"   "192"   "192"  
##  [593] "192"   "192"   "192"   "192"   "192"   "192"   "192"   "192"  
##  [601] "192"   "192"   "192"   "192"   "192"   "192"   "192"   "192"  
##  [609] "192"   "192"   "192"   "192"   "36"    "36"    "36"    "36"   
##  [617] "36"    "36"    "36"    "36"    "36"    "36"    "36"    "36"   
##  [625] "36"    "36"    "36"    "36"    "36"    "36"    "36"    "36"   
##  [633] "36"    "36"    "36"    "36"    "8.5"   "8.5"   "8.5"   "8.5"  
##  [641] "8.5"   "8.5"   "83"    "83"    "83"    "83"    "83"    "83"   
##  [649] "83"    "83"    "83"    "83"    "83"    "83"    "83"    "83"   
##  [657] "83"    "83"    "83"    "83"    "83"    "83"    "83"    "83"   
##  [665] "83"    "83"    "83"    "83"    "83"    "83"    "83"    "83"   
##  [673] "100"   "100"   "100"   "100"   "100"   "100"   "800"   "800"  
##  [681] "800"   "800"   "800"   "800"   "800"   "800"   "800"   "800"  
##  [689] "800"   "800"   "800"   "800"   "800"   "800"   "800"   "800"  
##  [697] "800"   "800"   "800"   "800"   "800"   "800"   "800"   "800"  
##  [705] "800"   "800"   "800"   "800"   "300"   "300"   "300"   "300"  
##  [713] "300"   "300"   "300"   "300"   "300"   "300"   "300"   "300"  
##  [721] "344"   "344"   "344"   "344"   "344"   "344"   "344"   "344"  
##  [729] "344"   "344"   "344"   "344"   "84"    "84"    "84"    "84"   
##  [737] "84"    "84"    "84"    "84"    "84"    "84"    "84"    "84"   
##  [745] "84"    "84"    "84"    "84"    "84"    "84"    "84"    "84"   
##  [753] "84"    "84"    "84"    "84"    "84"    "84"    "84"    "84"   
##  [761] "84"    "84"    "6"     "6"     "6"     "6"     "6"     "6"    
##  [769] "6"     "6"     "6"     "6"     "6"     "6"     "144"   "144"  
##  [777] "144"   "144"   "144"   "144"   "144"   "144"   "144"   "144"  
##  [785] "144"   "144"   "144"   "144"   "144"   "144"   "144"   "144"  
##  [793] "144"   "144"   "144"   "144"   "144"   "144"   "144"   "144"  
##  [801] "144"   "144"   "144"   "144"   "144"   "144"   "144"   "144"  
##  [809] "144"   "144"   "52"    "52"    "52"    "52"    "52"    "52"   
##  [817] "52"    "52"    "52"    "52"    "52"    "52"    "52"    "52"   
##  [825] "52"    "52"    "52"    "52"    "52"    "52"    "52"    "52"   
##  [833] "52"    "52"    "52"    "52"    "52"    "52"    "52"    "52"   
##  [841] "8"     "8"     "8"     "56"    "56"    "56"    "56"    "56"   
##  [849] "56"    "56"    "56"    "56"    "56"    "56"    "56"    "56"   
##  [857] "56"    "56"    "56"    "56"    "56"    "56"    "56"    "56"   
##  [865] "56"    "56"    "56"    "56"    "56"    "56"    "56"    "56"   
##  [873] "56"    "56"    "56"    "56"    "56"    "56"    "56"    "173"  
##  [881] "173"   "173"   "173"   "173"   "173"   "173"   "173"   "173"  
##  [889] "173"   "173"   "173"   "173"   "173"   "173"   "173"   "173"  
##  [897] "173"   "173"   "173"   "173"   "173"   "173"   "173"   "173"  
##  [905] "173"   "173"   "173"   "173"   "173"   "173"   "173"   "173"  
##  [913] "173"   "173"   "173"   "755"   "755"   "755"   "755"   "755"  
##  [921] "755"   "755"   "755"   "755"   "755"   "755"   "755"   "755"  
##  [929] "755"   "755"   "755"   "755"   "755"   "755"   "755"   "755"  
##  [937] "755"   "755"   "755"   "755"   "755"   "755"   "755"   "755"  
##  [945] "755"   "755"   "755"   "755"   "755"   "755"   "755"   "755"  
##  [953] "755"   "755"   "755"   "755"   "755"   "755"   "755"   "755"  
##  [961] "755"   "755"   "755"   "755"   "755"   "755"   "719.5" "719.5"
##  [969] "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5"
##  [977] "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5"
##  [985] "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5"
##  [993] "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5" "719.5"
## [1001] "719.5" "719.5" "719.5" "719.5" "719.5" "42"    "42"    "42"   
## [1009] "42"    "42"    "42"    "42"    "42"    "42"    "42"    "42"   
## [1017] "42"    "42"    "42"    "42"    "42"    "42"    "42"    "30"   
## [1025] "30"    "30"    "30"    "30"    "30"    "30"    "30"    "30"   
## [1033] "30"    "30"    "30"    "30"    "30"    "30"    "30"    "30"   
## [1041] "30"    "80"    "80"    "80"    "80"    "80"    "80"    "80"   
## [1049] "80"    "80"    "80"    "80"    "80"    "80"    "80"    "80"   
## [1057] "80"    "80"    "80"    "80"    "80"    "80"    "80"    "80"   
## [1065] "80"    "54"    "54"    "54"    "54"    "54"    "54"    "54"   
## [1073] "54"    "54"    "54"    "54"    "54"    "54"    "54"    "54"   
## [1081] "54"    "54"    "54"    "54"    "54"    "54"    "54"    "54"   
## [1089] "54"    "5"     "5"     "5"     "5"     "5"     "5"     "10"   
## [1097] "10"    "10"    "10"    "10"    "10"    "10"    "10"    "10"   
## [1105] "10"    "10"    "10"    "5"     "5"     "5"     "5"     "5"    
## [1113] "5"     "6"     "6"     "6"     "6"     "6"     "6"     "5.5"  
## [1121] "5.5"   "5.5"   "5.5"   "5.5"   "5.5"   "5"     "5"     "5"    
## [1129] "5"     "5"     "5"     "5"     "5"     "5"     "5"     "5"    
## [1137] "5"     "5"     "5"     "5"     "5"     "5"     "5"     "24"   
## [1145] "24"    "24"    "24"    "24"    "24"    "24"    "24"    "24"   
## [1153] "24"    "24"    "24"    "24"    "24"    "24"    "24"    "24"   
## [1161] "24"    "7.5"   "7.5"   "7.5"   "7.5"   "7.5"   "7.5"   "7.5"  
## [1169] "7.5"   "7.5"   "7.5"   "7.5"   "7.5"   "22"    "22"    "22"   
## [1177] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "22"   
## [1185] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "5.5"  
## [1193] "5.5"   "5.5"   "5.5"   "5.5"   "5.5"   "5.5"   "5.5"   "5.5"  
## [1201] "5.5"   "5.5"   "5.5"   "3"     "3"     "3"     "3"     "3"    
## [1209] "3"     "36"    "36"    "36"    "36"    "36"    "36"    "36"   
## [1217] "36"    "36"    "36"    "36"    "36"    "36"    "36"    "36"   
## [1225] "36"    "36"    "36"    "36"    "36"    "36"    "36"    "36"   
## [1233] "36"    "54"    "54"    "54"    "54"    "54"    "54"    "54"   
## [1241] "54"    "54"    "54"    "54"    "54"    "54"    "54"    "54"   
## [1249] "54"    "54"    "54"    "54"    "54"    "54"    "54"    "54"   
## [1257] "54"    "6"     "6"     "6"     "6"     "6"     "6"     "48"   
## [1265] "48"    "48"    "48"    "48"    "48"    "48"    "48"    "48"   
## [1273] "48"    "48"    "48"    "48"    "48"    "48"    "48"    "48"   
## [1281] "48"    "48"    "48"    "48"    "48"    "48"    "48"    "23"   
## [1289] "23"    "23"    "23"    "23"    "23"    "23"    "23"    "23"   
## [1297] "23"    "23"    "23"    "23"    "23"    "23"    "23"    "23"   
## [1305] "23"    "4"     "4"     "4"     "4"     "4"     "4"     "14"   
## [1313] "14"    "14"    "14"    "14"    "14"    "14"    "14"    "14"   
## [1321] "14"    "14"    "14"    "16"    "16"    "16"    "16"    "16"   
## [1329] "16"    "16"    "16"    "16"    "16"    "16"    "16"    "17"   
## [1337] "17"    "17"    "17"    "17"    "17"    "17"    "17"    "17"   
## [1345] "17"    "17"    "17"    "17"    "17"    "17"    "17"    "17"   
## [1353] "17"    "24"    "24"    "24"    "24"    "24"    "24"    "24"   
## [1361] "24"    "24"    "24"    "24"    "24"    "24"    "24"    "24"   
## [1369] "24"    "24"    "24"    "70"    "70"    "70"    "70"    "70"   
## [1377] "70"    "70"    "70"    "70"    "70"    "70"    "70"    "70"   
## [1385] "70"    "70"    "70"    "70"    "70"    "70"    "70"    "70"   
## [1393] "70"    "70"    "70"    "70"    "70"    "70"    "70"    "70"   
## [1401] "70"    "12"    "12"    "12"    "12"    "12"    "12"    "12"   
## [1409] "12"    "12"    "12"    "12"    "12"    "28"    "28"    "28"   
## [1417] "28"    "28"    "28"    "28"    "28"    "28"    "28"    "28"   
## [1425] "28"    "28"    "28"    "28"    "28"    "28"    "28"    "3.5"  
## [1433] "3.5"   "3.5"   "3.5"   "3.5"   "3.5"   "5"     "5"     "5"    
## [1441] "5"     "5"     "5"     "3"     "3"     "3"     "3"     "3"    
## [1449] "3"     "3"     "3"     "3"     "6"     "6"     "6"     "6"    
## [1457] "6"     "6"     "6"     "6"     "6"     "14.5"  "14.5"  "14.5" 
## [1465] "14.5"  "14.5"  "14.5"  "14.5"  "14.5"  "14.5"  "14.5"  "14.5" 
## [1473] "14.5"  "14.5"  "14.5"  "14.5"  "20"    "20"    "20"    "20"   
## [1481] "20"    "20"    "20"    "20"    "20"    "20"    "20"    "20"   
## [1489] "20"    "20"    "20"    "20"    "20"    "20"    "20"    "20"   
## [1497] "20"    "3"     "3"     "3"     "3"     "3"     "3"     "29.0" 
## [1505] "29.0"  "29.0"  "29.0"  "29.0"  "29.0"  "29.0"  "29.0"  "29.0" 
## [1513] "29.0"  "29.0"  "29.0"  "29.0"  "29.0"  "29.0"  "29.0"  "29.0" 
## [1521] "29.0"  "98"    "98"    "98"    "98"    "98"    "98"    "98"   
## [1529] "98"    "98"    "98"    "98"    "98"    "98"    "98"    "98"   
## [1537] "98"    "98"    "98"    "98"    "98"    "98"    "98"    "98"   
## [1545] "98"    "98"    "98"    "98"    "98"    "98"    "98"    "3"    
## [1553] "3"     "3"     "3"     "3"     "3"     "23"    "23"    "23"   
## [1561] "23"    "23"    "23"    "23"    "23"    "23"    "23"    "23"   
## [1569] "23"    "23"    "23"    "23"    "23"    "23"    "23"    "3"    
## [1577] "3"     "3"     "3"     "3"     "3"     "9"     "9"     "9"    
## [1585] "9"     "9"     "9"     "9"     "9"     "9"     "9"     "9"    
## [1593] "9"     "6.5"   "6.5"   "6.5"   "6.5"   "6.5"   "6.5"   "6.5"  
## [1601] "6.5"   "6.5"   "6.5"   "6.5"   "6.5"   "49"    "49"    "49"   
## [1609] "49"    "49"    "49"    "49"    "49"    "49"    "49"    "49"   
## [1617] "49"    "49"    "49"    "49"    "49"    "49"    "49"    "49"   
## [1625] "49"    "49"    "49"    "49"    "49"    "32"    "32"    "32"   
## [1633] "32"    "32"    "32"    "32"    "32"    "32"    "32"    "32"   
## [1641] "32"    "32"    "32"    "32"    "32"    "32"    "32"    "4"    
## [1649] "4"     "4"     "4"     "4"     "4"     "11"    "11"    "11"   
## [1657] "11"    "11"    "11"    "11"    "11"    "11"    "11"    "11"   
## [1665] "11"    "6"     "6"     "6"     "6"     "6"     "6"     "10"   
## [1673] "10"    "10"    "10"    "10"    "10"    "10"    "10"    "10"   
## [1681] "10"    "10"    "10"    "80.5"  "80.5"  "80.5"  "80.5"  "80.5" 
## [1689] "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5" 
## [1697] "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5" 
## [1705] "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "80.5"  "5.5"   "5.5"  
## [1713] "5.5"   "5.5"   "5.5"   "5.5"   "4"     "4"     "4"     "4"    
## [1721] "4"     "4"     "14.5"  "14.5"  "14.5"  "14.5"  "14.5"  "14.5" 
## [1729] "14.5"  "14.5"  "14.5"  "14.5"  "14.5"  "14.5"  "15.5"  "15.5" 
## [1737] "15.5"  "15.5"  "15.5"  "15.5"  "15.5"  "15.5"  "15.5"  "15.5" 
## [1745] "15.5"  "15.5"  "15.5"  "15.5"  "15.5"  "15.5"  "15.5"  "15.5" 
## [1753] "2"     "2"     "2"     "2"     "2"     "2"     "104.5" "104.5"
## [1761] "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5"
## [1769] "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5"
## [1777] "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5"
## [1785] "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5" "104.5"
## [1793] "104.5" "104.5" "6"     "6"     "6"     "6"     "6"     "6"    
## [1801] "2"     "2"     "2"     "2"     "2"     "2"     "53.5"  "53.5" 
## [1809] "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5" 
## [1817] "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5" 
## [1825] "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5"  "53.5" 
## [1833] "53.5"  "53.5"  "53.5"  "53.5"  "23"    "23"    "23"    "23"   
## [1841] "23"    "23"    "23"    "23"    "23"    "23"    "23"    "23"   
## [1849] "23"    "23"    "23"    "23"    "23"    "23"    "30.5"  "30.5" 
## [1857] "30.5"  "30.5"  "30.5"  "30.5"  "30.5"  "30.5"  "30.5"  "30.5" 
## [1865] "30.5"  "30.5"  "30.5"  "30.5"  "30.5"  "30.5"  "30.5"  "30.5" 
## [1873] "20"    "20"    "20"    "20"    "20"    "20"    "20"    "20"   
## [1881] "20"    "20"    "20"    "20"    "33"    "33"    "33"    "33"   
## [1889] "33"    "33"    "33"    "33"    "33"    "33"    "33"    "33"   
## [1897] "33"    "33"    "33"    "33"    "33"    "33"    "19"    "19"   
## [1905] "19"    "19"    "19"    "19"    "19"    "19"    "19"    "19"   
## [1913] "19"    "19"    "41"    "41"    "41"    "41"    "41"    "41"   
## [1921] "41"    "41"    "41"    "41"    "41"    "41"    "41"    "41"   
## [1929] "41"    "41"    "41"    "41"    "8.5"   "8.5"   "8.5"   "8.5"  
## [1937] "8.5"   "8.5"   "8.5"   "8.5"   "8.5"   "8.5"   "8.5"   "8.5"  
## [1945] "5.5"   "5.5"   "5.5"   "5.5"   "5.5"   "5.5"   "5"     "5"    
## [1953] "5"     "5"     "5"     "5"     "27.5"  "27.5"  "27.5"  "27.5" 
## [1961] "27.5"  "27.5"  "27.5"  "27.5"  "27.5"  "27.5"  "27.5"  "27.5" 
## [1969] "12"    "12"    "12"    "12"    "12"    "12"    "12"    "12"   
## [1977] "12"    "12"    "12"    "12"    "178"   "178"   "178"   "178"  
## [1985] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
## [1993] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
## [2001] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
## [2009] "178"   "178"   "178"   "178"   "178"   "178"   "178"   "178"  
## [2017] "24"    "24"    "24"    "24"    "24"    "24"    "24"    "24"   
## [2025] "24"    "24"    "24"    "24"    "24"    "24"    "24"    "24"   
## [2033] "24"    "24"    "17"    "17"    "17"    "17"    "17"    "17"   
## [2041] "17"    "17"    "17"    "17"    "17"    "17"    "17.5"  "17.5" 
## [2049] "17.5"  "17.5"  "17.5"  "17.5"  "17.5"  "17.5"  "17.5"  "17.5" 
## [2057] "17.5"  "17.5"  "98"    "98"    "98"    "98"    "98"    "98"   
## [2065] "98"    "98"    "98"    "98"    "98"    "98"    "98"    "98"   
## [2073] "98"    "98"    "98"    "98"    "98"    "98"    "98"    "98"   
## [2081] "98"    "98"    "98"    "98"    "98"    "3.5"   "3.5"   "3.5"  
## [2089] "3.5"   "3.5"   "3.5"   "21"    "21"    "21"    "21"    "21"   
## [2097] "21"    "21"    "21"    "21"    "21"    "21"    "21"    "21"   
## [2105] "21"    "21"    "21"    "21"    "21"    "94"    "94"    "94"   
## [2113] "94"    "94"    "94"    "94"    "94"    "94"    "94"    "94"   
## [2121] "94"    "94"    "94"    "94"    "94"    "94"    "94"    "94"   
## [2129] "94"    "94"    "94"    "94"    "94"    "94"    "94"    "94"   
## [2137] "94"    "94"    "94"    "10.5"  "10.5"  "10.5"  "10.5"  "10.5" 
## [2145] "10.5"  "10.5"  "10.5"  "10.5"  "10.5"  "10.5"  "10.5"  "80"   
## [2153] "80"    "80"    "80"    "80"    "80"    "80"    "80"    "80"   
## [2161] "80"    "80"    "80"    "80"    "80"    "80"    "80"    "80"   
## [2169] "80"    "80"    "80"    "80"    "80"    "80"    "80"    "80"   
## [2177] "80"    "80"    "80"    "80"    "80"    "22"    "22"    "22"   
## [2185] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "22"   
## [2193] "22"    "22"    "22"    "22"    "22"    "22"    "22"    "87"   
## [2201] "87"    "87"    "87"    "87"    "87"    "87"    "87"    "87"   
## [2209] "87"    "87"    "87"    "87"    "87"    "87"    "87"    "87"   
## [2217] "87"    "87"    "87"    "87"    "87"    "87"    "87"    "87"   
## [2225] "87"    "87"    "87"    "87"    "87"    "81"    "81"    "81"   
## [2233] "81"    "81"    "81"    "81"    "81"    "81"    "81"    "81"   
## [2241] "81"    "81"    "81"    "81"    "2.5"   "2.5"   "2.5"   "10"   
## [2249] "10"    "10"    "10"    "10"    "10"    "10"    "10"    "10"   
## [2257] "16"    "16"    "16"    "16"    "16"    "16"    "4"     "4"    
## [2265] "4"     "3.5"   "3.5"   "3.5"   "10"    "10"    "10"    "10"   
## [2273] "10"    "10"    "9.5"   "9.5"   "9.5"   "9.5"   "9.5"   "9.5"  
## [2281] "17"    "17"    "17"    "17"    "17"    "17"    "3"     "3"    
## [2289] "3"     "9"     "9"     "9"     "5"     "5"     "5"     "26.5" 
## [2297] "26.5"  "26.5"  "26.5"  "26.5"  "26.5"  "26.5"  "26.5"  "26.5" 
## [2305] "7.5"   "7.5"   "7.5"   "8"     "8"     "8"     "8"     "8"    
## [2313] "8"
#Encoding for concrete source and concrete grade features
cube$`Concrete Source` = factor(cube$`Concrete Source`,
                                levels = c('ACC', 'Lafarge' ),
                                labels = c(0, 1))

cube$`Concrete Grade` = factor(cube$`Concrete Grade`,
                                levels = c('M10', 'M15' , 'M40' , 'M50' , 'M70'),
                                labels = c(0, 1 , 2, 3 , 4))

#Conversion of numerical feature Age to categorical
cube$Age = factor(cube$Age,levels = unique(cube$Age),labels = seq(0,length(unique(cube$Age))-1))

#Handling of missing data
cube$Qty. = ifelse(is.na(cube$Qty.),
                     ave(cube$Qty., FUN = function(x) mean(x, na.rm = TRUE)),
                   cube$Qty.)

cube$`Weight in Kg.` = ifelse(is.na(cube$`Weight in Kg.`),
                   ave(cube$`Weight in Kg.`, FUN = function(x) mean(x, na.rm = TRUE)),
                   cube$`Weight in Kg.`)

cube$`Density in MT/m3` = ifelse(is.na(cube$`Density in MT/m3`),
                              ave(cube$`Density in MT/m3`, FUN = function(x) mean(x, na.rm = TRUE)),
                              cube$`Density in MT/m3`)

cube$`Load in KN` = ifelse(is.na(cube$`Load in KN`),
                                 ave(cube$`Load in KN`, FUN = function(x) mean(x, na.rm = TRUE)),
                           cube$`Load in KN`)

cube$`Comp. Strength in %` = ifelse(is.na(cube$`Comp. Strength in %`),
                           ave(cube$`Comp. Strength in %`, FUN = function(x) mean(x, na.rm = TRUE)),
                           cube$`Comp. Strength in %`)

# 
# #Conversion of integer data into double 
as.double(cube$Qty.)
##    [1]  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0
##   [12]  84.0 113.0 113.0 113.0 113.0 113.0 113.0 113.0 113.0 113.0 113.0
##   [23] 113.0 113.0  20.0  20.0  20.0  20.0  20.0  20.0 120.0 120.0 120.0
##   [34] 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
##   [45] 120.0 120.0 120.0 120.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0
##   [56] 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0
##   [67]  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0
##   [78]  50.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0
##   [89]  36.0  36.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0
##  [100]  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  72.0  72.0
##  [111]  72.0  72.0  72.0  72.0  72.0  72.0  72.0  72.0  72.0  72.0  27.0
##  [122]  27.0  27.0  27.0  27.0  27.0  27.0  27.0  27.0  27.0  27.0  27.0
##  [133]  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0
##  [144]  38.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0
##  [155]  17.0  17.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0
##  [166]  22.0  22.0  22.0  22.0  22.0  22.0  45.0  45.0  45.0  45.0  45.0
##  [177]  45.0  45.0  45.0  45.0  45.0  45.0  45.0  46.0  46.0  46.0  46.0
##  [188]  46.0  46.0  46.0  46.0  46.0  46.0  46.0  46.0  21.0  21.0  21.0
##  [199]  21.0  21.0  21.0  21.0  21.0  21.0  21.0  21.0  21.0  28.0  28.0
##  [210]  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0  38.0
##  [221]  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0  38.0
##  [232]  16.0  16.0  16.0  16.0  16.0  16.0  22.0  22.0  22.0  22.0  22.0
##  [243]  22.0  22.0  22.0  22.0  22.0  22.0  22.0  21.5  21.5  21.5  21.5
##  [254]  21.5  21.5  21.5  21.5  21.5  21.5  21.5  21.5  22.5  22.5  22.5
##  [265]  22.5  22.5  22.5  22.5  22.5  22.5  22.5  22.5  22.5  18.0  18.0
##  [276]  18.0  18.0  18.0  18.0  18.0  18.0  18.0  18.0  18.0  18.0  32.0
##  [287]  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0
##  [298]  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0
##  [309]  52.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0  50.0
##  [320]  50.0  50.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0
##  [331]  25.0  25.0  25.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0
##  [342]  17.0  17.0  17.0  17.0  33.0  33.0  33.0  33.0  33.0  33.0  33.0
##  [353]  33.0  33.0  33.0  33.0  33.0  28.0  28.0  28.0  28.0  28.0  28.0
##  [364]  28.0  28.0  28.0  28.0  28.0  28.0  29.5  29.5  29.5  29.5  29.5
##  [375]  29.5  29.5  29.5  29.5  29.5  29.5  29.5 178.0 178.0 178.0 178.0
##  [386] 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0
##  [397] 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0
##  [408] 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0
##  [419] 178.0 178.0 178.0 178.0 178.0  11.0  11.0  11.0  11.0  11.0  11.0
##  [430]  11.0  11.0  11.0  11.0  11.0  11.0  22.0  22.0  22.0  22.0  22.0
##  [441]  22.0  22.0  22.0  22.0  22.0  22.0  22.0  16.0  16.0  16.0  16.0
##  [452]  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0 155.0 155.0 155.0
##  [463] 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0
##  [474] 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0
##  [485] 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0
##  [496] 155.0 155.0 155.0 155.0 155.0 155.0  40.0  40.0  40.0  40.0  40.0
##  [507]  40.0  40.0  40.0  40.0  40.0  40.0  40.0  40.0  40.0  40.0  40.0
##  [518]  40.0  40.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0
##  [529]  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0 104.0 104.0
##  [540] 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0
##  [551] 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0 104.0
##  [562] 104.0 104.0 104.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0
##  [573] 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0
##  [584] 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0
##  [595] 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0
##  [606] 192.0 192.0 192.0 192.0 192.0 192.0 192.0  36.0  36.0  36.0  36.0
##  [617]  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0
##  [628]  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0   8.5   8.5
##  [639]   8.5   8.5   8.5   8.5  83.0  83.0  83.0  83.0  83.0  83.0  83.0
##  [650]  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0
##  [661]  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0  83.0
##  [672]  83.0 100.0 100.0 100.0 100.0 100.0 100.0 800.0 800.0 800.0 800.0
##  [683] 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0
##  [694] 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0 800.0
##  [705] 800.0 800.0 800.0 800.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
##  [716] 300.0 300.0 300.0 300.0 300.0 344.0 344.0 344.0 344.0 344.0 344.0
##  [727] 344.0 344.0 344.0 344.0 344.0 344.0  84.0  84.0  84.0  84.0  84.0
##  [738]  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0
##  [749]  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0  84.0
##  [760]  84.0  84.0  84.0   6.0   6.0   6.0   6.0   6.0   6.0   6.0   6.0
##  [771]   6.0   6.0   6.0   6.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0
##  [782] 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0
##  [793] 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0
##  [804] 144.0 144.0 144.0 144.0 144.0 144.0 144.0  52.0  52.0  52.0  52.0
##  [815]  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0
##  [826]  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0  52.0
##  [837]  52.0  52.0  52.0  52.0   8.0   8.0   8.0  56.0  56.0  56.0  56.0
##  [848]  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0
##  [859]  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0
##  [870]  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0  56.0 173.0
##  [881] 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0
##  [892] 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0
##  [903] 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0 173.0
##  [914] 173.0 173.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0
##  [925] 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0
##  [936] 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0
##  [947] 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0
##  [958] 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 755.0 719.5 719.5
##  [969] 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5
##  [980] 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5
##  [991] 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5 719.5
## [1002] 719.5 719.5 719.5 719.5  42.0  42.0  42.0  42.0  42.0  42.0  42.0
## [1013]  42.0  42.0  42.0  42.0  42.0  42.0  42.0  42.0  42.0  42.0  42.0
## [1024]  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0
## [1035]  30.0  30.0  30.0  30.0  30.0  30.0  30.0  80.0  80.0  80.0  80.0
## [1046]  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0
## [1057]  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  54.0  54.0
## [1068]  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0
## [1079]  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0
## [1090]   5.0   5.0   5.0   5.0   5.0   5.0  10.0  10.0  10.0  10.0  10.0
## [1101]  10.0  10.0  10.0  10.0  10.0  10.0  10.0   5.0   5.0   5.0   5.0
## [1112]   5.0   5.0   6.0   6.0   6.0   6.0   6.0   6.0   5.5   5.5   5.5
## [1123]   5.5   5.5   5.5   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0
## [1134]   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0  24.0
## [1145]  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0
## [1156]  24.0  24.0  24.0  24.0  24.0  24.0   7.5   7.5   7.5   7.5   7.5
## [1167]   7.5   7.5   7.5   7.5   7.5   7.5   7.5  22.0  22.0  22.0  22.0
## [1178]  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0
## [1189]  22.0  22.0  22.0   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5
## [1200]   5.5   5.5   5.5   5.5   3.0   3.0   3.0   3.0   3.0   3.0  36.0
## [1211]  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0
## [1222]  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0  36.0
## [1233]  36.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0
## [1244]  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0  54.0
## [1255]  54.0  54.0  54.0   6.0   6.0   6.0   6.0   6.0   6.0  48.0  48.0
## [1266]  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0
## [1277]  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0  48.0
## [1288]  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0
## [1299]  23.0  23.0  23.0  23.0  23.0  23.0  23.0   4.0   4.0   4.0   4.0
## [1310]   4.0   4.0  14.0  14.0  14.0  14.0  14.0  14.0  14.0  14.0  14.0
## [1321]  14.0  14.0  14.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0
## [1332]  16.0  16.0  16.0  16.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0
## [1343]  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0
## [1354]  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0
## [1365]  24.0  24.0  24.0  24.0  24.0  24.0  24.0  70.0  70.0  70.0  70.0
## [1376]  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0
## [1387]  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0  70.0
## [1398]  70.0  70.0  70.0  70.0  12.0  12.0  12.0  12.0  12.0  12.0  12.0
## [1409]  12.0  12.0  12.0  12.0  12.0  28.0  28.0  28.0  28.0  28.0  28.0
## [1420]  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0  28.0
## [1431]  28.0   3.5   3.5   3.5   3.5   3.5   3.5   5.0   5.0   5.0   5.0
## [1442]   5.0   5.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0
## [1453]   6.0   6.0   6.0   6.0   6.0   6.0   6.0   6.0   6.0  14.5  14.5
## [1464]  14.5  14.5  14.5  14.5  14.5  14.5  14.5  14.5  14.5  14.5  14.5
## [1475]  14.5  14.5  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0
## [1486]  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0
## [1497]  20.0   3.0   3.0   3.0   3.0   3.0   3.0  29.0  29.0  29.0  29.0
## [1508]  29.0  29.0  29.0  29.0  29.0  29.0  29.0  29.0  29.0  29.0  29.0
## [1519]  29.0  29.0  29.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0
## [1530]  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0
## [1541]  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0
## [1552]   3.0   3.0   3.0   3.0   3.0   3.0  23.0  23.0  23.0  23.0  23.0
## [1563]  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0
## [1574]  23.0  23.0   3.0   3.0   3.0   3.0   3.0   3.0   9.0   9.0   9.0
## [1585]   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   9.0   6.5   6.5
## [1596]   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5  49.0
## [1607]  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0
## [1618]  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0  49.0
## [1629]  49.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0
## [1640]  32.0  32.0  32.0  32.0  32.0  32.0  32.0  32.0   4.0   4.0   4.0
## [1651]   4.0   4.0   4.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0
## [1662]  11.0  11.0  11.0  11.0   6.0   6.0   6.0   6.0   6.0   6.0  10.0
## [1673]  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0
## [1684]  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5
## [1695]  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5  80.5
## [1706]  80.5  80.5  80.5  80.5  80.5   5.5   5.5   5.5   5.5   5.5   5.5
## [1717]   4.0   4.0   4.0   4.0   4.0   4.0  14.5  14.5  14.5  14.5  14.5
## [1728]  14.5  14.5  14.5  14.5  14.5  14.5  14.5  15.5  15.5  15.5  15.5
## [1739]  15.5  15.5  15.5  15.5  15.5  15.5  15.5  15.5  15.5  15.5  15.5
## [1750]  15.5  15.5  15.5   2.0   2.0   2.0   2.0   2.0   2.0 104.5 104.5
## [1761] 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5
## [1772] 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5
## [1783] 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5
## [1794] 104.5   6.0   6.0   6.0   6.0   6.0   6.0   2.0   2.0   2.0   2.0
## [1805]   2.0   2.0  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5
## [1816]  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5
## [1827]  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  53.5  23.0
## [1838]  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0  23.0
## [1849]  23.0  23.0  23.0  23.0  23.0  23.0  30.5  30.5  30.5  30.5  30.5
## [1860]  30.5  30.5  30.5  30.5  30.5  30.5  30.5  30.5  30.5  30.5  30.5
## [1871]  30.5  30.5  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0  20.0
## [1882]  20.0  20.0  20.0  33.0  33.0  33.0  33.0  33.0  33.0  33.0  33.0
## [1893]  33.0  33.0  33.0  33.0  33.0  33.0  33.0  33.0  33.0  33.0  19.0
## [1904]  19.0  19.0  19.0  19.0  19.0  19.0  19.0  19.0  19.0  19.0  19.0
## [1915]  41.0  41.0  41.0  41.0  41.0  41.0  41.0  41.0  41.0  41.0  41.0
## [1926]  41.0  41.0  41.0  41.0  41.0  41.0  41.0   8.5   8.5   8.5   8.5
## [1937]   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   5.5   5.5   5.5
## [1948]   5.5   5.5   5.5   5.0   5.0   5.0   5.0   5.0   5.0  27.5  27.5
## [1959]  27.5  27.5  27.5  27.5  27.5  27.5  27.5  27.5  27.5  27.5  12.0
## [1970]  12.0  12.0  12.0  12.0  12.0  12.0  12.0  12.0  12.0  12.0  12.0
## [1981] 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0
## [1992] 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0
## [2003] 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0
## [2014] 178.0 178.0 178.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0
## [2025]  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  24.0  17.0
## [2036]  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0  17.0
## [2047]  17.5  17.5  17.5  17.5  17.5  17.5  17.5  17.5  17.5  17.5  17.5
## [2058]  17.5  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0
## [2069]  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0  98.0
## [2080]  98.0  98.0  98.0  98.0  98.0  98.0   3.5   3.5   3.5   3.5   3.5
## [2091]   3.5  21.0  21.0  21.0  21.0  21.0  21.0  21.0  21.0  21.0  21.0
## [2102]  21.0  21.0  21.0  21.0  21.0  21.0  21.0  21.0  94.0  94.0  94.0
## [2113]  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0
## [2124]  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0  94.0
## [2135]  94.0  94.0  94.0  94.0  94.0  10.5  10.5  10.5  10.5  10.5  10.5
## [2146]  10.5  10.5  10.5  10.5  10.5  10.5  80.0  80.0  80.0  80.0  80.0
## [2157]  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0
## [2168]  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0  80.0
## [2179]  80.0  80.0  80.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0
## [2190]  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0  87.0
## [2201]  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0
## [2212]  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0  87.0
## [2223]  87.0  87.0  87.0  87.0  87.0  87.0  87.0  81.0  81.0  81.0  81.0
## [2234]  81.0  81.0  81.0  81.0  81.0  81.0  81.0  81.0  81.0  81.0  81.0
## [2245]   2.5   2.5   2.5  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0
## [2256]  10.0  16.0  16.0  16.0  16.0  16.0  16.0   4.0   4.0   4.0   3.5
## [2267]   3.5   3.5  10.0  10.0  10.0  10.0  10.0  10.0   9.5   9.5   9.5
## [2278]   9.5   9.5   9.5  17.0  17.0  17.0  17.0  17.0  17.0   3.0   3.0
## [2289]   3.0   9.0   9.0   9.0   5.0   5.0   5.0  26.5  26.5  26.5  26.5
## [2300]  26.5  26.5  26.5  26.5  26.5   7.5   7.5   7.5   8.0   8.0   8.0
## [2311]   8.0   8.0   8.0
as.double(cube$`Weight in Kg.`)
##    [1] 8.730000 8.261000 8.508000 8.730000 8.560000 8.340000 8.681000
##    [8] 8.267000 8.426000 8.130000 8.250000 8.310000 8.130000 8.464000
##   [15] 8.373000 8.145000 8.245000 8.330000 8.415000 8.331000 8.395000
##   [22] 8.245000 8.350000 8.160000 8.429000 8.346000 8.295000 8.393000
##   [29] 8.498000 8.389000 8.140000 8.220000 8.310000 8.781000 8.643000
##   [36] 8.601000 8.150000 8.210000 8.340000 8.489000 8.564000 8.619000
##   [43] 8.240000 8.312000 8.415000 8.653000 8.512000 8.498000 8.240000
##   [50] 8.312000 8.415000 8.765000 8.619000 8.534000 8.210000 8.390000
##   [57] 8.420000 8.625000 8.576000 8.701000 8.145000 8.245000 8.125000
##   [64] 8.609000 8.613000 8.659000 8.245000 8.492000 8.243000 8.469000
##   [71] 8.568000 8.701000 8.345000 8.435000 8.245000 8.634000 8.593000
##   [78] 8.485000 8.510000 8.412000 8.175000 8.801000 8.765000 8.469000
##   [85] 8.435000 8.398000 8.517000 8.512000 8.609000 8.661000 8.459000
##   [92] 8.386000 8.472000 8.793000 8.809000 8.765000 8.571000 8.321000
##   [99] 8.495000 8.812000 8.693000 8.581000 8.325000 8.517000 8.491000
##  [106] 8.488000 8.564000 8.605000 8.359000 8.512000 8.421000 8.585000
##  [113] 8.698000 8.772000 8.421000 8.394000 8.452000 8.821000 8.645000
##  [120] 8.465000 8.616000 8.527000 8.317000 8.705000 8.695000 8.543000
##  [127] 8.394000 8.502000 8.471000 8.449000 8.605000 8.713000 8.372000
##  [134] 8.050000 8.215000 8.750000 8.723000 8.709000 8.192000 8.253000
##  [141] 8.112000 8.810000 8.675000 8.683000 8.296000 8.401000 8.319000
##  [148] 8.595000 8.705000 8.612000 8.109000 8.119000 8.205000 8.533000
##  [155] 8.611000 8.699000 8.754000 8.795000 8.823000 8.454000 8.501000
##  [162] 8.631000 8.759000 8.610000 8.693000 8.459000 8.694000 8.789000
##  [169] 8.584000 8.689000 8.795000 8.554000 8.701000 8.356000 8.785000
##  [176] 8.793000 8.440000 8.291000 8.192000 8.451000 8.683000 8.740000
##  [183] 8.644000 8.254000 8.369000 8.501000 8.560000 8.469000 8.375000
##  [190] 8.642000 8.250000 8.199000 8.473400 8.558000 8.492000 8.359000
##  [197] 8.411000 8.509000 8.352000 8.653000 8.512000 8.611000 8.403000
##  [204] 8.361000 8.554000 8.701000 8.192000 8.438000 8.450000 8.534000
##  [211] 8.499000 8.653000 8.512000 8.610000 8.426000 8.624000 8.611000
##  [218] 8.744000 8.598000 8.789000 8.653000 8.598000 8.642000 8.510000
##  [225] 8.369000 8.605000 8.456000 8.325000 8.356000 8.400000 8.579000
##  [232] 8.613000 8.744000 8.598000 8.820000 8.450000 8.405000 8.569000
##  [239] 8.678000 8.781000 8.385000 8.440000 8.429000 8.495000 8.760000
##  [246] 8.644000 8.659000 8.534000 8.488000 8.489000 8.561000 8.708000
##  [253] 8.820000 8.450000 8.405000 8.626000 8.801000 8.522000 8.385000
##  [260] 8.440000 8.429000 8.569000 8.678000 8.781000 8.385000 8.440000
##  [267] 8.429000 8.495000 8.760000 8.644000 8.659000 8.534000 8.488000
##  [274] 8.821000 8.605000 8.594000 8.689000 8.583000 8.485000 8.586000
##  [281] 8.725000 8.760000 8.591000 8.644000 8.702000 8.301000 8.548000
##  [288] 8.288000 8.329000 8.411000 8.442000 8.313000 8.409000 8.271000
##  [295] 8.315000 8.392000 8.410000 8.199000 8.254000 8.250000 8.450000
##  [302] 8.385000 8.392000 8.240000 8.312000 8.340000 8.390000 8.325000
##  [309] 8.315000 8.429000 8.346000 8.395000 8.340000 8.445000 8.305000
##  [316] 8.261000 8.350000 8.464000 8.460000 8.470000 8.530000 8.426000
##  [323] 8.529000 8.352000 8.275000 8.265000 8.375000 8.571000 8.341000
##  [330] 8.495000 8.402000 8.330000 8.340000 8.325000 8.517000 8.491000
##  [337] 8.525000 8.470000 8.385000 8.245000 8.492000 8.243000 8.329000
##  [344] 8.735000 8.625000 8.485000 8.674000 8.665000 8.429000 8.611000
##  [351] 8.621000 8.549000 8.699000 8.583000 8.592000 8.657000 8.315000
##  [358] 8.612000 8.593000 8.458000 8.055000 8.351000 8.429000 8.484000
##  [365] 8.563000 8.612000 8.315000 8.420000 8.510000 8.586000 8.461000
##  [372] 8.445000 8.312000 8.432000 8.381000 8.489000 8.561000 8.708000
##  [379] 8.501000 8.392000 8.405000 8.525000 8.585000 8.560000 8.490000
##  [386] 8.575000 8.520000 8.525000 8.535000 8.628000 8.520000 8.580000
##  [393] 8.550000 8.590000 8.621000 8.700000 8.620000 8.555000 8.720000
##  [400] 8.592000 8.645000 8.650000 8.630000 8.760000 8.610000 8.440000
##  [407] 8.570000 8.510000 8.660000 8.860000 8.760000 8.497000 8.510000
##  [414] 8.610000 8.590000 8.460000 8.540000 8.705000 8.629000 8.720000
##  [421] 8.620000 8.650000 8.670000 8.788000 8.539000 8.645000 8.341000
##  [428] 8.550000 8.470000 8.392000 8.651000 8.529000 8.050000 8.740000
##  [435] 8.120000 8.429000 8.351000 8.470000 8.625000 8.405000 8.525000
##  [442] 8.419000 8.320000 8.219000 8.495000 8.435000 8.395000 8.240000
##  [449] 8.295000 8.270000 8.515000 8.375000 8.475000 8.375000 8.480000
##  [456] 8.435000 8.540000 8.460000 8.493000 8.100000 8.590000 8.630000
##  [463] 8.485000 8.520000 8.630000 8.640000 8.590000 8.621000 8.510000
##  [470] 8.600000 8.630000 8.550000 8.527000 8.621000 8.740000 8.570000
##  [477] 8.640000 8.535000 8.545000 8.610000 8.705000 8.650000 8.380000
##  [484] 8.420000 8.559000 8.660000 8.470000 8.795000 8.670000 8.600000
##  [491] 8.585000 8.805000 8.735000 8.860000 8.685000 8.670000 8.850000
##  [498] 8.525000 8.630000 8.790000 8.470000 8.505000 8.550000 8.521000
##  [505] 8.480000 8.520000 8.570000 8.601000 8.396000 8.410000 8.720000
##  [512] 8.645000 8.780000 8.526000 8.483000 8.529000 8.315000 8.330000
##  [519] 8.640000 8.550000 8.532000 8.632000 8.780000 8.700000 8.690000
##  [526] 8.493000 8.733000 8.558000 8.640000 8.540000 8.410000 8.592000
##  [533] 8.631000 8.691000 8.615000 8.665000 8.790000 8.388000 8.626000
##  [540] 8.680000 8.660000 8.590000 8.595000 8.700000 8.722000 8.630000
##  [547] 8.880000 8.695000 8.765000 8.400000 8.500000 8.750000 8.570000
##  [554] 8.685000 8.720000 8.701000 8.500000 8.620000 8.620000 8.545000
##  [561] 8.850000 8.780000 8.770000 8.635000 8.592000 8.631000 8.691000
##  [568] 8.580000 8.645000 8.625000 8.510000 8.430000 8.460000 8.475000
##  [575] 8.430000 8.495000 8.445000 8.485000 8.435000 8.485000 8.570000
##  [582] 8.480000 8.615000 8.540000 8.390000 8.585000 8.570000 8.545000
##  [589] 8.525000 8.640000 8.550000 8.600000 8.700000 8.580000 8.585000
##  [596] 8.330000 8.385000 8.575000 8.505000 8.425000 8.395000 8.470000
##  [603] 8.475000 8.460000 8.490000 8.485000 8.430000 8.420000 8.495000
##  [610] 8.447000 8.858500 8.585000 8.410000 8.210000 8.130000 8.550000
##  [617] 8.560000 8.535000 8.650000 8.430000 8.710000 8.630000 8.665000
##  [624] 8.650000 8.340000 8.390000 8.395000 8.490000 8.435000 8.450000
##  [631] 8.435000 8.530000 8.420000 8.530000 8.475000 8.525000 8.470000
##  [638] 8.520000 8.540000 8.510000 8.400000 8.530000 8.675000 8.610000
##  [645] 8.630000 8.810000 8.675000 8.660000 8.825000 8.725000 8.650000
##  [652] 8.645000 8.755000 8.660000 8.595000 8.795000 8.710000 8.680000
##  [659] 8.780000 8.775000 8.300000 8.390000 8.210000 8.185000 8.270000
##  [666] 8.345000 8.490000 8.555000 8.565000 8.625000 8.640000 8.620000
##  [673] 8.435000 8.600000 8.500000 8.680000 8.590000 8.480000 8.400000
##  [680] 8.450000 8.645000 8.560000 8.490000 8.485000 8.390000 8.430000
##  [687] 8.430000 8.300000 8.340000 8.445000 8.745000 8.505000 8.408000
##  [694] 8.525000 8.520000 8.310000 8.540000 8.556000 8.550000 8.340000
##  [701] 8.510000 8.550000 8.100000 8.070000 8.570000 8.450000 8.430000
##  [708] 8.160000 8.435000 8.570000 8.505000 8.290000 8.260000 8.340000
##  [715] 8.590000 8.355000 8.410000 8.265000 8.140000 8.350000 8.585000
##  [722] 8.740000 8.485000 8.445000 8.460000 8.510000 8.570000 8.700000
##  [729] 8.615000 8.580000 8.230000 8.370000 8.485000 8.500000 8.525000
##  [736] 8.660000 8.655000 8.515000 8.710000 8.515000 8.605000 8.725000
##  [743] 8.590000 8.760000 8.830000 8.650000 8.825000 8.650000 8.530000
##  [750] 8.510000 8.500000 8.625000 8.600000 8.490000 8.450000 8.550000
##  [757] 8.450000 8.410000 8.485000 8.700000 8.585000 8.590000 8.845000
##  [764] 8.760000 8.900000 8.770000 8.740000 8.550000 8.650000 8.610000
##  [771] 8.605000 8.710000 8.715000 8.700000 8.640000 8.775000 8.510000
##  [778] 8.335000 8.460000 8.355000 8.840000 8.830000 8.780000 8.450000
##  [785] 8.540000 8.440000 8.705000 8.995000 8.840000 8.585000 8.470000
##  [792] 8.500000 8.595000 8.630000 8.690000 8.425000 8.250000 8.285000
##  [799] 8.655000 8.670000 8.700000 8.470000 8.480000 8.480000 8.630000
##  [806] 8.735000 8.640000 8.600000 8.660000 8.640000 8.615000 8.590000
##  [813] 8.690000 8.735000 8.720000 8.670000 8.600000 8.540000 8.575000
##  [820] 8.660000 8.585000 8.650000 8.775000 8.700000 8.685000 8.715000
##  [827] 8.680000 8.820000 8.650000 8.690000 8.700000 8.745000 8.760000
##  [834] 8.770000 8.800000 8.735000 8.875000 8.735000 8.780000 8.745000
##  [841] 8.370000 8.210000 8.340000 8.340000 8.320000 8.300000 8.565000
##  [848] 8.365000 8.400000 8.360000 8.280000 8.290000 8.290000 8.215000
##  [855] 8.465000 8.320000 8.405000 8.440000 8.240000 8.220000 8.380000
##  [862] 8.465000 8.420000 8.440000 8.435000 8.600000 8.405000 8.390000
##  [869] 8.410000 8.365000 8.285000 8.220000 8.330000 8.390000 8.345000
##  [876] 8.420000 8.290000 8.265000 8.110000 8.145000 8.760000 8.460000
##  [883] 8.265000 8.400000 8.325000 8.425000 8.135000 8.060000 8.175000
##  [890] 8.570000 8.525000 8.310000 8.425000 8.500000 8.565000 8.590000
##  [897] 8.200000 8.560000 8.405000 8.240000 8.520000 8.530000 8.365000
##  [904] 8.220000 8.420000 8.715000 8.740000 8.525000 8.740000 8.295000
##  [911] 8.345000 8.405000 8.250000 8.760000 8.470000 8.450000 8.100000
##  [918] 8.660000 8.350000 8.175000 8.400000 8.275000 8.720000 8.215000
##  [925] 8.514789 8.390000 8.400000 8.260000 8.514789 8.514789 8.605000
##  [932] 8.470000 8.460000 8.045000 8.480000 8.500000 8.580000 8.270000
##  [939] 8.580000 8.580000 8.330000 8.350000 8.200000 8.235000 8.620000
##  [946] 8.335000 8.430000 8.375000 8.200000 8.340000 8.520000 8.200000
##  [953] 8.445000 8.310000 8.315000 8.385000 8.300000 8.540000 8.450000
##  [960] 8.390000 8.270000 8.105000 8.410000 8.435000 8.540000 8.395000
##  [967] 8.370000 8.195000 8.330000 8.140000 8.350000 8.180000 8.240000
##  [974] 8.510000 8.420000 8.290000 8.180000 8.080000 8.140000 8.080000
##  [981] 8.220000 8.200000 8.490000 8.170000 8.430000 8.410000 8.305000
##  [988] 8.290000 8.465000 8.390000 8.300000 8.490000 8.340000 8.375000
##  [995] 8.590000 8.540000 8.570000 8.530000 8.440000 8.170000 8.190000
## [1002] 8.480000 8.075000 8.165000 8.320000 8.290000 8.360000 8.540000
## [1009] 8.230000 8.255000 8.465000 8.240000 8.140000 8.170000 8.230000
## [1016] 8.250000 8.290000 8.125000 8.170000 8.130000 8.270000 8.290000
## [1023] 8.290000 8.030000 7.900000 7.880000 8.590000 8.470000 8.880000
## [1030] 7.960000 7.940000 7.960000 8.670000 8.680000 8.625000 8.410000
## [1037] 8.340000 8.235000 8.605000 8.490000 8.565000 8.120000 8.210000
## [1044] 8.130000 8.350000 8.390000 8.175000 8.160000 8.190000 8.180000
## [1051] 8.430000 8.280000 8.270000 8.190000 8.235000 8.210000 8.345000
## [1058] 8.330000 8.300000 8.220000 8.260000 8.155000 8.105000 8.150000
## [1065] 8.300000 8.695000 8.735000 8.640000 8.235000 8.255000 8.345000
## [1072] 8.565000 8.585000 8.550000 8.425000 8.540000 8.480000 8.790000
## [1079] 8.590000 8.680000 8.685000 8.675000 8.632000 8.640000 8.650000
## [1086] 8.642000 8.650000 8.600000 8.535000 8.450000 8.600000 8.435000
## [1093] 8.290000 8.180000 8.335000 8.460000 8.600000 8.620000 8.410000
## [1100] 8.460000 8.370000 8.570000 8.680000 8.715000 8.510000 8.470000
## [1107] 8.470000 8.490000 8.460000 8.380000 8.400000 8.335000 8.410000
## [1114] 8.700000 8.805000 8.650000 8.735000 8.700000 8.605000 8.415000
## [1121] 8.455000 8.465000 8.510000 8.490000 8.475000 8.555000 8.595000
## [1128] 8.550000 8.720000 8.625000 8.630000 8.590000 8.610000 8.560000
## [1135] 8.500000 8.535000 8.595000 8.640000 8.660000 8.770000 8.875000
## [1142] 8.850000 8.770000 8.350000 8.375000 8.390000 8.590000 8.595000
## [1149] 8.640000 8.435000 8.390000 8.370000 8.530000 8.660000 8.580000
## [1156] 8.305000 8.355000 8.305000 8.440000 8.390000 8.530000 8.420000
## [1163] 8.370000 8.340000 8.590000 8.600000 8.510000 8.230000 8.255000
## [1170] 8.160000 8.510000 8.450000 8.485000 8.605000 8.725000 8.770000
## [1177] 8.615000 8.790000 8.910000 8.660000 8.635000 8.675000 8.770000
## [1184] 8.645000 8.770000 8.755000 8.680000 8.800000 8.715000 8.730000
## [1191] 8.675000 8.840000 8.705000 8.680000 8.780000 8.710000 8.715000
## [1198] 8.555000 8.625000 8.765000 8.340000 8.300000 8.340000 8.780000
## [1205] 8.840000 8.790000 8.460000 8.420000 8.400000 8.460000 8.425000
## [1212] 8.545000 8.725000 8.675000 8.840000 8.270000 8.215000 8.285000
## [1219] 8.820000 8.780000 8.765000 8.500000 8.535000 8.590000 8.825000
## [1226] 8.900000 8.830000 8.455000 8.400000 8.455000 8.762000 8.775000
## [1233] 8.755000 8.695000 8.730000 8.505000 8.720000 8.710000 8.760000
## [1240] 8.550000 8.530000 8.530000 8.720000 8.785000 8.720000 8.510000
## [1247] 8.490000 8.475000 8.765000 8.720000 8.890000 8.665000 8.545000
## [1254] 8.665000 8.945000 8.855000 8.875000 8.465000 8.460000 8.520000
## [1261] 8.815000 8.935000 8.815000 8.270000 8.410000 8.235000 8.900000
## [1268] 8.770000 8.840000 8.365000 8.360000 8.590000 8.850000 8.765000
## [1275] 8.825000 8.470000 8.505000 8.530000 8.700000 8.760000 8.740000
## [1282] 8.440000 8.270000 8.450000 8.800000 8.925000 8.785000 8.380000
## [1289] 8.450000 8.640000 8.460000 8.525000 8.530000 8.820000 8.790000
## [1296] 8.825000 8.805000 8.815000 8.830000 8.785000 8.720000 8.690000
## [1303] 8.770000 8.625000 8.765000 8.735000 8.735000 8.685000 8.735000
## [1310] 8.755000 8.820000 8.560000 8.510000 8.450000 8.475000 8.435000
## [1317] 8.470000 8.740000 8.785000 8.680000 8.648000 8.730000 8.675000
## [1324] 8.730000 8.845000 8.840000 8.650000 8.685000 8.640000 8.465000
## [1331] 8.365000 8.440000 8.425000 8.395000 8.445000 8.925000 8.900000
## [1338] 8.905000 8.780000 8.840000 8.830000 8.710000 8.870000 8.740000
## [1345] 8.805000 8.735000 8.730000 8.610000 8.720000 8.735000 8.675000
## [1352] 8.680000 8.685000 8.650000 8.280000 8.580000 8.710000 8.640000
## [1359] 8.670000 8.510000 8.615000 8.350000 8.600000 8.675000 8.550000
## [1366] 8.740000 8.615000 8.510000 8.610000 8.610000 8.655000 8.505000
## [1373] 8.560000 8.435000 8.590000 8.580000 8.560000 8.700000 8.660000
## [1380] 8.705000 8.690000 8.675000 8.700000 8.545000 8.510000 8.495000
## [1387] 8.570000 8.540000 8.590000 8.660000 8.640000 8.630000 8.750000
## [1394] 8.630000 8.585000 8.635000 8.560000 8.540000 8.510000 8.585000
## [1401] 8.555000 8.705000 8.695000 8.630000 8.780000 8.615000 8.630000
## [1408] 8.770000 8.870000 8.925000 8.750000 8.800000 8.735000 8.550000
## [1415] 8.575000 8.495000 8.410000 8.380000 8.340000 8.410000 8.365000
## [1422] 8.410000 8.360000 8.260000 8.285000 8.470000 8.485000 8.490000
## [1429] 8.270000 8.315000 8.270000 8.665000 8.800000 8.710000 8.600000
## [1436] 8.605000 8.660000 8.640000 8.560000 8.670000 8.530000 8.575000
## [1443] 8.550000 8.815000 8.840000 8.750000 8.755000 8.810000 8.715000
## [1450] 8.670000 8.595000 8.650000 8.690000 8.790000 8.790000 8.660000
## [1457] 8.590000 8.590000 8.445000 8.275000 8.325000 8.390000 8.400000
## [1464] 8.540000 8.375000 8.400000 8.375000 8.360000 8.250000 8.220000
## [1471] 8.580000 8.510000 8.595000 8.625000 8.640000 8.470000 8.560000
## [1478] 8.610000 8.640000 8.565000 8.445000 8.620000 8.455000 8.375000
## [1485] 8.410000 8.490000 8.475000 8.480000 8.530000 8.560000 8.490000
## [1492] 8.420000 8.510000 8.415000 8.710000 8.680000 8.680000 8.370000
## [1499] 8.465000 8.425000 8.390000 8.435000 8.450000 8.610000 8.770000
## [1506] 8.630000 8.470000 8.550000 8.600000 8.500000 8.520000 8.595000
## [1513] 8.515000 8.515000 8.420000 8.415000 8.510000 8.560000 8.330000
## [1520] 8.490000 8.460000 8.470000 8.345000 8.470000 8.290000 8.395000
## [1527] 8.300000 8.600000 8.615000 8.595000 8.600000 8.525000 8.130000
## [1534] 8.820000 8.645000 8.680000 8.685000 8.490000 8.500000 8.670000
## [1541] 8.630000 8.585000 8.540000 8.590000 8.505000 8.450000 8.480000
## [1548] 8.400000 8.385000 8.200000 8.070000 8.690000 8.770000 8.630000
## [1555] 8.590000 8.665000 8.620000 8.540000 8.505000 8.590000 8.450000
## [1562] 8.425000 8.530000 8.445000 8.530000 8.685000 8.660000 8.675000
## [1569] 8.450000 8.445000 8.550000 8.540000 8.660000 8.590000 8.590000
## [1576] 8.590000 8.420000 8.495000 8.365000 8.425000 8.465000 8.180000
## [1583] 8.285000 8.295000 8.575000 8.550000 8.510000 8.280000 8.175000
## [1590] 8.105000 8.395000 8.360000 8.400000 8.560000 8.635000 8.570000
## [1597] 8.350000 8.385000 8.495000 8.475000 8.515000 8.725000 8.565000
## [1604] 8.448000 8.545000 8.440000 8.600000 8.600000 8.420000 8.405000
## [1611] 8.430000 8.540000 8.550000 8.435000 8.485000 8.490000 8.505000
## [1618] 8.435000 8.355000 8.375000 8.500000 8.405000 8.385000 8.450000
## [1625] 8.395000 8.390000 8.455000 8.295000 8.330000 8.435000 8.435000
## [1632] 8.360000 8.430000 8.395000 8.455000 8.255000 8.400000 8.245000
## [1639] 8.365000 8.290000 8.335000 8.455000 8.435000 8.430000 8.450000
## [1646] 8.395000 8.390000 8.550000 8.570000 8.675000 8.540000 8.530000
## [1653] 8.560000 8.475000 8.530000 8.635000 8.490000 8.350000 8.460000
## [1660] 8.345000 8.390000 8.425000 8.410000 8.460000 8.450000 8.445000
## [1667] 8.385000 8.550000 8.875000 8.920000 8.820000 8.515000 8.385000
## [1674] 8.560000 8.540000 8.430000 8.570000 8.570000 8.545000 8.495000
## [1681] 8.540000 8.460000 8.470000 8.620000 8.560000 8.625000 8.555000
## [1688] 8.560000 8.530000 8.465000 8.405000 8.330000 8.745000 8.585000
## [1695] 8.455000 8.590000 8.470000 8.470000 8.485000 8.435000 8.665000
## [1702] 8.520000 8.640000 8.535000 8.535000 8.640000 8.520000 8.580000
## [1709] 8.515000 8.410000 8.580000 8.415000 8.385000 8.415000 8.490000
## [1716] 8.445000 8.400000 8.400000 8.400000 8.445000 8.440000 8.470000
## [1723] 8.470000 8.530000 8.425000 8.400000 8.540000 8.425000 8.474000
## [1730] 8.510000 8.500000 8.365000 8.420000 8.335000 8.160000 8.030000
## [1737] 8.150000 7.990000 7.870000 8.065000 8.075000 8.040000 8.035000
## [1744] 8.060000 8.030000 8.070000 8.140000 8.190000 8.170000 7.705000
## [1751] 7.800000 7.960000 8.360000 8.515000 8.560000 8.430000 8.300000
## [1758] 8.410000 8.270000 8.230000 8.325000 8.280000 8.310000 8.285000
## [1765] 8.225000 8.510000 8.190000 8.275000 8.180000 8.190000 8.310000
## [1772] 8.355000 8.360000 8.255000 8.200000 8.260000 8.350000 8.290000
## [1779] 8.420000 8.310000 8.390000 8.300000 8.335000 8.330000 8.330000
## [1786] 8.175000 8.200000 8.260000 8.415000 8.415000 8.305000 8.310000
## [1793] 8.410000 8.385000 8.370000 8.400000 8.365000 8.390000 8.370000
## [1800] 8.395000 8.570000 8.470000 8.645000 8.630000 8.590000 8.610000
## [1807] 8.425000 8.550000 8.545000 8.595000 8.370000 8.430000 8.530000
## [1814] 8.495000 8.455000 8.385000 8.495000 8.520000 8.500000 8.505000
## [1821] 8.440000 8.390000 8.345000 8.305000 8.630000 8.615000 8.710000
## [1828] 8.525000 8.560000 8.385000 8.485000 8.490000 8.550000 8.485000
## [1835] 8.515000 8.485000 8.360000 8.595000 8.480000 8.710000 8.725000
## [1842] 8.675000 8.650000 8.675000 8.525000 8.605000 8.510000 8.485000
## [1849] 8.495000 8.530000 8.580000 8.475000 8.460000 8.120000 8.435000
## [1856] 8.480000 8.495000 8.485000 8.470000 8.545000 8.400000 8.430000
## [1863] 8.450000 8.370000 8.375000 8.480000 8.375000 8.490000 8.565000
## [1870] 8.030000 8.000000 8.100000 8.410000 8.520000 8.605000 8.170000
## [1877] 8.195000 8.230000 8.600000 8.590000 8.575000 8.055000 8.005000
## [1884] 8.160000 8.465000 8.365000 8.465000 8.020000 8.055000 8.050000
## [1891] 8.350000 8.430000 8.505000 8.025000 8.015000 8.160000 8.460000
## [1898] 8.515000 8.580000 8.080000 8.065000 8.050000 8.570000 8.580000
## [1905] 8.565000 8.515000 8.686000 8.824000 8.715000 8.790000 8.640000
## [1912] 8.754000 8.704000 8.723000 8.580000 8.645000 8.715000 8.825000
## [1919] 8.813000 8.774000 8.745000 8.760000 8.555000 8.692000 8.686000
## [1926] 8.652000 8.580000 8.530000 8.615000 8.661000 8.797000 8.791000
## [1933] 8.670000 8.570000 8.590000 8.920000 8.808000 8.827000 8.640000
## [1940] 8.585000 8.580000 8.776000 8.811000 8.836000 8.490000 8.660000
## [1947] 8.630000 8.724000 8.658000 8.680000 8.670000 8.765000 8.595000
## [1954] 8.687000 8.442000 8.699000 8.655000 8.660000 8.710000 8.874000
## [1961] 8.868000 8.785000 8.670000 8.625000 8.665000 8.803000 8.836000
## [1968] 8.679000 8.600000 8.650000 8.525000 8.841000 8.684000 8.711000
## [1975] 8.625000 8.670000 8.600000 8.851000 8.760000 8.748000 8.485000
## [1982] 8.455000 8.560000 8.596000 8.548000 8.463000 8.415000 8.270000
## [1989] 8.375000 8.488000 8.509000 8.554000 8.495000 8.365000 8.455000
## [1996] 8.490000 8.531000 8.385000 8.340000 8.335000 8.280000 8.326000
## [2003] 8.510000 8.468000 8.540000 8.460000 8.550000 8.575000 8.663000
## [2010] 8.660000 8.790000 8.800000 8.710000 8.756000 8.798000 8.784000
## [2017] 8.430000 8.450000 8.455000 8.541000 8.450000 8.433000 8.365000
## [2024] 8.355000 8.350000 8.432000 8.452000 8.358000 8.445000 8.415000
## [2031] 8.445000 8.479000 8.488000 8.508000 8.630000 8.610000 8.590000
## [2038] 8.604000 8.502000 8.518000 8.675000 8.500000 8.585000 8.616000
## [2045] 8.615000 8.622000 8.655000 8.625000 8.360000 8.695000 8.752000
## [2052] 8.750000 8.570000 8.500000 8.640000 8.537000 8.604000 8.632000
## [2059] 8.605000 8.590000 8.475000 8.639000 8.688000 8.673000 8.620000
## [2066] 8.530000 8.590000 8.584000 8.667000 8.729000 8.610000 8.585000
## [2073] 8.615000 8.603000 8.612000 8.676000 8.650000 8.625000 8.665000
## [2080] 8.520000 8.640000 8.640000 8.781000 8.592000 8.613000 8.745000
## [2087] 8.765000 8.760000 8.679000 8.739000 8.647000 8.550000 8.470000
## [2094] 8.650000 8.609000 8.592000 8.510000 8.520000 8.700000 8.445000
## [2101] 8.580000 8.631000 8.620000 8.555000 8.460000 8.640000 8.581000
## [2108] 8.579000 8.564000 8.600000 8.575000 8.565000 8.582000 8.769000
## [2115] 8.454000 8.510000 8.640000 8.495000 8.705000 8.566000 8.693000
## [2122] 8.640000 8.495000 8.495000 8.680000 8.631000 8.672000 8.495000
## [2129] 8.525000 8.580000 8.621000 8.656000 8.531000 8.665000 8.740000
## [2136] 8.675000 8.828000 8.829000 8.812000 8.320000 8.375000 8.295000
## [2143] 8.396000 8.406000 8.433000 8.460000 8.560000 8.450000 8.560000
## [2150] 8.640000 8.606000 8.325000 8.410000 8.310000 8.447000 8.470000
## [2157] 8.467000 8.330000 8.300000 8.355000 8.413000 7.714000 8.346000
## [2164] 8.270000 8.480000 8.065000 8.476000 8.436000 8.408000 8.335000
## [2171] 8.195000 8.215000 8.355000 8.196000 8.406000 8.465000 8.335000
## [2178] 8.525000 8.543000 8.556000 8.424000 8.790000 8.845000 8.895000
## [2185] 8.897000 8.888000 8.877000 8.785000 8.810000 8.710000 8.830000
## [2192] 8.890000 8.875000 7.925000 8.695000 8.650000 8.709000 8.693000
## [2199] 8.676000 8.585000 8.635000 8.540000 8.706000 8.707000 8.652000
## [2206] 8.585000 8.700000 8.660000 8.728000 8.705000 8.661000 8.735000
## [2213] 8.510000 8.650000 8.494000 8.676000 8.554000 8.750000 8.805000
## [2220] 8.750000 8.708000 8.570000 8.643000 8.505000 8.585000 8.550000
## [2227] 8.488000 8.560000 8.648000 8.485000 8.560000 8.420000 8.545000
## [2234] 8.545000 8.540000 8.565000 8.510000 8.530000 8.430000 8.455000
## [2241] 8.595000 8.495000 8.490000 8.510000 8.395000 8.420000 8.380000
## [2248] 8.415000 8.370000 8.405000 8.295000 8.400000 8.375000 7.730000
## [2255] 8.645000 8.035000 8.450000 8.590000 8.470000 8.520000 8.575000
## [2262] 8.395000 8.500000 8.320000 8.500000 8.455000 8.540000 8.545000
## [2269] 8.410000 8.455000 8.405000 8.405000 8.290000 8.300000 8.645000
## [2276] 8.620000 8.628000 8.560000 8.575000 8.571000 8.803000 8.781000
## [2283] 8.875000 8.856000 8.768000 8.878000 8.443000 8.578000 8.573000
## [2290] 8.729000 8.684000 8.631000 8.986000 9.088000 8.960000 8.552000
## [2297] 8.490000 8.442000 8.497000 8.535000 8.463000 8.458000 8.459000
## [2304] 8.382000 8.497000 8.505000 8.468000 8.434000 8.364000 8.322000
## [2311] 8.463000 8.393000 8.472000
as.double(cube$`Density in MT/m3`)
##    [1] 2586.667 2447.704 2520.889 2586.667 2536.296 2471.111 2572.148
##    [8] 2449.481 2496.593 2408.889 2444.444 2462.222 2408.889 2507.852
##   [15] 2480.889 2413.333 2442.963 2468.148 2493.333 2468.444 2487.407
##   [22] 2442.963 2474.074 2417.778 2497.481 2472.889 2457.778 2486.815
##   [29] 2517.926 2485.630 2411.852 2435.556 2462.222 2601.778 2560.889
##   [36] 2548.444 2414.815 2432.593 2471.111 2515.259 2537.481 2553.778
##   [43] 2441.481 2462.815 2493.333 2563.852 2522.074 2517.926 2441.481
##   [50] 2462.815 2493.333 2597.037 2553.778 2528.593 2432.593 2485.926
##   [57] 2494.815 2555.556 2541.037 2578.074 2413.333 2442.963 2407.407
##   [64] 2550.815 2552.000 2565.630 2442.963 2516.148 2442.370 2509.333
##   [71] 2538.667 2578.074 2472.593 2499.259 2442.963 2558.222 2546.074
##   [78] 2514.074 2521.481 2492.444 2422.222 2607.704 2597.037 2509.333
##   [85] 2499.259 2488.296 2523.556 2522.074 2550.815 2566.222 2506.370
##   [92] 2484.741 2510.222 2605.333 2610.074 2597.037 2539.556 2465.481
##   [99] 2517.037 2610.963 2575.704 2542.519 2466.667 2523.556 2515.852
##  [106] 2514.963 2537.481 2549.630 2476.741 2522.074 2495.111 2543.704
##  [113] 2577.185 2599.111 2495.111 2487.111 2504.296 2613.630 2561.481
##  [120] 2508.148 2552.889 2526.519 2464.296 2579.259 2576.296 2531.259
##  [127] 2487.111 2519.111 2509.926 2503.407 2549.630 2581.630 2480.593
##  [134] 2385.185 2434.074 2592.593 2584.593 2580.444 2427.259 2445.333
##  [141] 2403.556 2610.370 2570.370 2572.741 2458.074 2489.185 2464.889
##  [148] 2546.667 2579.259 2551.704 2402.667 2405.630 2431.111 2528.296
##  [155] 2551.407 2577.481 2593.778 2605.926 2614.222 2504.889 2518.815
##  [162] 2557.333 2595.259 2551.111 2575.704 2506.370 2576.000 2604.148
##  [169] 2543.407 2574.519 2605.926 2534.519 2578.074 2475.852 2602.963
##  [176] 2605.333 2500.741 2456.593 2427.259 2504.000 2572.741 2589.630
##  [183] 2561.185 2445.630 2479.704 2518.815 2536.296 2509.333 2481.481
##  [190] 2560.593 2444.444 2429.333 2510.637 2535.704 2516.148 2476.741
##  [197] 2492.148 2521.185 2474.667 2563.852 2522.074 2551.407 2489.778
##  [204] 2477.333 2534.519 2578.074 2427.259 2500.148 2503.704 2528.593
##  [211] 2518.222 2563.852 2522.074 2551.111 2496.593 2555.259 2551.407
##  [218] 2590.815 2547.556 2604.148 2563.852 2547.556 2560.593 2521.481
##  [225] 2479.704 2549.630 2505.481 2466.667 2475.852 2488.889 2541.926
##  [232] 2552.000 2590.815 2547.556 2613.333 2503.704 2490.370 2538.963
##  [239] 2571.259 2601.778 2484.444 2500.741 2497.481 2517.037 2595.556
##  [246] 2561.185 2565.630 2528.593 2514.963 2515.259 2536.593 2580.148
##  [253] 2613.333 2503.704 2490.370 2555.852 2607.704 2525.037 2484.444
##  [260] 2500.741 2497.481 2538.963 2571.259 2601.778 2484.444 2500.741
##  [267] 2497.481 2517.037 2595.556 2561.185 2565.630 2528.593 2514.963
##  [274] 2613.630 2549.630 2546.370 2574.519 2543.111 2514.074 2544.000
##  [281] 2585.185 2595.556 2545.481 2561.185 2578.370 2459.556 2532.741
##  [288] 2455.704 2467.852 2492.148 2501.333 2463.111 2491.556 2450.667
##  [295] 2463.704 2486.519 2491.852 2429.000 2446.000 2444.000 2503.000
##  [302] 2484.444 2486.000 2441.481 2462.815 2471.000 2485.926 2466.667
##  [309] 2463.704 2497.481 2472.889 2487.407 2471.111 2502.222 2460.741
##  [316] 2447.704 2474.074 2507.852 2506.667 2509.630 2527.407 2496.593
##  [323] 2527.111 2474.667 2451.852 2448.889 2481.481 2539.556 2471.407
##  [330] 2517.037 2489.481 2468.148 2471.111 2466.667 2523.556 2515.852
##  [337] 2525.926 2509.630 2484.444 2442.963 2516.148 2442.370 2467.852
##  [344] 2588.148 2555.556 2514.074 2570.074 2567.407 2497.481 2551.407
##  [351] 2554.370 2533.037 2577.481 2543.111 2545.778 2565.037 2463.704
##  [358] 2551.704 2546.074 2506.074 2386.667 2474.370 2497.481 2513.778
##  [365] 2537.185 2551.704 2463.704 2494.815 2521.481 2544.000 2506.963
##  [372] 2502.222 2462.815 2498.370 2483.259 2515.259 2536.593 2580.148
##  [379] 2518.815 2486.519 2490.370 2525.926 2543.704 2536.296 2515.556
##  [386] 2540.741 2524.444 2525.926 2528.889 2556.444 2524.444 2542.222
##  [393] 2533.333 2545.185 2554.370 2577.778 2554.074 2534.815 2583.704
##  [400] 2545.778 2561.481 2562.963 2557.037 2595.556 2551.111 2500.741
##  [407] 2539.259 2521.481 2565.000 2625.185 2595.556 2517.630 2521.481
##  [414] 2551.111 2545.185 2506.667 2530.370 2579.259 2556.741 2583.704
##  [421] 2554.074 2562.963 2568.889 2603.852 2530.074 2561.481 2471.407
##  [428] 2533.333 2509.630 2486.519 2563.259 2527.111 2385.185 2589.630
##  [435] 2405.926 2497.481 2474.370 2509.630 2555.556 2490.000 2525.926
##  [442] 2494.519 2465.185 2435.259 2517.037 2499.259 2487.407 2441.481
##  [449] 2457.778 2450.370 2522.963 2481.481 2511.111 2481.481 2512.593
##  [456] 2499.259 2530.370 2506.667 2516.444 2400.000 2545.185 2557.037
##  [463] 2514.074 2524.444 2557.037 2560.000 2545.185 2554.370 2521.481
##  [470] 2548.148 2557.037 2533.333 2526.519 2554.370 2589.630 2539.259
##  [477] 2560.000 2528.889 2531.852 2551.111 2579.259 2562.963 2482.963
##  [484] 2494.815 2536.000 2565.926 2509.630 1260.500 2568.889 2548.148
##  [491] 2543.704 2608.889 2588.148 2625.185 2573.333 2568.889 2622.222
##  [498] 2525.926 2557.037 2604.444 2509.630 2520.000 2533.333 2524.741
##  [505] 2512.593 2524.444 2539.259 2548.444 2487.704 2491.852 2583.704
##  [512] 2561.481 2601.481 2526.222 2513.481 2527.111 2463.704 2468.148
##  [519] 2560.000 2533.333 2528.000 2557.630 2601.481 2577.778 2574.815
##  [526] 2516.444 2587.556 2535.704 2560.000 2530.370 2491.852 2545.778
##  [533] 2557.333 2575.111 2552.593 2567.407 2604.444 2485.333 2555.852
##  [540] 2571.852 2565.926 2545.185 2546.667 2577.778 2584.296 2557.037
##  [547] 2631.111 2576.296 2597.037 2488.889 2518.519 2592.593 2539.259
##  [554] 2573.333 2583.704 2578.074 2518.519 2554.074 2554.074 2532.000
##  [561] 2622.222 2601.481 2598.519 2558.519 2545.778 2557.333 2575.111
##  [568] 2542.222 2561.481 2555.556 2521.481 2497.778 2506.667 2511.111
##  [575] 2497.778 2517.037 2502.222 2514.074 2499.259 2514.074 2539.259
##  [582] 2512.593 2552.593 2530.370 2485.926 2543.704 2539.259 2531.852
##  [589] 2525.926 2560.000 2533.333 2548.148 2577.778 2542.222 2543.704
##  [596] 2468.148 2484.444 2540.741 2520.000 2496.296 2487.407 2509.630
##  [603] 2511.111 2506.667 2515.556 2514.074 2497.778 2494.815 2517.037
##  [610] 2502.815 2624.741 2543.704 2491.852 2432.593 2408.889 2533.333
##  [617] 2536.296 2528.889 2562.963 2497.778 2580.741 2557.037 2567.407
##  [624] 2562.963 2471.111 2485.926 2487.407 2515.556 2499.259 2503.704
##  [631] 2499.259 2527.407 2494.815 2527.407 2511.111 2525.926 2509.630
##  [638] 2524.444 2530.370 2521.481 2488.889 2527.407 2570.370 2551.111
##  [645] 2557.037 2610.370 2570.370 2565.926 2614.815 2585.185 2562.963
##  [652] 2561.481 2594.074 2565.926 2546.667 2605.926 2580.741 2571.852
##  [659] 2601.481 2600.000 2459.259 2485.926 2432.593 2425.185 2450.370
##  [666] 2472.593 2515.556 2534.815 2537.778 2555.556 2560.000 2554.074
##  [673] 2499.259 2548.148 2518.519 2571.852 2545.185 2512.593 2488.889
##  [680] 2503.704 2561.481 2536.296 2515.556 2514.074 2485.926 2497.778
##  [687] 2497.778 2459.259 2471.111 2502.222 2591.111 2520.000 2491.259
##  [694] 2525.926 2524.444 2462.222 2530.370 2535.111 2533.333 2471.111
##  [701] 2521.481 2533.333 2400.000 2391.111 2539.259 2503.704 2497.778
##  [708] 2417.778 2499.259 2539.259 2520.000 2456.296 2447.407 2471.111
##  [715] 2545.185 2475.556 2491.852 2448.889 2411.852 2474.074 2543.704
##  [722] 2589.630 2514.074 2502.222 2506.667 2521.481 2539.259 2577.778
##  [729] 2552.593 2542.222 2438.519 2480.000 2514.074 2518.519 2525.926
##  [736] 2565.926 2564.444 2522.963 2580.741 2522.963 2549.630 2585.185
##  [743] 2545.185 2595.556 2616.296 2562.963 2614.815 2562.963 2527.407
##  [750] 2521.481 2518.519 2555.556 2548.148 2515.556 2503.704 2533.333
##  [757] 2503.704 2491.852 2514.074 2577.778 2543.704 2545.185 2620.741
##  [764] 2595.556 2637.037 2598.519 2589.630 2533.333 2562.963 2551.111
##  [771] 2549.630 2580.741 2582.222 2577.778 2560.000 2600.000 2521.481
##  [778] 2469.630 2506.667 2475.556 2619.259 2616.296 2601.481 2503.704
##  [785] 2530.370 2500.741 2579.259 2665.185 2619.259 2543.704 2509.630
##  [792] 2518.519 2546.667 2557.037 2574.815 2496.296 2444.444 2454.815
##  [799] 2564.444 2568.889 2577.778 2509.630 2512.593 2512.593 2557.037
##  [806] 2588.148 2560.000 2548.148 2565.926 2560.000 2552.593 2545.185
##  [813] 2574.815 2588.148 2583.704 2568.889 2548.148 2530.370 2540.741
##  [820] 2565.926 2543.704 2562.963 2600.000 2577.778 2573.333 2582.222
##  [827] 2571.852 2613.333 2562.963 2574.815 2577.778 2591.111 2595.556
##  [834] 2598.519 2607.407 2588.148 2629.630 2588.148 2601.481 2591.111
##  [841] 2480.000 2432.593 2471.111 2471.111 2465.185 2459.259 2537.778
##  [848] 2478.519 2488.889 2477.037 2453.333 2456.296 2456.296 2434.074
##  [855] 2508.148 2465.185 2490.370 2500.741 2441.481 2435.556 2482.963
##  [862] 2508.148 2494.815 2500.741 2499.259 2548.148 2490.370 2485.926
##  [869] 2491.852 2478.519 2454.815 2435.556 2468.148 2485.926 2472.593
##  [876] 2494.815 2456.296 2448.889 2402.963 2413.333 2595.556 2506.667
##  [883] 2448.889 2488.889 2466.667 2496.296 2410.370 2388.148 2422.222
##  [890] 2539.259 2525.926 2462.222 2496.296 2518.519 2537.778 2545.185
##  [897] 2429.630 2536.296 2490.370 2441.481 2524.444 2527.407 2478.519
##  [904] 2435.556 2494.815 2582.222 2589.630 2525.926 2589.630 2457.778
##  [911] 2472.593 2490.370 2444.444 2595.556 2509.630 2503.704 2400.000
##  [918] 2565.926 2474.074 2422.222 2488.889 2451.852 2583.704 2434.074
##  [925]    0.000 2485.926 2488.889 2447.407    0.000    0.000 2549.630
##  [932] 2509.630 2506.667 2383.704 2512.593 2518.519 2542.222 2450.370
##  [939] 2542.222 2542.222 2468.148 2474.074 2429.630 2440.000 2554.074
##  [946] 2469.630 2497.778 2481.481 2429.630 2471.111 2524.444 2429.630
##  [953] 2502.222 2462.222 2463.704 2484.444 2459.259 2530.370 2503.704
##  [960] 2485.926 2450.370 2401.481 2491.852 2499.259 2530.370 2487.407
##  [967] 2480.000 2428.148 2468.148 2411.852 2474.074 2423.704 2441.481
##  [974] 2521.481 2494.815 2456.296 2423.704 2394.074 2411.852 2394.074
##  [981] 2435.556 2429.630 2515.556 2420.741 2497.778 2491.852 2460.741
##  [988] 2456.296 2508.148 2485.926 2459.259 2515.556 2471.111 2481.481
##  [995] 2545.185 2530.370 2539.259 2527.407 2500.741 2420.741 2426.667
## [1002] 2512.593 2392.593 2419.259 2465.185 2456.296 2477.037 2530.370
## [1009] 2438.519 2445.926 2508.148 2441.481 2411.852 2420.741 2438.519
## [1016] 2444.444 2456.296 2407.407 2420.741 2408.889 2450.370 2456.296
## [1023] 2456.296 2379.259 2340.741 2334.815 2545.185 2509.630 2631.111
## [1030] 2358.519 2352.593 2358.519 2568.889 2571.852 2555.556 2491.852
## [1037] 2471.111 2440.000 2549.630 2515.556 2537.778 2405.926 2432.593
## [1044] 2408.889 2474.074 2485.926 2422.222 2417.778 2426.667 2423.704
## [1051] 2497.778 2453.333 2450.370 2426.667 2440.000 2432.593 2472.593
## [1058] 2468.148 2459.259 2435.556 2447.407 2416.296 2401.481 2414.815
## [1065] 2459.259 2576.296 2588.148 2560.000 2440.000 2445.926 2472.593
## [1072] 2537.778 2543.704 2533.333 2496.296 2530.370 2512.593 2604.444
## [1079] 2545.185 2571.852 2573.333 2570.370 2557.630 2560.000 2562.963
## [1086] 2560.593 2562.963 2548.148 2528.889 2503.704 2548.148 2499.259
## [1093] 2456.296 2423.704 2469.630 2506.667 2548.148 2554.074 2491.852
## [1100] 2506.667 2480.000 2539.259 2571.852 2582.222 2521.481 2509.630
## [1107] 2509.630 2515.556 2506.667 2482.963 2488.889 2469.630 2491.852
## [1114] 2577.778 2608.889 2562.963 2588.148 2577.778 2549.630 2493.333
## [1121] 2505.185 2508.148 2521.481 2515.556 2511.111 2534.815 2546.667
## [1128] 2533.333 2583.704 2555.556 2557.037 2545.185 2551.111 2536.296
## [1135] 2518.519 2528.889 2546.667 2560.000 2565.926 2598.519 2629.630
## [1142] 2622.222 2598.519 2474.074 2481.481 2485.926 2545.185 2546.667
## [1149] 2560.000 2499.259 2485.926 2480.000 2527.407 2565.926 2542.222
## [1156] 2460.741 2475.556 2460.741 2500.741 2485.926 2527.407 2494.815
## [1163] 2480.000 2471.111 2545.185 2548.148 2521.481 2438.519 2445.926
## [1170] 2417.778 2521.481 2503.704 2514.074 2549.630 2585.185 2598.519
## [1177] 2552.593 2604.444 2640.000 2565.926 2558.519 2570.370 2598.519
## [1184] 2561.481 2598.519 2594.074 2571.852 2607.407 2582.222 2586.667
## [1191] 2570.370 2619.259 2579.259 2571.852 2601.481 2580.741 2582.222
## [1198] 2534.815 2555.556 2597.037 2471.111 2459.259 2471.111 2601.481
## [1205] 2619.259 2604.444 2506.667 2494.815 2488.889 2506.667 2496.296
## [1212] 2531.852 2585.185 2570.370 2619.259 2450.370 2434.074 2454.815
## [1219] 2613.333 2601.481 2597.037 2518.519 2528.889 2545.185 2614.815
## [1226] 2637.037 2616.296 2505.185 2488.889 2505.185 2596.148 2600.000
## [1233] 2594.074 2576.296 2586.667 2520.000 2583.704 2580.741 2595.556
## [1240] 2533.333 2527.407 2527.407 2583.704 2602.963 2583.704 2521.481
## [1247] 2515.556 2511.111 2597.037 2583.704 2634.074 2567.407 2531.852
## [1254] 2567.407 2650.370 2623.704 2629.630 2508.148 2506.667 2524.444
## [1261] 2611.852 2647.407 2611.852 2450.370 2491.852 2440.000 2637.037
## [1268] 2598.519 2619.259 2478.519 2477.037 2545.185 2622.222 2597.037
## [1275] 2614.815 2509.630 2520.000 2527.407 2577.778 2595.556 2589.630
## [1282] 2500.741 2450.370 2503.704 2607.407 2644.444 2602.963 2482.963
## [1289] 2503.704 2560.000 2506.667 2525.926 2527.407 2613.333 2604.444
## [1296] 2614.815 2608.889 2611.852 2616.296 2602.963 2583.704 2574.815
## [1303] 2598.519 2555.556 2597.037 2588.148 2588.148 2573.333 2588.148
## [1310] 2594.074 2613.333 2536.296 2521.481 2503.704 2511.111 2499.259
## [1317] 2509.630 2589.630 2602.963 2571.852 2562.370 2586.667 2570.370
## [1324] 2586.667 2620.741 2619.259 2562.963 2573.333 2560.000 2508.148
## [1331] 2478.519 2500.741 2496.296 2487.407 2502.222 2644.444 2637.037
## [1338] 2638.519 2601.481 2619.259 2616.296 2580.741 2628.148 2589.630
## [1345] 2608.889 2588.148 2586.667 2551.111 2583.704 2588.148 2570.370
## [1352] 2571.852 2573.333 2562.963 2453.333 2542.222 2580.741 2560.000
## [1359] 2568.889 2521.481 2552.593 2474.074 2548.148 2570.370 2533.333
## [1366] 2589.630 2552.593 2521.481 2551.111 2551.111 2564.444 2520.000
## [1373] 2536.296 2499.259 2545.185 2542.222 2536.296 2577.778 2565.926
## [1380] 2579.259 2574.815 2570.370 2577.778 2531.852 2521.481 2517.037
## [1387] 2539.259 2530.370 2545.185 2565.926 2560.000 2557.037 2592.593
## [1394] 2557.037 2543.704 2558.519 2536.296 2530.370 2521.481 2543.704
## [1401] 2534.815 2579.259 2576.296 2557.037 2601.481 2552.593 2557.037
## [1408] 2598.519 2628.148 2644.444 2592.593 2607.407 2588.148 2533.333
## [1415] 2540.741 2517.037 2491.852 2482.963 2471.111 2491.852 2478.519
## [1422] 2491.852 2477.037 2447.407 2454.815 2509.630 2514.074 2515.556
## [1429] 2450.370 2463.704 2450.370 2567.407 2607.407 2580.741 2548.148
## [1436] 2549.630 2565.926 2560.000 2536.296 2568.889 2527.407 2540.741
## [1443] 2533.333 2611.852 2619.259 2592.593 2594.074 2610.370 2582.222
## [1450] 2568.889 2546.667 2562.963 2574.815 2604.444 2604.444 2565.926
## [1457] 2545.185 2545.185 2502.222 2451.852 2466.667 2485.926 2488.889
## [1464] 2530.370 2481.481 2488.889 2481.481 2477.037 2444.444 2435.556
## [1471] 2542.222 2521.481 2546.667 2555.556 2560.000 2509.630 2536.296
## [1478] 2551.111 2560.000 2537.778 2502.222 2554.074 2505.185 2481.481
## [1485] 2491.852 2515.556 2511.111 2512.593 2527.407 2536.296 2515.556
## [1492] 2494.815 2521.481 2493.333 2580.741 2571.852 2571.852 2480.000
## [1499] 2508.148 2496.296 2485.926 2499.259 2503.704 2551.111 2598.519
## [1506] 2557.037 2509.630 2533.333 2548.148 2518.519 2524.444 2546.667
## [1513] 2522.963 2522.963 2494.815 2493.333 2521.481 2536.296 2468.148
## [1520] 2515.556 2506.667 2509.630 2472.593 2509.630 2456.296 2487.407
## [1527] 2459.259 2548.148 2552.593 2546.667 2548.148 2525.926 2408.889
## [1534] 2613.333 2561.481 2571.852 2573.333 2515.556 2518.519 2568.889
## [1541] 2557.037 2543.704 2530.370 2545.185 2520.000 2503.704 2512.593
## [1548] 2488.889 2484.444 2429.630 2391.111 2574.815 2598.519 2557.037
## [1555] 2545.185 2567.407 2554.074 2530.370 2520.000 2545.185 2503.704
## [1562] 2496.296 2527.407 2502.222 2527.407 2573.333 2565.926 2570.370
## [1569] 2503.704 2502.222 2533.333 2530.370 2565.926 2545.185 2545.185
## [1576] 2545.185 2494.815 2517.037 2478.519 2496.296 2508.148 2423.704
## [1583] 2454.815 2457.778 2540.741 2533.333 2521.481 2453.333 2422.222
## [1590] 2401.481 2487.407 2477.037 2488.889 2536.296 2558.519 2539.259
## [1597] 2474.074 2484.444 2517.037 2511.111 2522.963 2585.185 2537.778
## [1604] 2503.111 2531.852 2500.741 2548.148 2548.148 2494.815 2490.370
## [1611] 2497.778 2530.370 2533.333 2499.259 2514.074 2515.556 2520.000
## [1618] 2499.259 2475.556 2481.481 2518.519 2490.370 2484.444 2503.704
## [1625] 2487.407 2485.926 2505.185 2457.778 2468.148 2499.259 2499.259
## [1632] 2477.037 2497.778 2487.407 2505.185 2445.926 2488.889 2442.963
## [1639] 2478.519 2456.296 2469.630 2505.185 2499.259 2497.778 2503.704
## [1646] 2487.407 2485.926 2533.333 2539.259 2570.370 2530.370 2527.407
## [1653] 2536.296 2511.111 2527.407 2558.519 2515.556 2474.074 2506.667
## [1660] 2472.593 2485.926 2496.296 2491.852 2506.667 2503.704 2502.222
## [1667] 2484.444 2533.333 2629.630 2642.963 2613.333 2522.963 2484.444
## [1674] 2536.296 2530.370 2497.778 2539.259 2539.259 2531.852 2517.037
## [1681] 2530.370 2506.667 2509.630 2554.074 2536.296 2555.556 2534.815
## [1688] 2536.296 2527.407 2508.148 2490.370 2468.148 2591.111 2543.704
## [1695] 2505.185 2545.185 2509.630 2509.630 2514.074 2499.259 2567.407
## [1702] 2524.444 2560.000 2528.889 2528.889 2560.000 2524.444 2542.222
## [1709] 2522.963 2491.852 2542.222 2493.333 2484.444 2493.333 2515.556
## [1716] 2502.222 2488.889 2488.889 2488.889 2502.222 2500.741 2509.630
## [1723] 2509.630 2527.407 2496.296 2488.889 2530.370 2496.296 2510.815
## [1730] 2521.481 2518.519 2478.519 2494.815 2469.630 2417.778 2379.259
## [1737] 2414.815 2367.407 2331.852 2389.630 2392.593 2382.222 2380.741
## [1744] 2388.148 2379.259 2391.111 2411.852 2426.667 2420.741 2282.963
## [1751] 2311.111 2358.519 2477.037 2522.963 2536.296 2497.778 2459.259
## [1758] 2491.852 2450.370 2438.519 2466.667 2453.333 2462.222 2454.815
## [1765] 2437.037 2521.481 2426.667 2451.852 2423.704 2426.667 2462.222
## [1772] 2475.556 2477.037 2445.926 2429.630 2447.407 2474.074 2456.296
## [1779] 2494.815 2462.222 2485.926 2459.259 2469.630 2468.148 2468.148
## [1786] 2422.222 2429.630 2447.407 2493.333 2493.333 2460.741 2462.222
## [1793] 2491.852 2484.444 2480.000 2488.889 2478.519 2485.926 2480.000
## [1800] 2487.407 2539.259 2509.630 2561.481 2557.037 2545.185 2551.111
## [1807] 2496.296 2533.333 2531.852 2546.667 2480.000 2497.778 2527.407
## [1814] 2517.037 2505.185 2484.444 2517.037 2524.444 2518.519 2520.000
## [1821] 2500.741 2485.926 2472.593 2460.741 2557.037 2552.593 2580.741
## [1828] 2525.926 2536.296 2484.444 2514.074 2515.556 2533.333 2514.074
## [1835] 2522.963 2514.074 2477.037 2546.667 2512.593 2580.741 2585.185
## [1842] 2570.370 2562.963 2570.370 2525.926 2549.630 2521.481 2514.074
## [1849] 2517.037 2527.407 2542.222 2511.111 2506.667 2405.926 2499.259
## [1856] 2512.593 2517.037 2514.074 2509.630 2531.852 2488.889 2497.778
## [1863] 2503.704 2480.000 2481.481 2512.593 2481.481 2515.556 2537.778
## [1870] 2379.259 2370.370 2400.000 2491.852 2524.444 2549.630 2420.741
## [1877] 2428.148 2438.519 2548.148 2545.185 2540.741 2386.667 2371.852
## [1884] 2417.778 2508.148 2478.519 2508.148 2376.296 2386.667 2385.185
## [1891] 2474.074 2497.778 2520.000 2377.778 2374.815 2417.778 2506.667
## [1898] 2522.963 2542.222 2394.074 2389.630 2385.185 2539.259 2542.222
## [1905] 2537.778 2522.963 2573.630 2614.519 2582.222 2604.444 2560.000
## [1912] 2593.778 2578.963 2584.593 2542.222 2561.481 2582.222 2614.815
## [1919] 2611.259 2599.704 2591.111 2595.556 2534.815 2575.407 2573.630
## [1926] 2563.556 2542.222 2527.407 2552.593 2566.222 2606.519 2604.741
## [1933] 2568.889 2539.259 2545.185 2642.963 2609.778 2615.407 2560.000
## [1940] 2543.704 2542.222 2600.296 2610.667 2618.074 2515.556 2565.926
## [1947] 2557.037 2584.889 2565.333 2571.852 2568.889 2597.037 2546.667
## [1954] 2573.926 2501.333 2577.481 2564.444 2565.926 2580.741 2629.333
## [1961] 2627.556 2602.963 2568.889 2555.556 2567.407 2608.296 2618.074
## [1968] 2571.556 2548.148 2562.963 2525.926 2619.556 2573.037 2581.037
## [1975] 2555.556 2568.889 2548.148 2622.519 2595.556 2592.000 2514.074
## [1982] 2505.185 2536.296 2546.963 2532.741 2507.556 2493.333 2450.370
## [1989] 2481.481 2514.963 2521.185 2534.519 2517.037 2478.519 2505.185
## [1996] 2515.556 2527.704 2484.444 2471.111 2469.630 2453.333 2466.963
## [2003] 2521.481 2509.037 2530.370 2506.667 2533.333 2540.741 2566.815
## [2010] 2565.926 2604.444 2607.407 2580.741 2594.370 2606.815 2602.667
## [2017] 2497.778 2503.704 2505.185 2530.667 2503.704 2498.667 2478.519
## [2024] 2475.556 2474.074 2498.370 2504.296 2476.444 2502.222 2493.333
## [2031] 2502.222 2512.296 2514.963 2520.889 2557.037 2551.111 2545.185
## [2038] 2549.333 2519.111 2523.852 2570.370 2518.519 2543.704 2552.889
## [2045] 2552.593 2554.667 2564.444 2555.556 2477.037 2576.296 2593.185
## [2052] 2592.593 2539.259 2518.519 2560.000 2529.481 2549.333 2557.630
## [2059] 2549.630 2545.185 2511.111 2559.704 2574.222 2569.778 2554.074
## [2066] 2527.407 2545.185 2543.407 2568.000 2586.370 2551.111 2543.704
## [2073] 2552.593 2549.037 2551.704 2570.667 2562.963 2555.556 2567.407
## [2080] 2524.444 2560.000 2560.000 2601.778 2545.778 2552.000 2591.111
## [2087] 2597.037 2595.556 2571.556 2589.333 2562.074 2533.333 2509.630
## [2094] 2562.963 2550.815 2545.778 2521.481 2524.444 2577.778 2502.222
## [2101] 2542.222 2557.333 2554.074 2534.815 2506.667 2560.000 2542.519
## [2108] 2541.926 2537.481 2548.148 2540.741 2537.778 2542.815 2598.222
## [2115] 2504.889 2521.481 2560.000 2517.037 2579.259 2538.074 2575.704
## [2122] 2560.000 2517.037 2517.037 2571.852 2557.333 2569.481 2517.037
## [2129] 2525.926 2542.222 2554.370 2564.741 2527.704 2567.407 2589.630
## [2136] 2570.370 2615.704 2616.000 2610.963 2465.185 2481.481 2457.778
## [2143] 2487.704 2490.667 2498.667 2506.667 2536.296 2503.704 2536.296
## [2150] 2560.000 2549.926 2466.667 2491.852 2462.222 2502.815 2509.630
## [2157] 2508.741 2468.148 2459.259 2475.556 2492.741 2285.630 2472.889
## [2164] 2450.370 2512.593 2389.630 2511.407 2499.556 2491.259 2469.630
## [2171] 2428.148 2434.074 2475.556 2428.444 2490.667 2508.148 2469.630
## [2178] 2525.926 2531.259 2535.111 2496.000 2604.444 2620.741 2635.556
## [2185] 2636.148 2633.481 2630.222 2602.963 2610.370 2580.741 2616.296
## [2192] 2634.074 2629.630 2348.148 2576.296 2562.963 2580.444 2575.704
## [2199] 2570.667 2543.704 2558.519 2530.370 2579.556 2579.852 2563.556
## [2206] 2543.704 2577.778 2565.926 2586.074 2579.259 2566.222 2588.148
## [2213] 2521.481 2562.963 2516.741 2570.667 2534.519 2592.593 2608.889
## [2220] 2592.593 2580.148 2539.259 2560.889 2520.000 2543.704 2533.333
## [2227] 2514.963 2536.296 2562.370 2514.074 2536.296 2494.815 2531.852
## [2234] 2531.852 2530.370 2537.778 2521.481 2527.407 2497.778 2505.185
## [2241] 2546.667 2517.037 2515.556 2521.481 2487.407 2494.815 2482.963
## [2248] 2493.333 2480.000 2490.370 2457.778 2488.889 2481.481 2290.370
## [2255] 2561.481 2380.741 2503.704 2545.185 2509.630 2524.444 2540.741
## [2262] 2487.407 2518.519 2465.185 2518.519 2505.185 2530.370 2531.852
## [2269] 2491.852 2505.185 2490.370 2490.370 2456.296 2459.259 2561.481
## [2276] 2554.074 2556.444 2536.296 2540.741 2539.556 2608.296 2601.778
## [2283] 2629.630 2624.000 2597.926 2630.519 2501.630 2541.630 2540.148
## [2290] 2586.370 2573.037 2557.333 2662.519 2692.741 2654.815 2533.926
## [2297] 2515.556 2501.333 2517.630 2528.889 2507.556 2506.074 2506.370
## [2304] 2483.556 2517.630 2520.000 2509.037 2498.963 2478.222 2465.778
## [2311] 2507.556 2486.815 2510.222
as.double(cube$`Load in KN`)
##    [1]  243.5000  245.9000  256.7000  350.6000  383.8000  394.9000
##    [7]  220.0000  240.0000  259.1000  373.0000  382.0000  377.0000
##   [13]  225.6000  210.2000  242.8000  400.3000  390.2000  366.9000
##   [19]  198.6000  207.2000  256.2000  415.5000  369.8000  395.2000
##   [25]  230.5000  219.8000  226.3000  425.0000  417.0000  431.0000
##   [31]  210.2000  225.8000  245.5000  456.8000  462.9000  473.5000
##   [37]  235.8000  242.4000  285.4000  460.3000  469.4000  478.1000
##   [43]  200.8000  245.2000  230.9000  480.9000  476.2000  473.9000
##   [49]  245.8000  230.2000  225.3000  429.3000  435.6000  432.3000
##   [55]  245.8000  210.9000  250.4000  448.6000  456.8000  440.9000
##   [61]  250.8000  245.9000  280.9000  450.0000  464.5000  460.1000
##   [67]  285.4000  252.8000  245.6000  350.6000  383.8000  394.9000
##   [73]  269.8000  268.4000  230.8000  400.3000  390.2000  366.9000
##   [79]  285.4000  268.4000  277.2000  439.8000  466.5000  471.1000
##   [85]  250.4000  245.8000  210.9000  445.3000  478.1000  469.2000
##   [91]  249.2000  221.7000  237.4000  448.6000  459.8000  452.3000
##   [97]  261.0000  253.7000  224.2000  466.9000  476.5000  462.3000
##  [103]  211.5000  235.7000  250.1000  481.2000  469.2000  474.1000
##  [109]  285.2000  268.6000  244.7000  459.1000  463.9000  461.2000
##  [115]  277.3000  268.4000  250.8000  481.5000  470.2000  465.2000
##  [121]  269.8000  235.4000  251.6000  469.3000  480.1000  473.9000
##  [127]  270.4000  253.3000  263.7000  430.5000  451.2000  425.2000
##  [133]  229.5000  235.1000  246.8000  485.3000  464.6000  471.1000
##  [139]  249.9000  220.1000  256.4000  415.1000  436.2000  465.1000
##  [145]  235.5000  225.6000  242.9000  481.6000  463.5000  450.4000
##  [151]  251.2000  256.6000  249.8000  479.2000  489.9000  468.3000
##  [157] 1030.6000 1091.8000 1242.3000  802.3000  812.5000  790.6000
##  [163] 1309.5000 1050.6000 1105.6000  805.0000  810.0000  780.0000
##  [169] 1203.5000 1108.6000 1095.9000  221.5000  230.9000  243.9000
##  [175]  410.4000  465.3000  428.9000  235.9000  244.8000  226.9000
##  [181]  445.5000  467.7000  480.4000  241.8000  230.6000  210.2000
##  [187]  520.1000  460.3000  487.2000  259.3000  260.2000  251.3000
##  [193]  473.9000  476.2000  480.9000  238.9000  246.5000  243.4000
##  [199]  510.0000  397.2000  460.1000  253.4000  259.4000  251.2000
##  [205]  456.8000  462.9000  473.5000  240.6000  240.9000  252.3000
##  [211]  473.9000  480.7000  421.3000  249.5000  261.4000  258.9000
##  [217]  503.1000  430.5000  400.3000  243.5000  245.9000  256.7000
##  [223]  440.2000  392.1000  401.9000  225.6000  210.2000  242.8000
##  [229]  501.2000  432.1000  471.9000  230.5000  219.8000  226.3000
##  [235]  480.3000  520.7000  388.5000  248.6000  261.2000  264.3000
##  [241]  440.1000  399.9000  425.8000  255.3000  270.1000  278.4000
##  [247]  456.3000  448.2000  422.8000  273.6000  281.4000  270.9000
##  [253]  480.3000  520.7000  388.5000  264.8000  279.1000  283.4000
##  [259]  440.1000  399.9000  425.8000  275.4000  260.8000  271.3000
##  [265]  440.1000  399.9000  425.8000  255.3000  270.1000  278.4000
##  [271]  456.3000  448.2000  422.8000  270.1000  285.3000  291.2000
##  [277]  399.8000  459.6000  461.2000  269.2000  263.1000  288.1000
##  [283]  548.2000  483.3000  490.2000  279.0000  301.0000  243.0000
##  [289]  429.3000  471.5000  465.9000  260.0000  309.0000  281.0000
##  [295]  510.1000  471.5000  489.3000  251.9000  260.2000  241.8000
##  [301]  498.5000  482.1000  473.4000  200.8000  245.2000  285.4000
##  [307]  479.1000  485.7000  469.8000  230.5000  219.8000  226.3000
##  [313]  498.5000  482.1000  473.4000  245.9000  369.8000  210.2000
##  [319]  517.2000  512.1000  499.3000  225.1000  251.2000  305.0000
##  [325]  415.2000  452.1000  429.7000  261.0000  235.7000  245.8000
##  [331]  480.0000  395.6000  435.3000  277.3000  268.4000  250.8000
##  [337]  448.8000  517.1000  435.2000  280.4000  210.9000  245.5000
##  [343]  461.9000  532.1000  473.2000  320.8000  307.2000  215.4000
##  [349]  532.2000  543.7000  418.2000  251.7000  269.4000  331.2000
##  [355]  463.0000  527.0000  447.0000  257.2000  227.1000  240.5000
##  [361]  496.4000  514.2300  435.7000  271.5000  269.4000  229.3000
##  [367]  482.9000  473.1000  521.1000  268.5000  290.1000  280.5000
##  [373]  442.9000  450.3000  482.2000  273.6000  319.2000  226.5000
##  [379]  504.3000  426.6000  439.5000  764.0000  777.0000  736.2000
##  [385] 1263.4000 1307.9000 1414.0000  901.4000  826.5000  800.2000
##  [391] 1239.0000 1373.3000 1534.1000 1033.0000  712.3000  860.9000
##  [397] 1547.9000 1276.1000 1210.1000  765.3000  730.2000  685.5000
##  [403] 1452.8000 1408.6000 1325.6000  665.7000  770.7000  582.5000
##  [409] 1287.8000 1046.0000 1321.7000  786.2000  690.5000  778.2000
##  [415] 1159.7000 1305.2000 1323.3000  465.7000  495.2000  568.9000
##  [421] 1262.0000 1311.4000 1296.0000  310.1000  302.1000  288.5000
##  [427]  483.2000  471.9000  510.3000  221.1000  352.3000  321.4000
##  [433]  501.7000  492.3000  432.8000  279.2000  283.9000  285.3000
##  [439]  442.4000  460.2000  401.3000  229.4000  243.1000  267.3000
##  [445]  458.3000  450.2000  455.3000  286.6000  255.3000  276.3000
##  [451]  583.9000  513.3000  541.2000  308.2000  264.8000  285.3000
##  [457]  583.9000  513.3000  580.2000  933.2000  806.1000  820.1000
##  [463] 1283.9000 1390.7000 1512.0000  870.5000  964.3000  939.1000
##  [469] 1232.7000  971.9000  989.9000 1009.1000  937.5000  949.2000
##  [475] 1516.8000 1311.5000 1245.5000  991.2000  983.0000  988.2000
##  [481] 1458.8000 1274.9000 1325.5000  987.7000  910.2000 1082.8000
##  [487] 1233.5000 1760.8000 1695.8000 1195.6000 1082.4000 1117.7000
##  [493] 1598.8000 1441.3000 1513.0000  985.7000 1181.1000  909.9000
##  [499] 1210.9000 1527.3000 1304.7000  935.9000  909.9000  945.3000
##  [505] 1180.3000 1409.7000 1260.3000  778.2000  994.0000 1045.7000
##  [511] 1451.9000 1372.6000 1420.6000  973.4000  961.0000  915.6000
##  [517] 1271.0000 1371.6000 1350.4000 1051.0000 1142.0000  984.4000
##  [523] 1776.9000 1319.6000 1539.3000 1366.6000 1213.5000 1113.0000
##  [529] 1576.0000 1645.0000 1284.4000 1003.2000 1309.8000 1113.0000
##  [535] 1472.3000 1655.5000 1415.1000 1109.7000 1010.6000  921.7000
##  [541] 1080.9000 1288.4000 1009.5000 1143.8000 1036.8000  954.7000
##  [547] 1347.7000 1346.7000 1231.3000 1171.6000  942.4000  909.0000
##  [553]  964.6000 1216.0000 1353.5000 1086.6000 1109.2000 1015.8000
##  [559] 1120.9000 1082.2000 1268.3000 1094.0000  947.2000 1206.0000
##  [565] 1003.2000 1309.8000 1113.0000 1393.3000 1126.9000 1512.0000
##  [571] 1153.6000 1203.5000 1283.5000 1162.7000 1361.9000 1561.1000
##  [577] 1198.1000  872.0000  989.4000 1407.7000 1315.7000 1156.1000
##  [583] 1009.1000 1239.7000  883.2000 1269.0000 1353.9000 1557.5000
##  [589] 1283.4000  770.5000 1187.1000 1400.2000 1215.7000 1328.2000
##  [595] 1126.9000 1137.9000  980.0000 1456.1000 1367.9000 1304.7000
##  [601]  998.2000 1376.6000 1493.1000 1602.6000 1429.7000 1445.3000
##  [607]  548.8000  960.7000  968.9000 1302.0000 1258.2000 1564.9000
##  [613] 1312.3000 1263.9000 1512.2000 1651.6000 1715.7000 1572.9000
##  [619] 1111.2000  942.4000 1152.2000 1130.9000 1454.9000 1414.1000
##  [625] 1189.0000 1371.1000 1191.2000 1511.6000 1543.6000 1543.1000
##  [631] 1188.7000 1012.0000  882.7000 1179.8000  884.5000 1344.6000
##  [637] 1078.9000  911.2000  885.9000 1379.5000 1225.2000 1336.4000
##  [643]  890.1000  950.2000 1004.7000 1080.3000 1112.6000 1181.4000
##  [649] 1045.3000  870.1000  895.9000  824.9000 1153.2000  964.3000
##  [655]  850.1000  970.3000  910.1000 1086.3000 1030.9000 1059.3000
##  [661] 1006.3000 1070.1000  980.7000  756.0000  802.1000  719.9000
##  [667]  930.2000  940.9000  960.1000 1007.4000  999.6000 1002.3000
##  [673] 1237.2000  976.9000 1017.0000 1382.0000 1190.8000 1191.0000
##  [679]  609.5000  543.0000  799.2000 1113.1000  733.7000 1183.0000
##  [685]  870.4000  850.2000  730.9000 1088.2000  988.6000 1063.9000
##  [691]  647.5000  630.0000  660.1000  857.9000  943.4000  846.4000
##  [697]  600.8000  555.3000  481.5000  943.2000  916.1000  947.8000
##  [703]  479.5000  475.8000  659.4000 1273.9000 1075.0000  672.3000
##  [709]  708.5000  491.6000  518.7000  858.1000  860.6000  945.5000
##  [715]  598.4000  645.8000  608.3000 1013.1000  837.7000  681.2000
##  [721]  785.6000  749.3000  583.0000  829.7000  629.0000 1113.0000
##  [727]  925.9000  688.1000  566.9000  907.1000  744.1000  988.4000
##  [733] 1118.3000  743.2000  777.9000 1226.4000 1000.3000 1485.1000
##  [739]  950.1000  962.6000  968.7000 1207.2000 1317.0000 1282.0000
##  [745] 1315.8000 1248.8000  774.1000 1117.6000  981.5000 1343.3000
##  [751]  997.2000 1225.9000 1180.4000 1272.4000 1211.1000 1135.4000
##  [757] 1070.4000 1062.9000  956.3000 1362.5000 1112.8000 1033.8000
##  [763] 1345.0000 1481.3000 1234.2000 1095.1000 1751.4000 1112.6000
##  [769] 1496.4000 1465.4000 1368.0000 1407.3000 1835.2000 1670.8000
##  [775] 1083.7000 1267.0000  890.8000 1512.0000 1191.5000 1149.4000
##  [781] 1196.6000  871.1000  705.9000 1259.5000 1375.4000 1450.6000
##  [787] 1310.6000  822.9000  879.9000 1203.3000 1298.8000 1352.6000
##  [793] 1042.7000 1160.6000 1016.4000 1132.8000 1393.7000 1583.7000
##  [799] 1129.5000 1287.5000  957.3000 1451.6000 1371.6000 1116.2000
##  [805] 1182.0000  947.8000  875.5000 1174.1000 1394.3000 1284.2000
##  [811]  988.3000  941.7000  899.9000 1067.1000 1264.9000 1456.1000
##  [817]  859.8000 1070.9000 1074.0000 1480.5000  878.6000 1175.3000
##  [823]  925.8000  942.5000  833.6000  915.8000 1135.8000 1185.6000
##  [829] 1008.5000  858.4000  983.2000 1331.4000 1513.6000 1576.1000
##  [835] 1163.4000  884.1000 1156.0000 1788.4000  877.1000 1322.3000
##  [841]  819.5000  778.2000  702.6000 1101.5000 1156.1000 1024.7000
##  [847] 1100.4000 1009.4000 1156.6000 1572.9000 1259.5000 1357.1000
##  [853]  800.7000  865.8000  770.9000 1230.4000  976.5000  857.4000
##  [859] 1156.4000 1273.6000 1412.0000  898.3000  812.6000  752.8000
##  [865]  898.3000  812.6000  752.8000 1468.7000  993.2000 1276.6000
##  [871]  746.6000  599.4000  799.6000 1112.8000 1298.1000  914.6000
##  [877]  933.6000  903.0000 1342.0000  673.6000  747.8000  620.6000
##  [883] 1000.9000 1039.4000  957.9000  695.4000  998.1000 1179.9000
##  [889]  550.9000  639.3000  419.4000  919.9000  934.5000  887.4000
##  [895]  827.2000  830.2000  976.7000  669.8000  448.5000  422.2000
##  [901]  668.2000  703.9000  949.5000  975.1000  912.5000 1003.4000
##  [907]  769.4000  473.3000  779.6000  829.5000  731.1000  915.0000
##  [913]  756.4000 1248.2000  924.5000  419.6000  406.7000  434.0000
##  [919]  559.6000  610.9000  821.0000  443.8000  823.3000  558.7000
##  [925]  976.9532  579.8000  500.8000  636.7000  976.9532  976.9532
##  [931]  712.2000  677.3000  717.0000  836.1000  778.1000  789.0000
##  [937]  764.4000  784.8000  757.6000  953.9000  707.5000  634.0000
##  [943]  498.2000  363.8000  796.6000  823.9000  938.6000  927.3000
##  [949]  504.7000  637.4000  479.6000  662.8000  781.6000  713.4000
##  [955]  636.6000  747.2000  545.0000  774.5000  653.1000  470.3000
##  [961]  312.0000  631.5000  592.7000  796.9000  976.4000  631.2000
##  [967]  659.1000  630.7000  801.7000  595.0000 1112.9000  918.4000
##  [973]  552.9000  710.5000  852.7000 1106.2000  635.5000  624.8000
##  [979]  717.2000  458.9000  687.8000  664.0000  612.4000  628.4000
##  [985]  577.5000  870.3000  752.6000  724.2000  756.8000  655.3000
##  [991]  565.2000  886.6000  740.1000  637.4000  832.2000  752.6000
##  [997]  704.3000  769.5000  558.6000  780.3000  858.0000  791.9000
## [1003]  741.9000  583.1000  750.7000  561.8000  457.2000  529.6000
## [1009]  872.2000  914.6000  784.4000  391.5000  528.6000  454.0000
## [1015] 1006.6000 1110.2000  927.5000  461.5000  549.3000  463.3000
## [1021]  824.8000  903.8000  953.6000  902.5000  995.8000  835.7000
## [1027] 1240.9000 1656.2000 1224.3000  943.7000  971.5000  909.8000
## [1033] 1606.5000 1609.9000 1590.6000  955.0000 1017.2000  819.3000
## [1039] 1836.5000 1202.8000 1028.0000  381.0000  475.5000  504.8000
## [1045]  849.4000  904.3000  803.9000  358.9000  391.2000  394.3000
## [1051]  821.3000  884.7000  776.6000  407.0000  458.0000  479.8000
## [1057]  821.6000  855.5000  742.1000  425.2000  393.7000  349.1000
## [1063]  753.4000  769.5000  869.0000 1120.5000 1198.8000 1413.3000
## [1069] 1437.1000 1405.1000 1418.7000 1203.5000 1092.5000 1190.6000
## [1075] 1589.3000 1342.4000 1960.0000 1314.1000  688.8000  939.7000
## [1081] 1737.4000 1040.4000 1495.4000 1163.2000 1214.3000 1249.7000
## [1087] 1756.1000 1778.7000 1781.1000 1206.8000  967.3000 1247.5000
## [1093] 1661.1000 1674.5000 1178.6000  968.2000 1094.8000 1244.5000
## [1099] 1440.8000 1540.6000 1646.5000 1084.2000 1084.4000  938.0000
## [1105] 1163.1000 1612.4000 1504.0000  919.9000  951.6000  881.3000
## [1111] 1671.3000 1222.6000 1494.4000 1105.5000 1564.4000  896.3000
## [1117] 1593.2000 1473.0000 1803.2000 1139.5000 1165.6000  844.9000
## [1123] 1590.5000 1555.5000 1612.0000 1162.2000 1270.5000 1580.6000
## [1129] 1303.5000 2056.6200 1747.3000 1076.6000 1128.5000 1202.8000
## [1135] 1737.9000 1473.3000 1354.4000 1269.0000 1321.2000 1095.6000
## [1141] 1939.1000 1700.9000 1409.4000  903.7000  943.7000  736.5000
## [1147] 1573.7000 1331.1000 1476.7000  939.7000  937.1000  847.7000
## [1153] 1550.2000 1163.9000 1456.7000  789.8000  949.5000  630.2000
## [1159] 1001.2000 1454.4000 1584.1000 1012.4000 1320.1000 1266.2000
## [1165] 1686.8000 1307.4000 1389.7000  930.0000  798.1000 1016.3000
## [1171]  935.5000 1278.1000 1336.7000  941.0000  692.4000  884.5000
## [1177] 1556.1000 1398.4000 1603.9000  999.4000  784.3000  945.2000
## [1183]  957.0000 1414.3000 1269.5000  881.2000  822.6000 1003.4000
## [1189] 1201.1000 1448.1000 1296.6000  881.2000  822.6000 1003.4000
## [1195] 1488.2000 1373.1000 1774.7000 1086.5000 1260.9000  924.9000
## [1201] 1243.6000 1514.7000 1253.6000 1230.3000 1185.0000 1312.3000
## [1207] 1537.7000 1585.8000 1601.5000  985.2000  953.3000  936.3000
## [1213] 1402.3000 1340.2000 1373.7000  982.6000 1001.7000 1009.8000
## [1219] 1307.9000 1555.9000 1390.3000  910.8000  916.0000 1026.3000
## [1225] 1421.3000 1192.2000 1388.6000  973.6000  817.3000 1042.6000
## [1231] 1717.0000 1385.5000 1482.2000  947.3000  752.1000  833.5000
## [1237] 1022.8000 1313.8000 1145.1000  827.6000  734.3000  751.1000
## [1243] 1222.8000 1282.6000 1261.5000  718.5000  966.3000  757.0000
## [1249] 1233.6000 1365.1000 1103.3000 1004.1000 1048.8000 1181.7000
## [1255] 1684.7000 1642.0000 1560.3000 1125.3000 1170.2000 1046.9000
## [1261] 1580.5000 1650.8000 1580.5000  964.6000  990.7000  873.6000
## [1267] 1367.9000 1210.1000 1495.6000  822.6000 1075.2000 1048.0000
## [1273] 1597.5000 1426.8000 1479.2000  942.6000  878.9000  890.2000
## [1279] 1359.6000 1211.8000 1516.7000  846.7000  895.4000  818.8000
## [1285] 1388.0000 1083.3000 1262.5000  999.3000  969.9000 1019.7000
## [1291] 1551.3000 1445.7000 1353.1000  964.9000 1072.5000 1171.6000
## [1297] 1369.0000 2090.4000 1475.1000  871.9000  874.5000  860.4000
## [1303] 1284.2000 1538.1000 1220.8000 1157.7000  836.1000 1078.9000
## [1309] 1672.9000 1905.6000 1672.9000  814.3000  889.1000 1063.1000
## [1315] 1414.6000 1472.1000 1250.7000  948.2000 1235.7000 1138.3000
## [1321] 1592.9000 1392.2000 1096.6000  843.1000  883.8000  805.2000
## [1327] 1212.9000 1153.9000 1376.6000  756.0000  816.8000  838.8000
## [1333]  962.4000  827.7000 1271.5000  835.8000 1022.3000  985.6000
## [1339] 1579.5000 1635.8000 1599.8000  950.8000  940.4000 1203.2000
## [1345] 1502.9000 1631.9000  933.2000 1163.7000 1285.6000 1167.2000
## [1351] 1554.0000 1418.1000 1578.6000  874.9000  846.7000 1025.9000
## [1357] 1342.8000 1253.8000 1560.0000  789.6000  615.9000  848.0000
## [1363] 1536.8000 1399.2000 1403.1000 1082.7000  875.1000  828.7000
## [1369] 1615.1000 1027.0000 1471.5000  843.5000 1070.7000  863.2000
## [1375] 1453.9000 1450.1000 1315.3000 1065.4000  968.8000  980.6000
## [1381] 1602.4000 1225.3000 1547.8000  958.5000 1013.7000 1032.4000
## [1387] 1378.7000 1290.4000 1449.4000  964.3000  919.8000  847.9000
## [1393] 1155.3000 1330.0000 1336.3000  753.0000  822.9000  862.9000
## [1399] 1467.7000 1171.9000 1259.7000 1021.9000 1128.2000  899.0000
## [1405] 1071.9000 1596.3000 1749.7000 1213.9000 1161.0000 1157.1000
## [1411] 1878.1000 1442.5000 1696.0000  872.6000  952.8000  934.2000
## [1417] 1121.2000 1148.5000 1362.9000  847.5000  969.8000  999.6000
## [1423] 1385.4000  966.8000 1152.8000  962.9000  920.9000  839.1000
## [1429] 1340.6000  873.1000 1110.3000 1076.0000 1320.1000 1308.2000
## [1435] 1062.4000 1174.0000 1098.9000 1006.7000  827.9000 1139.8000
## [1441] 1853.1000 2018.4000 1575.1000 1148.2000 1164.2000 1477.6000
## [1447] 1251.0000 1425.9000  910.7000 1432.8000 1153.9000 1157.5000
## [1453] 1024.6000 1237.8000 1200.0000 1788.5000 1507.6000 1952.8000
## [1459] 1477.2000 1384.5000 1518.4000  942.7000  973.9000  882.3000
## [1465] 1368.4000 1191.5000 1177.7000 1141.9000 1225.6000 1239.2000
## [1471]  897.5000  935.3000  910.5000 1434.5000 1396.5000  976.9532
## [1477] 1013.8000 1221.3000 1119.7000 1693.4000 1948.0000 1690.0000
## [1483] 1870.6000 1778.5000 1711.5000  924.2000  886.5000 1176.4000
## [1489] 1750.3000 1738.5000 1701.2000  831.0000 1115.1000  991.9000
## [1495] 1663.5000 1790.6000 1810.5000  923.6000 1051.4000  887.5000
## [1501] 1718.5000 1448.7000 1188.5000 1112.8000 1362.9000 1180.8000
## [1507] 1225.8000 1345.8000 1256.7000 1115.8000 1097.7000  982.2000
## [1513] 1567.5000 1439.9000 1597.1000 1048.4000 1157.9000  931.2000
## [1519] 1470.3000 1367.3000 1464.1000 1105.8000 1083.9000 1087.9000
## [1525] 1579.0000 1553.6000 1322.2000  927.0000 1084.3000  953.9000
## [1531] 1399.0000 1288.2000 1434.3000  899.2000  823.4000  959.5000
## [1537] 1228.5000 1502.1000 1433.8000  816.1000  959.9000  898.5000
## [1543] 1153.1000 1206.9000 1153.1000  921.8000  830.3000  650.9000
## [1549] 1251.7000 1339.0000 1489.7000 1260.5000  858.7000  803.3000
## [1555] 1484.0000 1154.9000 1745.2000  987.4000  836.3000  956.8000
## [1561] 1331.6000 1350.9000 1209.2000  838.5000  845.4000  630.9000
## [1567] 1136.3000 1332.2000 1309.5000  832.8000  765.2000  852.5000
## [1573] 1073.5000 1463.8000 1188.8000 1036.4000  909.1000 1063.2000
## [1579] 1554.9000 1583.7000 1583.7000 1072.4000 1138.4000 1027.7000
## [1585] 1494.2000 1224.6000 1113.8000  925.6000 1127.9000  957.4000
## [1591] 1370.0000 1665.1000 1080.0000 1133.3000  822.9000  985.3000
## [1597]  334.5000 1328.2000 1311.4000  911.6000 1153.9000 1027.6000
## [1603] 1196.1000 1386.8000 1622.5000  843.2000  945.6000  841.5000
## [1609] 1203.2000 1358.6000 1190.0000   27.5000  819.0000  552.5000
## [1615] 1190.0000 1141.7000 1349.2000  936.4000  732.7000  782.7000
## [1621] 1335.1000 1305.0000 1382.3000  842.7000  815.2000  857.9000
## [1627] 1443.1000 1203.2000 1033.4000  950.0000  672.1000  751.1000
## [1633]  976.9532 1349.0000 1320.9000  839.6000  844.9000  879.6000
## [1639] 1225.4000 1483.5000 1523.1000  764.8000  893.8000  963.2000
## [1645] 1101.8000 1384.9000 1388.5000  550.0000  535.7000  663.3000
## [1651] 1210.8000 1121.2000 1225.4000 1215.2000 1220.9000 1164.3000
## [1657] 1665.3000 1465.6000 1771.3000 1015.8000  995.3000 1184.9000
## [1663] 1771.0000 1460.6000 1596.3000 1065.9000 1159.7000 1029.3000
## [1669] 1977.2000 2204.5000 1653.1000  840.7000  778.3000  765.4000
## [1675] 1225.5000 1250.0000 1210.8000  730.7000  829.6000  805.7000
## [1681] 1120.9000 1236.5000 1098.6000 1172.9000 1204.7000 1202.1000
## [1687] 1650.5000 1625.7000 1643.6000 1025.5000  135.9000  834.9000
## [1693] 1657.6000 1685.4000 1629.7000 1087.7000 1241.1000  780.2000
## [1699] 1223.9000 1458.4000 1312.4000 1293.8000  855.6000 1337.0000
## [1705] 1595.5000 1682.3000 1692.2000  696.7000  733.6000  852.8000
## [1711]  829.2000 1020.8000  718.4000 1434.1000 1093.6000 1248.4000
## [1717]  980.8000 1101.6000  754.2000 1641.1000 1612.5000 1619.8000
## [1723]  825.7000  846.7000  819.6000 1375.6000 1191.3000 1212.3000
## [1729]  772.6000  816.5000  861.1000 1110.8000 1384.9000 1156.8000
## [1735]  871.1000  800.9000  964.8000 1755.4000 1672.7000 1955.0000
## [1741]  674.0000  699.0000  843.1000 1584.4000 1655.0000 1730.9000
## [1747]  559.2000  587.9000  847.7000 1710.4000 1580.3000 1645.9000
## [1753] 1001.2000 1137.7000 1117.4000 1580.3000 1694.3000 1708.7500
## [1759]  901.3000  976.8000 1044.3000 1348.4000 1400.9000 1410.7000
## [1765]  896.7000  936.1000  945.5000 1185.4000 1312.0000 1259.2000
## [1771]  720.0000  712.6000  838.3000 1150.3000 1326.7000 1070.5000
## [1777]  928.8000  948.0000  906.7000 1447.4000 1104.0000 1185.4000
## [1783]  958.4000  893.0000  790.9000 1281.3000 1289.3000 1435.3000
## [1789]  788.2000  817.7000  952.4000 1306.2000 1281.3000 1200.7000
## [1795]  974.5000  972.2000  989.6000 1632.3000 1605.2000 1688.3000
## [1801] 1132.1000 1099.6000  914.3000 1659.0000 1263.8000 1463.4000
## [1807]  653.7000  856.8000  683.6000 1297.6000 1081.1000 1070.3000
## [1813]  879.0000  815.7000  778.7000 1921.0000  941.7000 1515.2000
## [1819]  828.2000  839.1000  831.9000 1512.2000 1100.3000  953.4000
## [1825] 1025.5000  978.6000  974.3000 1485.0000 1262.2000 1386.8000
## [1831]  918.0000  854.9000  898.1000 1112.9000 1363.8000 1024.7000
## [1837] 1185.7000 1173.4000  918.1000 1583.7000 1525.9000 1638.7000
## [1843]  996.0000 1000.9000 1121.7000 1645.3000 1541.3000 1804.9000
## [1849]  949.6000 1023.5000 1146.1000 1700.7000 1650.2000 1555.1000
## [1855]  773.6000  771.1000  579.2000 1284.7000 1157.1000 1286.8000
## [1861]  724.1000  800.2000  703.5000 1138.8000 1197.9000 1428.5000
## [1867]  861.4000  799.9000  894.7000 1251.4000 1181.5000 1327.7000
## [1873] 1347.0000 1429.6000 1115.4000 1612.3000 1637.3000 1778.7000
## [1879] 1431.9000 1513.3000 1406.2000 1651.9000 1614.2000 1753.0000
## [1885]  745.8000 1005.2000  888.9000 1352.1000  945.7000 1130.9000
## [1891]  866.8000  997.5000 1034.7000 1128.0000 1524.4000 1201.0000
## [1897]  968.1000 1180.8000  909.7000 1206.5000 1507.8000 1406.2000
## [1903] 1024.7000 1319.1000  915.3000 1944.1000 1699.1000 1651.2000
## [1909] 1371.7000 1521.0000 1153.6000 1830.1000 1622.4000 1846.4000
## [1915]  885.8000  935.9000  790.7000 1442.8000 1244.1000 1134.1000
## [1921]  873.6000  734.0000  718.9000 1442.8000 1244.1000 1134.1000
## [1927]  662.0000  750.1000  627.8000 1256.8000 1201.8000 1334.6000
## [1933]  972.1000 1067.7000 1149.0000 1621.6000 1709.3000 1638.2000
## [1939] 1250.3000 1198.0000  928.6000 1690.5000 1698.6000 1885.0000
## [1945]  751.8000 1161.8000  881.5000 1575.6000 1635.5000 1940.5000
## [1951] 1029.0000  848.6000 1184.9000 1738.4000 1893.2000 1562.4000
## [1957]  691.0000  629.8000  728.0000 1378.4000 1127.0000 1419.9000
## [1963]  702.2000  198.6000  703.8000 1006.5000 1065.8000 1179.0000
## [1969]  740.6000  722.8000  708.2000 1156.3000 1364.4000 1272.8000
## [1975]  581.8000  592.2000  645.8000 1063.4000 1117.2000 1190.1000
## [1981]  644.6000  719.9000  485.2000 1036.8000 1075.5000  951.6000
## [1987]  455.0000  480.1000  426.1000  983.0000  740.3000  875.9000
## [1993]  475.9000  496.8000  525.1000  910.8000  900.9000  973.1000
## [1999]  529.2000  617.0000  579.4000 1110.9000  869.9000  755.8000
## [2005]  732.7000  718.1000  706.4000 1309.8000 1007.7000 1131.9000
## [2011]  648.7000  580.7000  654.1000 1121.6000 1021.9000 1218.7000
## [2017]  666.6000  557.2000  613.1000 1091.2000 1141.7000 1187.2000
## [2023]  570.6000  543.2000  547.8000  978.4000 1001.1000 1091.2000
## [2029]  515.7000  536.6000  487.7000 1141.7000 1173.4000 1133.5000
## [2035]  630.1000  622.6000  717.7000 1232.1000 1165.1000 1513.5000
## [2041]  753.9000  811.7000  818.7000 1322.0000 1331.9000 1486.2000
## [2047] 1077.9000 1334.2000 1231.7000 2222.2000 1709.7000 1683.3000
## [2053] 1107.2000 1140.5000 1273.4000 1699.0000 1602.2000 1659.3000
## [2059]  620.9000  796.2000  681.3000 1456.7000 1362.6000 1179.6000
## [2065]  828.6000  774.4000  818.3000 1362.6000 1556.8000 1441.1000
## [2071]  776.1000  699.5000  832.7000 1279.3000 1450.3000 1395.3000
## [2077]  832.0000  674.8000  631.3000  684.0000  941.0000  713.0000
## [2083] 1262.9000 1396.2000 1629.1000 1115.3000 1100.4000 1437.9000
## [2089] 1735.0000 1715.0000 1789.2000  752.1000  643.4000  827.9000
## [2095] 1395.6000 1297.2000  988.8000  756.5000  815.6000  526.8000
## [2101] 1492.8000 1119.9000 1298.4000  725.6000  699.5000  921.6000
## [2107] 1262.9000 1297.2000 1275.8000  717.3000  852.3000  984.0000
## [2113] 1229.3000 1388.2000 1216.3000  999.9000  760.1000  852.9000
## [2119] 1293.7000 1406.6000 1262.9000  858.2000  747.3000  672.5000
## [2125] 1269.3000 1331.6000 1125.5000  806.0000  907.5000  794.6000
## [2131] 1358.3000 1229.3000 1390.2000 1024.0000  838.1000 1012.4000
## [2137] 1731.3000 1353.1000 1404.6000 1046.3000  834.7000  954.0000
## [2143] 1771.0000 1650.3000 1583.5000 1095.4000 1303.7000 1128.6000
## [2149] 1738.9000 1904.2000 1698.9000  879.4000  771.7000  860.8000
## [2155] 1272.7000 1144.5000 1310.0000  894.7000  806.8000  921.6000
## [2161] 1237.6000 1287.8000 1315.8000  837.3000 1013.0000  660.4000
## [2167] 1228.5000 1277.8000 1301.3000  678.3000  813.7000  791.3000
## [2173] 1301.1000 1221.8000 1269.5000  802.3000  805.8000  676.8000
## [2179] 1400.8000 1393.6000 1275.0000  904.1000  998.5000 1149.0000
## [2185] 1641.7000 1757.5000 1389.1000 1144.8000 1037.4000 1037.1000
## [2191] 1588.4000 1476.3000 1593.5000 1084.6000  876.6000 1347.0000
## [2197] 1572.0000 1422.6000 1541.3000 1011.7000  892.0000 1035.8000
## [2203] 1627.6000 1385.2000 1498.7000 1153.4000 1119.4000 1329.7000
## [2209] 1620.8000 1641.5000 1364.8000 1059.9000  839.0000  871.9000
## [2215] 1460.5000 1511.2000 1451.6000 1009.0000  991.6000 1169.8000
## [2221] 1482.6000 1303.1000 1575.0000  891.6000 1008.6000 1086.1000
## [2227] 1612.9000 1152.7000 1349.5000  932.8000 1390.0000 1358.5000
## [2233] 1093.2000 1035.4000 1039.0000  864.7000 1364.6000 1224.5000
## [2239] 1328.3000  848.6000 1200.8000 1391.9000  917.5000 1220.8000
## [2245] 1364.9000  988.6000  954.8000 1339.6000 1453.9000 1208.6000
## [2251] 1191.4000 1465.3000 1339.5000  763.3000  567.2000  750.6000
## [2257]  862.0000 1450.8000 1654.5000 1365.5000 1555.3000 1275.2000
## [2263] 1150.2000 1186.2000 1163.7000  944.2000  828.2000  849.0000
## [2269] 1281.0000 1328.7000  948.4000 1022.2000 1018.3000 1274.9000
## [2275] 1468.9000 1376.0000 1500.1000 1207.1000 1295.5000 1156.7000
## [2281] 1036.6000 1001.1000  878.5000  760.5000 1046.1000  757.5000
## [2287] 1193.9000 1009.3000 1103.2000  802.5000  867.8000  626.0000
## [2293] 1583.0000 1838.8000 1230.6000  841.3000  845.8000  914.6000
## [2299]  939.4000  606.2000  848.4000  895.1000  892.2000  795.4000
## [2305] 1258.8000 1332.8000 1463.9000  832.2000  812.7000  695.0000
## [2311]  841.0000  886.0000  673.5000
as.double(cube$`Comp. Strength in %`)
##    [1]  73.68889  73.68889  73.68889 111.53580 111.53580 111.53580
##    [7]  71.02222  71.02222  71.02222 111.80247 111.80247 111.80247
##   [13]  67.02222  67.02222  67.02222 114.31111 114.31111 114.31111
##   [19]  65.38272  65.38272  65.38272 116.59259 116.59259 116.59259
##   [25]  66.82469  66.82469  66.82469 125.72840 125.72840 125.72840
##   [31]  67.30864  67.30864  67.30864 137.60000 137.60000 137.60000
##   [37]  75.41728  75.41728  75.41728 139.04198 139.04198 139.04198
##   [43]  66.85432  66.85432  66.85432 141.33333 141.33333 141.33333
##   [49]  69.26420  69.26420  69.26420 128.11852 128.11852 128.11852
##   [55]  69.83704  69.83704  69.83704 132.96790 132.96790 132.96790
##   [61]  76.80000  76.80000  76.80000 135.76296 135.76296 135.76296
##   [67]  77.41235  77.41235  77.41235 111.53580 111.53580 111.53580
##   [73]  75.95062  75.95062  75.95062 114.31111 114.31111 114.31111
##   [79]  82.07407  82.07407  82.07407 136.03951 136.03951 136.03951
##   [85]  69.83704  69.83704  69.83704 137.54074 137.54074 137.54074
##   [91]  69.95556  69.95556  69.95556 134.39012 134.39012 134.39012
##   [97]  72.97778  72.97778  72.97778 138.83457 138.83457 138.83457
##  [103]  68.86914  68.86914  68.86914 140.69136 140.69136 140.69136
##  [109]  78.86420  78.86420  78.86420 136.71111 136.71111 136.71111
##  [115]  78.66667  78.66667  78.66667 139.94074 139.94074 139.94074
##  [121]  74.74568  74.74568  74.74568 140.57284 140.57284 140.57284
##  [127]  77.76790  77.76790  77.76790 129.07654 129.07654 129.07654
##  [133]  70.26173  70.26173  70.26173 140.34568 140.34568 140.34568
##  [139]  71.74321  71.74321  71.74321 130.01481 130.01481 130.01481
##  [145]  69.53086  69.53086  69.53086 137.82716 137.82716 137.82716
##  [151]  74.82469  74.82469  74.82469 141.96543 141.96543 141.96543
##  [157] 124.61852 124.61852 124.61852  89.08889  89.08889  89.08889
##  [163] 128.35926 128.35926 128.35926  88.70370  88.70370  88.70370
##  [169] 126.22222 126.22222 126.22222  68.77037  68.77037  68.77037
##  [175] 128.84938 128.84938 128.84938  69.88642  69.88642  69.88642
##  [181] 137.63951 137.63951 137.63951  67.41728  67.41728  67.41728
##  [187] 144.94815 144.94815 144.94815  76.12840  76.12840  76.12840
##  [193] 141.33333 141.33333 141.33333  71.98025  71.98025  71.98025
##  [199] 135.04198 135.04198 135.04198  75.45679  75.45679  75.45679
##  [205] 137.60000 137.60000 137.60000  72.47407  72.47407  72.47407
##  [211] 135.89136 135.89136 135.89136  76.02963  76.02963  76.02963
##  [217] 131.74321 131.74321 131.74321  73.68889  73.68889  73.68889
##  [223] 121.89630 121.89630 121.89630  67.02222  67.02222  67.02222
##  [229] 138.78519 138.78519 138.78519  66.82469  66.82469  66.82469
##  [235] 137.23457 137.23457 137.23457  76.45432  76.45432  76.45432
##  [241] 125.01728 125.01728 125.01728  79.38765  79.38765  79.38765
##  [247] 131.09136 131.09136 131.09136  81.57037  81.57037  81.57037
##  [253] 137.23457 137.23457 137.23457  81.70864  81.70864  81.70864
##  [259] 125.01728 125.01728 125.01728  79.75309  79.75309  79.75309
##  [265] 125.01728 125.01728 125.01728  79.38765  79.38765  79.38765
##  [271] 131.09136 131.09136 131.09136  83.61481  83.61481  83.61481
##  [277] 130.42963 130.42963 130.42963  81.02716  81.02716  81.02716
##  [283] 150.29136 150.29136 150.29136  81.28395  81.28395  81.28395
##  [289] 134.98272 134.98272 134.98272  83.95062  83.95062  83.95062
##  [295] 145.27407 145.27407 145.27407  74.00000  74.00000  74.00000
##  [301] 143.60000 143.60000 143.60000  72.22716  72.22716  72.22716
##  [307] 141.68889 141.68889 141.68889  66.82469  66.82469  66.82469
##  [313] 143.60494 143.60494 143.60494  81.57037  81.57037  81.57037
##  [319] 150.97284 150.97284 150.97284  77.16543  77.16543  77.16543
##  [325] 128.09877 128.09877 128.09877  73.33333  73.33333  73.33333
##  [331] 129.47160 129.47160 129.47160  78.66667  78.66667  78.66667
##  [337] 138.38025 138.38025 138.38025  72.77037  72.77037  72.77037
##  [343] 144.90864 144.90864 144.90864  83.29877  83.29877  83.29877
##  [349] 147.56543 147.56543 147.56543  84.17778  84.17778  84.17778
##  [355] 141.92593 141.92593 141.92593  71.58519  71.58519  71.58519
##  [361] 142.84741 142.84741 142.84741  76.06914  76.06914  76.06914
##  [367] 145.88642 145.88642 145.88642  82.87407  82.87407  82.87407
##  [373] 135.84198 135.84198 135.84198  80.91852  80.91852  80.91852
##  [379] 135.34815 135.34815 135.34815  67.47259  67.47259  67.47259
##  [385] 118.08296 118.08296 118.08296  74.90667  74.90667  74.90667
##  [391] 122.85630 122.85630 122.85630  77.22074  77.22074  77.22074
##  [397] 119.52889 119.52889 119.52889  64.62222  64.62222  64.62222
##  [403] 124.05926 124.05926 124.05926  59.81926  59.81926  59.81926
##  [409] 108.30741 108.30741 108.30741  66.81185  66.81185  66.81185
##  [415] 112.24296 112.24296 112.24296  45.32741  45.32741  45.32741
##  [421] 114.64889 114.64889 114.64889  88.95802  88.95802  88.95802
##  [427] 144.73086 144.73086 144.73086  88.37531  88.37531  88.37531
##  [433] 140.91852 140.91852 140.91852  83.79259  83.79259  83.79259
##  [439] 128.78025 128.78025 128.78025  73.06667  73.06667  73.06667
##  [445] 134.69630 134.69630 134.69630  80.80988  80.80988  80.80988
##  [451] 161.81728 161.81728 161.81728  84.77037  84.77037  84.77037
##  [457] 165.66914 165.66914 165.66914  75.83407  75.83407  75.83407
##  [463] 124.04741 124.04741 124.04741  82.18963  82.18963  82.18963
##  [469]  94.60000  94.60000  94.60000  85.80148  85.80148  85.80148
##  [475] 120.70519 120.70519 120.70519  87.77481  87.77481  87.77481
##  [481] 120.27259 120.27259 120.27259  88.31704  88.31704  88.31704
##  [487] 138.96593 138.96593 138.96593 100.61333 100.61333 100.61333
##  [493] 134.90667 134.90667 134.90667  91.16148  91.16148  91.16148
##  [499] 119.78963 119.78963 119.78963  82.69926  82.69926  82.69926
##  [505] 114.08296 114.08296 114.08296  83.49333  83.49333  83.49333
##  [511] 125.78074 125.78074 125.78074  84.44444  84.44444  84.44444
##  [517] 118.31111 118.31111 118.31111  94.14519  94.14519  94.14519
##  [523] 137.35704 137.35704 137.35704 109.42519 109.42519 109.42519
##  [529] 133.49333 133.49333 133.49333 101.51111 101.51111 101.51111
##  [535] 134.60444 134.60444 134.60444  90.13333  90.13333  90.13333
##  [541] 100.11259 100.11259 100.11259  30.96593  30.96593  30.96593
##  [547]  38.77235  38.77235  38.77235  89.57037  89.57037  89.57037
##  [553] 104.71407 104.71407 104.71407  95.15852  95.15852  95.15852
##  [559] 102.85630 102.85630 102.85630  96.21333  96.21333  96.21333
##  [565] 101.51111 101.51111 101.51111 119.47259 119.47259 119.47259
##  [571] 107.86963 107.86963 107.86963 121.05778 121.05778 121.05778
##  [577]  90.65185  90.65185  90.65185 114.94815 114.94815 114.94815
##  [583]  92.80000  92.80000  92.80000 123.86370 123.86370 123.86370
##  [589]  96.02963  96.02963  96.02963 116.86222 116.86222 116.86222
##  [595]  96.14222  96.14222  96.14222 122.33185 122.33185 122.33185
##  [601] 114.60444 114.60444 114.60444 132.66963 132.66963 132.66963
##  [607]  73.43407  73.43407  73.43407 122.53037 122.53037 122.53037
##  [613] 121.13778 121.13778 121.13778 146.37630 146.37630 146.37630
##  [619]  94.98667  94.98667  94.98667 118.51556 118.51556 118.51556
##  [625] 111.14963 111.14963 111.14963 136.24593 136.24593 136.24593
##  [631]  91.36000  91.36000  91.36000 101.00444 101.00444 101.00444
##  [637]  85.21481  85.21481  85.21481 116.77333 116.77333 116.77333
##  [643]  84.29630  84.29630  84.29630  99.97926  99.97926  99.97926
##  [649]  83.29778  83.29778  83.29778  87.18222  87.18222  87.18222
##  [655]  80.90370  80.90370  80.90370  94.11852  94.11852  94.11852
##  [661]  90.58074  90.58074  90.58074  67.49630  67.49630  67.49630
##  [667]  83.88741  83.88741  83.88741  89.16444  89.16444  89.16444
##  [673]  95.73630  95.73630  95.73630 111.52000 111.52000 111.52000
##  [679]  57.82815  57.82815  57.82815  89.77185  89.77185  89.77185
##  [685]  72.63704  72.63704  72.63704  93.05778  93.05778  93.05778
##  [691]  57.41037  57.41037  57.41037  78.45037  78.45037  78.45037
##  [697]  48.52148  48.52148  48.52148  83.17333  83.17333  83.17333
##  [703]  47.84296  47.84296  47.84296  89.51704  89.51704  89.51704
##  [709]  50.92741  50.92741  50.92741  78.93926  78.93926  78.93926
##  [715]  54.88889  54.88889  54.88889  75.02222  75.02222  75.02222
##  [721]  62.75259  62.75259  62.75259  76.19852  76.19852  76.19852
##  [727]  64.61926  64.61926  64.61926  78.21037  78.21037  78.21037
##  [733]  78.20444  78.20444  78.20444 109.97926 109.97926 109.97926
##  [739]  85.37481  85.37481  85.37481 112.77630 112.77630 112.77630
##  [745]  98.92444  98.92444  98.92444 101.99704 101.99704 101.99704
##  [751] 100.84444 100.84444 100.84444 107.22667 107.22667 107.22667
##  [757]  91.54370  91.54370  91.54370 103.97333 103.97333 103.97333
##  [763]  85.93651  85.93651  85.93651  83.79048  83.79048  83.79048
##  [769]  91.63598  91.63598  91.63598 103.98519 103.98519 103.98519
##  [775]  96.04444  96.04444  96.04444 114.16000 114.16000 114.16000
##  [781]  82.18074  82.18074  82.18074 121.05185 121.05185 121.05185
##  [787]  89.28593  89.28593  89.28593 114.21333 114.21333 114.21333
##  [793]  95.39852  95.39852  95.39852 121.78370 121.78370 121.78370
##  [799]  99.97926  99.97926  99.97926 116.72296 116.72296 116.72296
##  [805]  89.04593  89.04593  89.04593 114.15111 114.15111 114.15111
##  [811]  83.84889  83.84889  83.84889 112.24000 112.24000 112.24000
##  [817]  89.02815  89.02815  89.02815 104.72296 104.72296 104.72296
##  [823]  80.05630  80.05630  80.05630  95.91704  95.91704  95.91704
##  [829]  84.44741  84.44741  84.44741 130.99556 130.99556 130.99556
##  [835]  94.91852  94.91852  94.91852 118.15704 118.15704 118.15704
##  [841]  68.15704  68.15704  68.15704  97.25333  97.25333  97.25333
##  [847]  96.78222  96.78222  96.78222 124.13333 124.13333 124.13333
##  [853]  72.21926  72.21926  72.21926  90.79407  90.79407  90.79407
##  [859] 113.83704 113.83704 113.83704  72.99852  72.99852  72.99852
##  [865]  72.99852  72.99852  72.99852 110.77037 110.77037 110.77037
##  [871]  63.57333  63.57333  63.57333  98.53333  98.53333  98.53333
##  [877]  94.18074  94.18074  94.18074  60.50370  60.50370  60.50370
##  [883]  88.83556  88.83556  88.83556  85.13778  85.13778  85.13778
##  [889]  47.69185  47.69185  47.69185  81.23852  81.23852  81.23852
##  [895]  78.04741  78.04741  78.04741  45.64444  45.64444  45.64444
##  [901]  68.78815  68.78815  68.78815  85.65926  85.65926  85.65926
##  [907]  59.92000  59.92000  59.92000  73.35111  73.35111  73.35111
##  [913]  86.78815  86.78815  86.78815  37.34222  37.34222  37.34222
##  [919]  59.00741  59.00741  59.00741  54.09778  54.09778  54.09778
##  [925]  32.01778  32.01778  32.01778  18.86519  18.86519  18.86519
##  [931]  62.41481  62.41481  62.41481  71.20593  71.20593  71.20593
##  [937]  68.34963  68.34963  68.34963  68.01185  68.01185  68.01185
##  [943]  49.14370  49.14370  49.14370  79.69778  79.69778  79.69778
##  [949]  48.05037  48.05037  48.05037  63.93481  63.93481  63.93481
##  [955]  57.14963  57.14963  57.14963  56.23407  56.23407  56.23407
##  [961]  45.51704  45.51704  45.51704  71.24444  71.24444  71.24444
##  [967]  61.97037  61.97037  61.97037  77.81630  77.81630  77.81630
##  [973]  62.69926  62.69926  62.69926  70.11852  70.11852  70.11852
##  [979]  55.22667  55.22667  55.22667  56.43852  56.43852  56.43852
##  [985]  65.19704  65.19704  65.19704  63.29778  63.29778  63.29778
##  [991]  64.94519  64.94519  64.94519  65.84296  65.84296  65.84296
##  [997]  60.21926  60.21926  60.21926  72.00593  72.00593  72.00593
## [1003]  61.50222  61.50222  61.50222  45.88444  45.88444  45.88444
## [1009]  76.18370  76.18370  76.18370  40.71407  40.71407  40.71407
## [1015]  90.20148  90.20148  90.20148  43.67704  43.67704  43.67704
## [1021]  79.47259  79.47259  79.47259  81.00741  81.00741  81.00741
## [1027] 122.11556 122.11556 122.11556  83.70370  83.70370  83.70370
## [1033] 142.42963 142.42963 142.42963  82.71111  82.71111  82.71111
## [1039] 120.51259 120.51259 120.51259  40.33481  40.33481  40.33481
## [1045]  75.78074  75.78074  75.78074  33.90815  33.90815  33.90815
## [1051]  73.55852  73.55852  73.55852  39.84593  39.84593  39.84593
## [1057]  71.68000  71.68000  71.68000  34.60741  34.60741  34.60741
## [1063]  70.87111  70.87111  70.87111 110.59556 110.59556 110.59556
## [1069] 126.24889 126.24889 126.24889 103.30667 103.30667 103.30667
## [1075] 144.93926 144.93926 144.93926  87.18815  87.18815  87.18815
## [1081] 126.61333 126.61333 126.61333 107.47259 107.47259 107.47259
## [1087] 157.50815 157.50815 157.50815  72.41481  72.41481  72.41481
## [1093]  95.53862  95.53862  95.53862  98.00000  98.00000  98.00000
## [1099] 137.12296 137.12296 137.12296  92.04741  92.04741  92.04741
## [1105] 126.80000 126.80000 126.80000  81.56444  81.56444  81.56444
## [1111] 130.02370 130.02370 130.02370  75.47513  75.47513  75.47513
## [1117] 103.05608 103.05608 103.05608  66.66667  66.66667  66.66667
## [1123] 100.69841 100.69841 100.69841  84.93757  84.93757  84.93757
## [1129] 108.09354 108.09354 108.09354  72.12487  72.12487  72.12487
## [1135]  96.62646  96.62646  96.62646  78.00635  78.00635  78.00635
## [1141] 106.86561 106.86561 106.86561  76.56000  76.56000  76.56000
## [1147] 129.82222 129.82222 129.82222  80.72593  80.72593  80.72593
## [1153] 123.57926 123.57926 123.57926  70.20741  70.20741  70.20741
## [1159] 119.69481 119.69481 119.69481  76.16296  76.16296  76.16296
## [1165]  92.78095  92.78095  92.78095  58.08254  58.08254  58.08254
## [1171]  75.13862  75.13862  75.13862  74.60444  74.60444  74.60444
## [1177] 135.06370 135.06370 135.06370  80.85630  80.85630  80.85630
## [1183] 107.87556 107.87556 107.87556  80.21333  80.21333  80.21333
## [1189] 116.91259 116.91259 116.91259  57.29524  57.29524  57.29524
## [1195]  98.11640  98.11640  98.11640  69.25503  69.25503  69.25503
## [1201]  84.90794  84.90794  84.90794 110.44741 110.44741 110.44741
## [1207] 140.00000 140.00000 140.00000  85.17926  85.17926  85.17926
## [1213] 121.96148 121.96148 121.96148  88.71407  88.71407  88.71407
## [1219] 126.04741 126.04741 126.04741  84.53630  84.53630  84.53630
## [1225] 118.58074 118.58074 118.58074  83.95556  83.95556  83.95556
## [1231] 135.84296 135.84296 135.84296  75.04889  75.04889  75.04889
## [1237] 103.16148 103.16148 103.16148  68.53333  68.53333  68.53333
## [1243] 111.61185 111.61185 111.61185  72.34963  72.34963  72.34963
## [1249] 109.68889 109.68889 109.68889  95.84000  95.84000  95.84000
## [1255] 144.80000 144.80000 144.80000  70.73862  70.73862  70.73862
## [1261] 101.83704 101.83704 101.83704  83.81926  83.81926  83.81926
## [1267] 120.69926 120.69926 120.69926  87.28296  87.28296  87.28296
## [1273] 133.43704 133.43704 133.43704  80.34667  80.34667  80.34667
## [1279] 121.12889 121.12889 121.12889  75.87852  75.87852  75.87852
## [1285] 110.63111 110.63111 110.63111  88.56000  88.56000  88.56000
## [1291] 128.89185 128.89185 128.89185  95.08148  95.08148  95.08148
## [1297] 146.20741 146.20741 146.20741  77.23852  77.23852  77.23852
## [1303] 119.79556 119.79556 119.79556  65.03069  65.03069  65.03069
## [1309] 111.14074 111.14074 111.14074  58.55026  58.55026  58.55026
## [1315]  87.56402  87.56402  87.56402  70.31111  70.31111  70.31111
## [1321]  86.38519  86.38519  86.38519  75.02519  75.02519  75.02519
## [1327] 110.91556 110.91556 110.91556  71.45481  71.45481  71.45481
## [1333]  90.71407  90.71407  90.71407  60.18413  60.18413  60.18413
## [1339] 101.90688 101.90688 101.90688  65.48995  65.48995  65.48995
## [1345]  86.09524  86.09524  86.09524  76.53968  76.53968  76.53968
## [1351]  96.31111  96.31111  96.31111  81.40741  81.40741  81.40741
## [1357] 123.15852 123.15852 123.15852  66.77037  66.77037  66.77037
## [1363] 128.56593 128.56593 128.56593  82.56296  82.56296  82.56296
## [1369] 121.88444 121.88444 121.88444  82.29333  82.29333  82.29333
## [1375] 125.01630 125.01630 125.01630  89.32741  89.32741  89.32741
## [1381] 129.64444 129.64444 129.64444  89.02519  89.02519  89.02519
## [1387] 122.02963 122.02963 122.02963  80.94815  80.94815  80.94815
## [1393] 113.23259 113.23259 113.23259  72.26074  72.26074  72.26074
## [1399] 115.53481 115.53481 115.53481  64.53122  64.53122  64.53122
## [1405]  93.50053  93.50053  93.50053  74.75132  74.75132  74.75132
## [1411] 106.17143 106.17143 106.17143  81.76593  81.76593  81.76593
## [1417] 107.63259 107.63259 107.63259  83.46370  83.46370  83.46370
## [1423] 103.85185 103.85185 103.85185  80.67852  80.67852  80.67852
## [1429]  98.48889  98.48889  98.48889  78.39788  78.39788  78.39788
## [1435]  70.58836  70.58836  70.58836  62.95026  62.95026  62.95026
## [1441] 115.27196 115.27196 115.27196  80.21164  80.21164  80.21164
## [1447]  75.92804  75.92804  75.92804  79.24233  79.24233  79.24233
## [1453]  73.27831  73.27831  73.27831 111.08783 111.08783 111.08783
## [1459]  92.70053  92.70053  92.70053  82.93037  82.93037  82.93037
## [1465] 110.74370 110.74370 110.74370 106.86519 106.86519 106.86519
## [1471]  81.28296  81.28296  81.28296  83.88148  83.88148  83.88148
## [1477]  71.00106  71.00106  71.00106 112.83386 112.83386 112.83386
## [1483] 113.45185 113.45185 113.45185  63.21905  63.21905  63.21905
## [1489] 109.84127 109.84127 109.84127  62.17989  62.17989  62.17989
## [1495] 111.42011 111.42011 111.42011  60.58201  60.58201  60.58201
## [1501]  92.18413  92.18413  92.18413  77.38624  77.38624  77.38624
## [1507]  81.02222  81.02222  81.02222  67.63386  67.63386  67.63386
## [1513]  97.44974  97.44974  97.44974  66.40212  66.40212  66.40212
## [1519]  91.04127  91.04127  91.04127  97.11407  97.11407  97.11407
## [1525] 131.99407 131.99407 131.99407  87.85778  87.85778  87.85778
## [1531] 122.11852 122.11852 122.11852  79.46963  79.46963  79.46963
## [1537] 123.38963 123.38963 123.38963  79.24444  79.24444  79.24444
## [1543] 104.09185 104.09185 104.09185  71.20000  71.20000  71.20000
## [1549] 120.90074 120.90074 120.90074  61.85185  61.85185  61.85185
## [1555]  92.78519  92.78519  92.78519  82.38519  82.38519  82.38519
## [1561] 115.30963 115.30963 115.30963  68.58667  68.58667  68.58667
## [1567] 111.94074 111.94074 111.94074  72.60741  72.60741  72.60741
## [1573] 110.40296 110.40296 110.40296  63.67619  63.67619  63.67619
## [1579]  99.94286  99.94286  99.94286  68.53968  68.53968  68.53968
## [1585]  81.11323  81.11323  81.11323  63.72275  63.72275  63.72275
## [1591]  87.09206  87.09206  87.09206  62.25397  62.25397  62.25397
## [1597]  62.94392  62.94392  62.94392  65.46243  65.46243  65.46243
## [1603]  89.00317  89.00317  89.00317  77.93481  77.93481  77.93481
## [1609] 111.16444 111.16444 111.16444  41.45185  41.45185  41.45185
## [1615] 109.06370 109.06370 109.06370  72.64593  72.64593  72.64593
## [1621] 119.18222 119.18222 119.18222  74.54222  74.54222  74.54222
## [1627] 109.02815 109.02815 109.02815  70.31704  70.31704  70.31704
## [1633] 118.66222 118.66222 118.66222  75.97333  75.97333  75.97333
## [1639] 125.39259 125.39259 125.39259  77.68296  77.68296  77.68296
## [1645] 114.82074 114.82074 114.82074  51.82222  51.82222  51.82222
## [1651] 105.40444 105.40444 105.40444  76.19894  76.19894  76.19894
## [1657] 103.75026 103.75026 103.75026  67.64021  67.64021  67.64021
## [1663] 102.17778 102.17778 102.17778  68.88677  68.88677  68.88677
## [1669] 123.48783 123.48783 123.48783  50.46349  50.46349  50.46349
## [1675]  78.01693  78.01693  78.01693  50.07407  50.07407  50.07407
## [1681]  73.14286  73.14286  73.14286  75.76085  75.76085  75.76085
## [1687] 104.12275 104.12275 104.12275  42.24974  42.24974  42.24974
## [1693] 105.24233 105.24233 105.24233  65.79894  65.79894  65.79894
## [1699]  84.54392  84.54392  84.54392  73.78624  73.78624  73.78624
## [1705] 105.18519 105.18519 105.18519  48.31958  48.31958  48.31958
## [1711]  76.10074  76.10074  76.10074 111.88444 111.88444 111.88444
## [1717]  60.03386  60.03386  60.03386 103.14074 103.14074 103.14074
## [1723]  73.83704  73.83704  73.83704 111.97630 111.97630 111.97630
## [1729]  72.59852  72.59852  72.59852 108.22222 108.22222 108.22222
## [1735]  55.80529  55.80529  55.80529 113.92804 113.92804 113.92804
## [1741]  46.90159  46.90159  46.90159 105.19153 105.19153 105.19153
## [1747]  42.21799  42.21799  42.21799 104.47831 104.47831 104.47831
## [1753]  68.91640  68.91640  68.91640 105.46772 105.46772 105.46772
## [1759]  86.58963  86.58963  86.58963 123.25926 123.25926 123.25926
## [1765]  82.32000  82.32000  82.32000 111.30667 111.30667 111.30667
## [1771]  67.28593  67.28593  67.28593 105.11111 105.11111 105.11111
## [1777]  82.47407  82.47407  82.47407 110.72000 110.72000 110.72000
## [1783]  78.29037  78.29037  78.29037 118.69333 118.69333 118.69333
## [1789]  75.80148  75.80148  75.80148 112.24296 112.24296 112.24296
## [1795]  62.14392  62.14392  62.14392 104.24974 104.24974 104.24974
## [1801]  66.58201  66.58201  66.58201  92.82963  92.82963  92.82963
## [1807]  65.01037  65.01037  65.01037 102.19259 102.19259 102.19259
## [1813]  73.28593  73.28593  73.28593 129.71556 129.71556 129.71556
## [1819]  74.05037  74.05037  74.05037 105.65630 105.65630 105.65630
## [1825]  88.24889  88.24889  88.24889 122.48889 122.48889 122.48889
## [1831]  79.14074  79.14074  79.14074 103.74519 103.74519 103.74519
## [1837]  69.35873  69.35873  69.35873 100.49312 100.49312 100.49312
## [1843]  66.00212  66.00212  66.00212 105.64021 105.64021 105.64021
## [1849]  66.01481  66.01481  66.01481 103.83069 103.83069 103.83069
## [1855]  62.93037  62.93037  62.93037 110.47704 110.47704 110.47704
## [1861]  66.00889  66.00889  66.00889 111.56148 111.56148 111.56148
## [1867]  75.73333  75.73333  75.73333 111.42519 111.42519 111.42519
## [1873]  82.37037  82.37037  82.37037 106.41905 106.41905 106.41905
## [1879]  92.09312  92.09312  92.09312 106.22434 106.22434 106.22434
## [1885]  78.21926  78.21926  78.21926 101.59111 101.59111 101.59111
## [1891]  85.89630  85.89630  85.89630 114.17481 114.17481 114.17481
## [1897]  90.62519  90.62519  90.62519 122.08889 122.08889 122.08889
## [1903]  68.97566  68.97566  68.97566 112.05079 112.05079 112.05079
## [1909]  85.63598  85.63598  85.63598 112.14603 112.14603 112.14603
## [1915]  96.75556  96.75556  96.75556 141.51852 141.51852 141.51852
## [1921]  86.16667  86.16667  86.16667 141.51852 141.51852 141.51852
## [1927]  75.55185  75.55185  75.55185 140.48889 140.48889 140.48889
## [1933]  67.48783  67.48783  67.48783 105.16614 105.16614 105.16614
## [1939]  71.46878  71.46878  71.46878 111.62116 111.62116 111.62116
## [1945]  59.15556  59.15556  59.15556 109.02857 109.02857 109.02857
## [1951]  64.81481  64.81481  64.81481 109.92593 109.92593 109.92593
## [1957]  60.70519  60.70519  60.70519 116.30519 116.30519 116.30519
## [1963]  47.54370  47.54370  47.54370  96.33481  96.33481  96.33481
## [1969]  64.34370  64.34370  64.34370 112.40000 112.40000 112.40000
## [1975]  53.92000  53.92000  53.92000  99.87259  99.87259  99.87259
## [1981]  54.80593  54.80593  54.80593  90.78222  90.78222  90.78222
## [1987]  40.33185  40.33185  40.33185  77.01333  77.01333  77.01333
## [1993]  44.37926  44.37926  44.37926  82.51259  82.51259  82.51259
## [1999]  51.12889  51.12889  51.12889  81.08444  81.08444  81.08444
## [2005]  63.91704  63.91704  63.91704 102.20444 102.20444 102.20444
## [2011]  55.80741  55.80741  55.80741  99.62074  99.62074  99.62074
## [2017]  54.42667  54.42667  54.42667 101.33630 101.33630 101.33630
## [2023]  49.23259  49.23259  49.23259  90.98370  90.98370  90.98370
## [2029]  45.62963  45.62963  45.62963 102.18074 102.18074 102.18074
## [2035]  58.38222  58.38222  58.38222 115.87259 115.87259 115.87259
## [2041]  70.64593  70.64593  70.64593 122.66963 122.66963 122.66963
## [2047] 107.96444 107.96444 107.96444 166.37630 166.37630 166.37630
## [2053] 104.32889 104.32889 104.32889 146.97778 146.97778 146.97778
## [2059]  62.17481  62.17481  62.17481 118.48593 118.48593 118.48593
## [2065]  71.74222  71.74222  71.74222 129.20000 129.20000 129.20000
## [2071]  68.39407  68.39407  68.39407 122.21926 122.21926 122.21926
## [2077]  63.35111  63.35111  63.35111  69.27407  69.27407  69.27407
## [2083] 127.05778 127.05778 127.05778  77.32487  77.32487  77.32487
## [2089] 155.23556 155.23556 155.23556  65.87852  65.87852  65.87852
## [2095] 109.08444 109.08444 109.08444  62.18963  62.18963  62.18963
## [2101] 115.88444 115.88444 115.88444  69.53185  69.53185  69.53185
## [2107] 113.65630 113.65630 113.65630  75.66222  75.66222  75.66222
## [2113] 113.59407 113.59407 113.59407  77.41926  77.41926  77.41926
## [2119] 117.42815 117.42815 117.42815  67.49630  67.49630  67.49630
## [2125] 110.41185 110.41185 110.41185  74.31407  74.31407  74.31407
## [2131] 117.86074 117.86074 117.86074  85.17037  85.17037  85.17037
## [2137] 133.00741 133.00741 133.00741  60.00000  60.00000  60.00000
## [2143] 148.29037 148.29037 148.29037  74.66032  74.66032  74.66032
## [2149] 158.28148 158.28148 158.28148  74.42667  74.42667  74.42667
## [2155] 110.43556 110.43556 110.43556  77.72148  77.72148  77.72148
## [2161] 113.81333 113.81333 113.81333  74.39111  74.39111  74.39111
## [2167] 112.81778 112.81778 112.81778  67.65333  67.65333  67.65333
## [2173] 112.36741 112.36741 112.36741  67.70074  67.70074  67.70074
## [2179] 120.57481 120.57481 120.57481  90.41778  90.41778  90.41778
## [2185] 141.87556 141.87556 141.87556  95.38667  95.38667  95.38667
## [2191] 138.02074 138.02074 138.02074  98.02074  98.02074  98.02074
## [2197] 134.39704 134.39704 134.39704  87.09630  87.09630  87.09630
## [2203] 133.67407 133.67407 133.67407 106.74074 106.74074 106.74074
## [2209] 137.09926 137.09926 137.09926  82.09778  82.09778  82.09778
## [2215] 131.06074 131.06074 131.06074  93.93778  93.93778  93.93778
## [2221] 129.20593 129.20593 129.20593  88.48296  88.48296  88.48296
## [2227] 121.92889 121.92889 121.92889  77.91111  77.91111  77.91111
## [2233]  67.03915  67.03915  67.03915  73.09630  73.09630  73.09630
## [2239]  71.48571  71.48571  71.48571  74.71323  74.71323  74.71323
## [2245]  70.01693  70.01693  70.01693  84.70053  84.70053  84.70053
## [2251]  84.57566  84.57566  84.57566  61.66222  61.66222  61.66222
## [2257]  83.96402  83.96402  83.96402  88.80423  88.80423  88.80423
## [2263]  74.07619  74.07619  74.07619  77.67111  77.67111  77.67111
## [2269]  75.30370  75.30370  75.30370  70.16720  70.16720  70.16720
## [2275]  91.95767  91.95767  91.95767  77.44550  77.44550  77.44550
## [2281]  86.40593  86.40593  86.40593  75.97333  75.97333  75.97333
## [2287]  69.97672  69.97672  69.97672  85.04815  85.04815  85.04815
## [2293]  98.46349  98.46349  98.46349  77.08741  77.08741  77.08741
## [2299]  70.93333  70.93333  70.93333  76.52444  76.52444  76.52444
## [2305] 120.16296 120.16296 120.16296  86.66296  86.66296  86.66296
## [2311]  88.90741  88.90741  88.90741
# Encoding the target feature as factor
cube$`Comp. Strength in %` <- cut(cube$`Comp. Strength in %`, breaks = c(0,100,200), 
                                  labels = c("A" , "B"))

cube$`Comp. Strength in %` = factor(cube$`Comp. Strength in %`,
                         levels = c('A', 'B'),
                         labels = c(0,1))
summary(cube)
##  Concrete Grade Concrete Source     Qty.           Age     
##  0:   0         0:1419          Length:2313        0:1173  
##  1: 402         1: 894          Class :character   1:1107  
##  2:  84                         Mode  :character   2:   3  
##  3:1341                                            3:  30  
##  4: 486                                                    
##                                                            
##  Weight in Kg.   Density in MT/m3   Load in KN     Comp. Strength in %
##  Min.   :7.705   Min.   :   0     Min.   :  27.5   0:1413             
##  1st Qu.:8.403   1st Qu.:2489     1st Qu.: 699.0   1: 900             
##  Median :8.520   Median :2524     Median : 982.2                      
##  Mean   :8.515   Mean   :2519     Mean   : 977.0                      
##  3rd Qu.:8.640   3rd Qu.:2560     3rd Qu.:1278.1                      
##  Max.   :9.088   Max.   :2693     Max.   :2222.2

DATA MODELLING

After retrieving and exploration (done in assignment 1) of the data, the final step is the data modelling, where we will be using three classification models - Kernel SVM model, Logistic regression model and, Random Forest Classification model. But before that, two basic steps would be performed which are splitting the data and feature scaling.

SPLITTING THE DATASET

Data was split into training set and test set. Test set is 20% of the data.

# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(cube$`Comp. Strength in %`, SplitRatio = 0.80)
training_set = subset(cube, split == TRUE)
test_set = subset(cube, split == FALSE)

FEATURE SCALING

There can be instances found in data frame where values for one feature could range between 1-100 and values for other feature could range from 1-10000000. In scenarios like these, owing to the mere greater numeric range, the impact on response variables by the feature having greater numeric range could be more than the one having less numeric range, and this could, in turn, impact prediction accuracy. The objective is to improve predictive accuracy and not allow a particular feature impact the prediction due to large numeric value range. Thus, we may need to normalize or scale values under different features such that they fall under common range. This normalization is called feature scaling and it was performed on the training set and the test set of the data.

training_set[, 5:7] = scale(training_set[, 5:7])
test_set[, 5:7] = scale(test_set[, 5:7])

KERNEL SVM MODEL

  1. In order to fit the training set to Kernel SVM, we create the SVM classifier.
  2. We then go onto predicting the test set using the SVM classifier.
  3. We create the confusion matrix and obtain the following output: y_pred 0 1 0 227 56 1 11 169

Misclassification rate - 14.47% Accuracy - 85.52%

# Fitting kernel svm to the Training set
library(e1071)

classifier = svm(formula = `Comp. Strength in %` ~ `Load in KN` + `Density in MT/m3` +
                   `Weight in Kg.` + Age , 
                 data = training_set,
                 type = 'C-classification',
                 kernel = 'radial')


# Predicting the Test set results
y_pred = predict(classifier, newdata = test_set[-8])

# Making the Confusion Matrix
cm = table(test_set$`Comp. Strength in %`, y_pred)
cm
##    y_pred
##       0   1
##   0 227  56
##   1  11 169

K-FOLD CROSS VALIDATION

k-fold Cross validation is performed - the samples are randomly partitioned into k sets (called fold s) of roughly equal size. A model is fit using all the samples except the first subset. Then, the predi ction error of the fitted model is calculated using the first held-out samples. The same operation is repeated for each fold and the model’s performance is calculated by averaging the errors across th e different test sets. K is usually fixed at 5 or 10. Cross-validation provides an estimate of the test error for each model. Accuracy obtained is 86%.

folds = createFolds(training_set$`Comp. Strength in %`, k = 10)
cv = lapply(folds, function(x) {
  training_fold = training_set[-x, ]
  test_fold = training_set[x, ]
  classifier = svm(formula = `Comp. Strength in %` ~ `Load in KN` + `Density in MT/m3` +
                     `Weight in Kg.` + Age , 
                   data = training_fold,
                   type = 'C-classification',
                   kernel = 'radial')
  y_pred = predict(classifier, newdata = test_fold[-8])
  cm = table(test_fold$`Comp. Strength in %`, y_pred)
  accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
  return(accuracy)
})
accuracy = mean(as.numeric(cv))
accuracy
## [1] 0.86

GRID SEARCH FOR KERNEL SVM MODEL

classifier = train(form = `Comp. Strength in %` ~ `Load in KN` + `Density in MT/m3` +
                     `Weight in Kg.` + Age,
                   data = training_set, method = 'svmRadial')
## Warning in .local(x, ...): Variable(s) `' constant. Cannot scale data.

## Warning in .local(x, ...): Variable(s) `' constant. Cannot scale data.

## Warning in .local(x, ...): Variable(s) `' constant. Cannot scale data.

## Warning in .local(x, ...): Variable(s) `' constant. Cannot scale data.

## Warning in .local(x, ...): Variable(s) `' constant. Cannot scale data.

## Warning in .local(x, ...): Variable(s) `' constant. Cannot scale data.
classifier
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 1850 samples
##    4 predictor
##    2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 1850, 1850, 1850, 1850, 1850, 1850, ... 
## Resampling results across tuning parameters:
## 
##   C     Accuracy   Kappa    
##   0.25  0.9027021  0.7988227
##   0.50  0.9050363  0.8036158
##   1.00  0.9063801  0.8063346
## 
## Tuning parameter 'sigma' was held constant at a value of 0.5973066
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.5973066 and C = 1.
classifier$bestTune
##       sigma C
## 3 0.5973066 1

LOGISTIC REGRESSION MODEL

  1. Classifier was created for logistic regression and we fit the training set to it.
  2. Prediction was made using this classifier.
  3. Confusion matrix obtained: y_pred 0 1 0 225 58 1 13 167

Misclassification rate - 15.33% Accuracy - 84.66%

# Fitting Logistic Regression to the Training set
classifier = glm(formula = `Comp. Strength in %` ~ `Load in KN` + `Density in MT/m3` +
                   `Weight in Kg.` + Age , 
                 family = binomial,
                 data = training_set)

# Predicting the Test set results
prob_pred = predict(classifier, type = 'response', newdata = test_set[-8])
y_pred = ifelse(prob_pred > 0.5, 1, 0)

# Making the Confusion Matrix

cm = table(test_set$`Comp. Strength in %`, y_pred)
cm
##    y_pred
##       0   1
##   0 225  58
##   1  13 167

RANDOM FOREST CLASSIFICATION MODEL

  1. In order to fit the training set to Random forest classification, we create the random forest classifier.
  2. We then go onto predicting the test set using the Random forest classifier.
  3. We create the confusion matrix and obtain the following output: y_pred 0 1 0 267 16 1 7 173

Misclassification rate - 4.96% Accuracy - 95.03%

library(randomForest)
set.seed(123)
classifier = randomForest(x = training_set[-8],
                          y = training_set$`Comp. Strength in %`,
                          ntree = 500)

# Predicting the Test set results
y_pred = predict(classifier, newdata = test_set[-8])

# Making the Confusion Matrix
cm = table(test_set$`Comp. Strength in %`, y_pred)
cm
##    y_pred
##       0   1
##   0 266  17
##   1   9 171

RESULTS

  1. Logistic regression model performed well with an accuracy of 84.66%.
  2. Kernel SVM (Support Vector Machine) (Gaussian) model performed well too with an accuracy of 85.52%.
  3. Random forest classification model gave the highest accuracy amongst all three models with an accuracy of 95.03%.
  4. Grid search could not create any marginal difference in the accuracy output and hence no hyperparameter tuning was done.
  5. k-Fold cross validation gave an accuracy of 86%

CONCLUSION

All the three classification models performed well, with a good high accuracy. Amongst all the three classification models, Random forest classification model performed the best. And hence can be used for prediction of the compressive strength. We can provide a portal to the company that can help to predict and provide them with an intuition as to how much strength can be achieved by given combination of features, before actually building it. This can help them save on cost of production, time and labour involved. Fine tuning of the parameters involved in building the concrete, can help to restrict the compressive strength within limits, ultimately avoiding the creation of dead load in the structure. This will help the buildings to function and perform better in the long run, and avoiding life hazards due to weak concrete structure.