Iniciamos el proceso de PCA convirtiendo nuestras filas en rowindex by names, esto nos permitira analizar mas adelante la tendencia de la PCA

names(USArrests )
[1] "Murder"   "Assault"  "UrbanPop" "Rape"    

Aplicaremos la funcion mean,var

apply(USArrests , 2, var)
    Murder    Assault   UrbanPop       Rape 
  18.97047 6945.16571  209.51878   87.72916 

construimos el PCA basado en USArrests

 pr.out$scale
   Murder   Assault  UrbanPop      Rape 
 4.355510 83.337661 14.474763  9.366385 

la matriz rotation describe los eigen vectores

pr.out$rotation
                PC1        PC2        PC3         PC4
Murder   -0.5358995  0.4181809 -0.3412327  0.64922780
Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773
Rape     -0.5434321 -0.1673186  0.8177779  0.08902432
biplot (pr.out , scale =0)

pr.out$rotation=-pr.out$rotation
 pr.out$x=-pr.out$x
 biplot (pr.out , scale =0)

lo que podemos observar en la sdev es como cada eigen vector dispersa la data

pr.out$sdev
[1] 1.5748783 0.9948694 0.5971291 0.4164494
pr.var=pr.out$sdev ^2
pr.var
[1] 2.4802416 0.9897652 0.3565632 0.1734301
pve=pr.var/sum(pr.var)
 pve 
[1] 0.62006039 0.24744129 0.08914080 0.04335752
plot(pve,xlab="Principal Component",ylab="Proportion of Variance Explained", ylim=c(0,1) )

plot(cumsum(pve), xlab="Principal Component", ylab="Cumulative Proportion of Variance Explained", ylim=c(0,1))

la funcion de suma acumulada muestra PVE de los elmentos del vector

plot(pve , xlab=" Principal Component ", ylab="Proportion of Variance Explained ", ylim=c(0,1))

plot(cumsum(pve), xlab="Principal Component ", ylab="Cumulative Proportion of Variance Explained ", ylim=c(0,1))

a=c(1,2,8,-3)
cumsum(a)
[1]  1  3 11  8
summary(pr.out)
Importance of components:
                          PC1    PC2     PC3     PC4
Standard deviation     1.5749 0.9949 0.59713 0.41645
Proportion of Variance 0.6201 0.2474 0.08914 0.04336
Cumulative Proportion  0.6201 0.8675 0.95664 1.00000
LS0tDQp0aXRsZTogImZpYWJpbGlkYWQgUENBIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KSW5pY2lhbW9zIGVsIHByb2Nlc28gZGUgUENBIGNvbnZpcnRpZW5kbyBudWVzdHJhcyBmaWxhcyBlbiByb3dpbmRleCBieSBuYW1lcywgZXN0byBub3MgcGVybWl0aXJhIGFuYWxpemFyIG1hcyBhZGVsYW50ZSBsYSB0ZW5kZW5jaWEgZGUgbGEgUENBDQoNCmBgYHtyfQ0Kc3RhdGVzPXJvdy5uYW1lcyhVU0FycmVzdHMgKQ0Kc3RhdGVzDQpuYW1lcyhVU0FycmVzdHMgKQ0KYGBgDQoNCkFwbGljYXJlbW9zIGxhIGZ1bmNpb24gbWVhbix2YXIgDQpgYGB7cn0NCmFwcGx5KFVTQXJyZXN0cyAsIDIsIG1lYW4pDQphcHBseShVU0FycmVzdHMgLCAyLCB2YXIpDQpgYGANCg0KY29uc3RydWltb3MgZWwgUENBIGJhc2FkbyBlbiBVU0FycmVzdHMNCmBgYHtyfQ0KcHIub3V0PXByY29tcChVU0FycmVzdHMgLCBzY2FsZT1UUlVFKQ0KYGBgDQoNCmBgYHtyfQ0KbmFtZXMocHIub3V0KQ0KIHByLm91dCRjZW50ZXINCiBwci5vdXQkc2NhbGUNCmBgYA0KbGEgbWF0cml6IHJvdGF0aW9uIGRlc2NyaWJlIGxvcyBlaWdlbiB2ZWN0b3Jlcw0KYGBge3J9DQpwci5vdXQkcm90YXRpb24NCmJpcGxvdCAocHIub3V0ICwgc2NhbGUgPTApDQpgYGANCg0KIA0KYGBge3J9DQpwci5vdXQkcm90YXRpb249LXByLm91dCRyb3RhdGlvbg0KIHByLm91dCR4PS1wci5vdXQkeA0KIGJpcGxvdCAocHIub3V0ICwgc2NhbGUgPTApDQoNCmBgYA0KbG8gcXVlIHBvZGVtb3Mgb2JzZXJ2YXIgZW4gbGEgc2RldiBlcyBjb21vIGNhZGEgZWlnZW4gdmVjdG9yIGRpc3BlcnNhIGxhIGRhdGEgIA0KYGBge3J9DQpwci5vdXQkc2Rldg0KcHIudmFyPXByLm91dCRzZGV2IF4yDQpwci52YXINCmBgYA0KYGBge3J9DQpwdmU9cHIudmFyL3N1bShwci52YXIpDQogcHZlIA0KcGxvdChwdmUseGxhYj0iUHJpbmNpcGFsIENvbXBvbmVudCIseWxhYj0iUHJvcG9ydGlvbiBvZiBWYXJpYW5jZSBFeHBsYWluZWQiLCB5bGltPWMoMCwxKSApDQpwbG90KGN1bXN1bShwdmUpLCB4bGFiPSJQcmluY2lwYWwgQ29tcG9uZW50IiwgeWxhYj0iQ3VtdWxhdGl2ZSBQcm9wb3J0aW9uIG9mIFZhcmlhbmNlIEV4cGxhaW5lZCIsIHlsaW09YygwLDEpKQ0KYGBgDQogbGEgZnVuY2lvbiBkZSBzdW1hIGFjdW11bGFkYSBtdWVzdHJhIFBWRSBkZSBsb3MgZWxtZW50b3MgZGVsIHZlY3Rvcg0KYGBge3J9DQpwbG90KHB2ZSAsIHhsYWI9IiBQcmluY2lwYWwgQ29tcG9uZW50ICIsIHlsYWI9IlByb3BvcnRpb24gb2YgVmFyaWFuY2UgRXhwbGFpbmVkICIsIHlsaW09YygwLDEpKQ0KcGxvdChjdW1zdW0ocHZlKSwgeGxhYj0iUHJpbmNpcGFsIENvbXBvbmVudCAiLCB5bGFiPSJDdW11bGF0aXZlIFByb3BvcnRpb24gb2YgVmFyaWFuY2UgRXhwbGFpbmVkICIsIHlsaW09YygwLDEpKQ0KYT1jKDEsMiw4LC0zKQ0KY3Vtc3VtKGEpDQoNCmBgYA0KIA0KIA==