cargo mis datos de internet
df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRwAhDYZx0K6yqhpy5hSRcVzq1v7yY0hdiIiI9iNmsYlNH-CHa7yECisfwxFi7ALQAiYO6E5iYy774C/pub?gid=826455234&single=true&output=csv")
los packages
library("tidyverse")
library("forcats")
como estan los datos
str(df)
'data.frame': 358 obs. of 4 variables:
$ Colegio : Factor w/ 5 levels "Canitas","El meli",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Curso : Factor w/ 9 levels "Cuarto","Octavo",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Codigo : int 3 1 1 0 0 3 4 3 0 4 ...
$ Inasistencia...: int 2 5 1 5 1 1 6 1 1 3 ...
summary
summary(df)
Colegio Curso Codigo Inasistencia...
Canitas :92 Sexto :59 Min. :0.000 Min. : 0.000
El meli :97 Cuarto :46 1st Qu.:1.000 1st Qu.: 4.000
Estaquilla :66 Octavo :44 Median :1.000 Median : 6.000
Manuel gatica :45 Segundo:42 Mean :1.662 Mean : 7.891
Paraguay chico:58 Primero:41 3rd Qu.:3.000 3rd Qu.:10.000
Quinto :40 Max. :6.000 Max. :35.000
(Other):86
agrupo colegio y curso , calculo promedios y de por codigo
df %>%
group_by(Colegio) %>%
summarise(n=n(), Promedio = mean(Codigo), DE = sd(Codigo), round(Promedio,2), round(DE,2)) %>%
ungroup()
agrupo por curso
df %>%
group_by(Curso) %>%
summarise(n=n(), Promedio = mean(Codigo), DE = sd(Codigo), round(Promedio,2), round(DE,2)) %>%
ungroup()
distribucion de los codigos
df %>%
ggplot(aes(x=Codigo)) +
geom_histogram(bins = 20)

grafica codigo por colegio (ordenada de menos a mas)
df %>%
mutate(Colegio = fct_reorder(Colegio, Codigo)) %>%
ggplot(aes(x=Colegio,y=Codigo)) +
geom_boxplot()+
theme_classic()

grafica dispersión
df %>%
ggplot(aes(x=Codigo,y=Inasistencia...)) +
geom_point()+
geom_smooth()+
theme_classic()

linea de tendencia
df %>%
ggplot(aes(x=Codigo,y=Inasistencia...)) +
geom_point()+
geom_smooth(method="lm")

graficas de dispersión para código según colegios
df %>%
ggplot(aes(x=Codigo,y=Inasistencia..., fill=Colegio)) +
geom_point()+
geom_smooth()+
facet_wrap(~Colegio)

lo mismo pero ORDENADO por codigo segun colegios
df %>%
mutate(Colegio = fct_reorder(Colegio, Codigo)) %>%
ggplot(aes(x=Codigo,y=Inasistencia..., fill=Colegio)) +
geom_point()+
geom_smooth()+
facet_wrap(~Colegio)

codigos por curso
df %>%
ggplot(aes(x=Codigo,y=Inasistencia..., fill=Curso)) +
geom_point()+
geom_smooth()+
facet_wrap(~Curso)

df1 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRwAhDYZx0K6yqhpy5hSRcVzq1v7yY0hdiIiI9iNmsYlNH-CHa7yECisfwxFi7ALQAiYO6E5iYy774C/pub?gid=1691543918&single=true&output=csv")
df1 %>%
group_by(Da..o, Curso) %>%
summarise(n=n())
df3
df3 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRwAhDYZx0K6yqhpy5hSRcVzq1v7yY0hdiIiI9iNmsYlNH-CHa7yECisfwxFi7ALQAiYO6E5iYy774C/pub?gid=63322584&single=true&output=csv")
df3 %>%
ggplot(aes(x=Curso, y=Porcentaje..., fill=Dano))+
geom_col()+
scale_fill_viridis_d(direction = -1) +
coord_flip() +
theme_minimal()+
scale_fill_manual(values=c("indianred1", "deepskyblue"))
Scale for 'fill' is already present. Adding another scale for 'fill', which will replace the
existing scale.

df4 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRwAhDYZx0K6yqhpy5hSRcVzq1v7yY0hdiIiI9iNmsYlNH-CHa7yECisfwxFi7ALQAiYO6E5iYy774C/pub?gid=373814395&single=true&output=csv")
df4 %>%
ggplot(aes(x=Curso, y=Porcentaje.asistencia..., fill=Asistencia))+
geom_col()+
scale_fill_viridis_d(direction = -1) +
coord_flip() +
theme_minimal()+
scale_fill_manual(values=c("indianred1", "deepskyblue"))
Scale for 'fill' is already present. Adding another scale for 'fill', which will replace the
existing scale.

LS0tCnRpdGxlOiAiMjAxOV9JbnZlc3RpZ2FjacOzbiBsb2NhbF9MdWNpYSBSb21lcm9fRnJhbmNpc2NhIE9ydGVnYSAiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI2NhcmdvIG1pcyBkYXRvcyBkZSBpbnRlcm5ldApgYGB7cn0KZGYgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZSd0FoRFlaeDBLNnlxaHB5NWhTUmNWenExdjd5WTBoZGlJaUk5aU5tc1lsTkgtQ0hhN3lFQ2lzZnd4Rmk3QUxRQWlZTzZFNWlZeTc3NEMvcHViP2dpZD04MjY0NTUyMzQmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojbG9zIHBhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJmb3JjYXRzIikKYGBgCiNjb21vIGVzdGFuIGxvcyBkYXRvcwpgYGB7cn0Kc3RyKGRmKQpgYGAKI3N1bW1hcnkKYGBge3J9CnN1bW1hcnkoZGYpCmBgYAojYWdydXBvIGNvbGVnaW8geSBjdXJzbyAsIGNhbGN1bG8gcHJvbWVkaW9zIHkgZGUgcG9yIGNvZGlnbwpgYGB7cn0KZGYgJT4lIAogIGdyb3VwX2J5KENvbGVnaW8pICU+JSAKICBzdW1tYXJpc2Uobj1uKCksIFByb21lZGlvID0gbWVhbihDb2RpZ28pLCBERSA9IHNkKENvZGlnbyksIHJvdW5kKFByb21lZGlvLDIpLCByb3VuZChERSwyKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKI2FncnVwbyBwb3IgY3Vyc28KYGBge3J9CmRmICU+JSAKICBncm91cF9ieShDdXJzbykgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgUHJvbWVkaW8gPSBtZWFuKENvZGlnbyksIERFID0gc2QoQ29kaWdvKSwgcm91bmQoUHJvbWVkaW8sMiksIHJvdW5kKERFLDIpKSAlPiUgCiAgdW5ncm91cCgpCmBgYAojZGlzdHJpYnVjaW9uIGRlIGxvcyBjb2RpZ29zCmBgYHtyfQpkZiAlPiUgCmdncGxvdChhZXMoeD1Db2RpZ28pKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlucyA9IDIwKQpgYGAKI2dyYWZpY2EgY29kaWdvIHBvciBjb2xlZ2lvIChvcmRlbmFkYSBkZSBtZW5vcyBhIG1hcykKYGBge3J9CmRmICU+JSAKICBtdXRhdGUoQ29sZWdpbyA9IGZjdF9yZW9yZGVyKENvbGVnaW8sIENvZGlnbykpICU+JQogIGdncGxvdChhZXMoeD1Db2xlZ2lvLHk9Q29kaWdvKSkgKwogIGdlb21fYm94cGxvdCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKI2dyYWZpY2EgZGlzcGVyc2nDs24KYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHg9Q29kaWdvLHk9SW5hc2lzdGVuY2lhLi4uKSkgKwogIGdlb21fcG9pbnQoKSsKICBnZW9tX3Ntb290aCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKI2xpbmVhIGRlIHRlbmRlbmNpYQpgYGB7cn0KZGYgJT4lIAogIGdncGxvdChhZXMoeD1Db2RpZ28seT1JbmFzaXN0ZW5jaWEuLi4pKSArCiAgZ2VvbV9wb2ludCgpKwogICAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsbSIpCmBgYAojZ3JhZmljYXMgZGUgZGlzcGVyc2nDs24gcGFyYSBjw7NkaWdvIHNlZ8O6biBjb2xlZ2lvcyAKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHg9Q29kaWdvLHk9SW5hc2lzdGVuY2lhLi4uLCBmaWxsPUNvbGVnaW8pKSArCiAgZ2VvbV9wb2ludCgpKwogIGdlb21fc21vb3RoKCkrCiAgZmFjZXRfd3JhcCh+Q29sZWdpbykKYGBgCiNsbyBtaXNtbyBwZXJvIE9SREVOQURPIHBvciBjb2RpZ28gc2VndW4gY29sZWdpb3MKYGBge3J9CmRmICU+JSAKICAgbXV0YXRlKENvbGVnaW8gPSBmY3RfcmVvcmRlcihDb2xlZ2lvLCBDb2RpZ28pKSAlPiUKICBnZ3Bsb3QoYWVzKHg9Q29kaWdvLHk9SW5hc2lzdGVuY2lhLi4uLCBmaWxsPUNvbGVnaW8pKSArCiAgZ2VvbV9wb2ludCgpKwogIGdlb21fc21vb3RoKCkrCiAgZmFjZXRfd3JhcCh+Q29sZWdpbykKYGBgCiNjb2RpZ29zIHBvciBjdXJzbyAKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHg9Q29kaWdvLHk9SW5hc2lzdGVuY2lhLi4uLCBmaWxsPUN1cnNvKSkgKwogIGdlb21fcG9pbnQoKSsKICBnZW9tX3Ntb290aCgpKwogIGZhY2V0X3dyYXAofkN1cnNvKQpgYGAKCgoKYGBge3J9CmRmMSA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlJ3QWhEWVp4MEs2eXFocHk1aFNSY1Z6cTF2N3lZMGhkaUlpSTlpTm1zWWxOSC1DSGE3eUVDaXNmd3hGaTdBTFFBaVlPNkU1aVl5Nzc0Qy9wdWI/Z2lkPTE2OTE1NDM5MTgmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAoKYGBge3J9CmRmMSAlPiUgCiAgZ3JvdXBfYnkoRGEuLm8sIEN1cnNvKSAlPiUgCiAgc3VtbWFyaXNlKG49bigpKQpgYGAKI2RmMwpgYGB7cn0KZGYzIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UndBaERZWngwSzZ5cWhweTVoU1JjVnpxMXY3eVkwaGRpSWlJOWlObXNZbE5ILUNIYTd5RUNpc2Z3eEZpN0FMUUFpWU82RTVpWXk3NzRDL3B1Yj9naWQ9NjMzMjI1ODQmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAoKYGBge3J9CmRmMyAlPiUgCiAgZ2dwbG90KGFlcyh4PUN1cnNvLCB5PVBvcmNlbnRhamUuLi4sIGZpbGw9RGFubykpKwogIGdlb21fY29sKCkrCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QoZGlyZWN0aW9uID0gLTEpICsKICBjb29yZF9mbGlwKCkgKwogIHRoZW1lX21pbmltYWwoKSsKICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXM9YygiaW5kaWFucmVkMSIsICJkZWVwc2t5Ymx1ZSIpKQpgYGAKCgpgYGB7cn0KZGY0IDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UndBaERZWngwSzZ5cWhweTVoU1JjVnpxMXY3eVkwaGRpSWlJOWlObXNZbE5ILUNIYTd5RUNpc2Z3eEZpN0FMUUFpWU82RTVpWXk3NzRDL3B1Yj9naWQ9MzczODE0Mzk1JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKCmBgYHtyfQpkZjQgJT4lIApnZ3Bsb3QoYWVzKHg9Q3Vyc28sIHk9UG9yY2VudGFqZS5hc2lzdGVuY2lhLi4uLCBmaWxsPUFzaXN0ZW5jaWEpKSsKICBnZW9tX2NvbCgpKwogIHNjYWxlX2ZpbGxfdmlyaWRpc19kKGRpcmVjdGlvbiA9IC0xKSArCiAgY29vcmRfZmxpcCgpICsKICB0aGVtZV9taW5pbWFsKCkrCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzPWMoImluZGlhbnJlZDEiLCAiZGVlcHNreWJsdWUiKSkKYGBgCgoKCgo=