Primeiramente consumimos os dados a serem utilizados para a análise
## Parsed with column specification:
## cols(
## .default = col_double(),
## field = col_character(),
## from = col_character(),
## career = col_character(),
## attr3_s = col_logical(),
## sinc3_s = col_logical(),
## intel3_s = col_logical(),
## fun3_s = col_logical(),
## amb3_s = col_logical(),
## dec = col_character()
## )
## See spec(...) for full column specifications.
## Warning: 10220 parsing failures.
## row col expected actual file
## 1847 attr3_s 1/0/T/F/TRUE/FALSE 8.00 'speed-dating/speed-dating2.csv'
## 1847 sinc3_s 1/0/T/F/TRUE/FALSE 10.00 'speed-dating/speed-dating2.csv'
## 1847 intel3_s 1/0/T/F/TRUE/FALSE 9.00 'speed-dating/speed-dating2.csv'
## 1847 fun3_s 1/0/T/F/TRUE/FALSE 10 'speed-dating/speed-dating2.csv'
## 1847 amb3_s 1/0/T/F/TRUE/FALSE 10 'speed-dating/speed-dating2.csv'
## .... ........ .................. ...... ................................
## See problems(...) for more details.
EDA
| variable | type | stat | level | value | formatted |
|---|---|---|---|---|---|
| iid | numeric | missing | .all | 0.0000000 | 0 |
| iid | numeric | complete | .all | 4918.0000000 | 4918 |
| iid | numeric | n | .all | 4918.0000000 | 4918 |
| iid | numeric | mean | .all | 274.6748678 | 274.67 |
| iid | numeric | sd | .all | 183.9075961 | 183.91 |
| iid | numeric | p0 | .all | 1.0000000 | 1 |
| iid | numeric | p25 | .all | 88.0000000 | 88 |
| iid | numeric | p50 | .all | 273.0000000 | 273 |
| iid | numeric | p75 | .all | 431.0000000 | 431 |
| iid | numeric | p100 | .all | 552.0000000 | 552 |
| iid | numeric | hist | .all | NA | ▇▇▁▆▃▆▃▇ |
| gender | numeric | missing | .all | 0.0000000 | 0 |
| gender | numeric | complete | .all | 4918.0000000 | 4918 |
| gender | numeric | n | .all | 4918.0000000 | 4918 |
| gender | numeric | mean | .all | 0.5010167 | 0.5 |
| gender | numeric | sd | .all | 0.5000498 | 0.5 |
| gender | numeric | p0 | .all | 0.0000000 | 0 |
| gender | numeric | p25 | .all | 0.0000000 | 0 |
| gender | numeric | p50 | .all | 1.0000000 | 1 |
| gender | numeric | p75 | .all | 1.0000000 | 1 |
| gender | numeric | p100 | .all | 1.0000000 | 1 |
| gender | numeric | hist | .all | NA | ▇▁▁▁▁▁▁▇ |
| order | numeric | missing | .all | 0.0000000 | 0 |
| order | numeric | complete | .all | 4918.0000000 | 4918 |
| order | numeric | n | .all | 4918.0000000 | 4918 |
| order | numeric | mean | .all | 9.2602684 | 9.26 |
| order | numeric | sd | .all | 5.6694748 | 5.67 |
| order | numeric | p0 | .all | 1.0000000 | 1 |
| order | numeric | p25 | .all | 4.0000000 | 4 |
| order | numeric | p50 | .all | 9.0000000 | 9 |
| order | numeric | p75 | .all | 14.0000000 | 14 |
| order | numeric | p100 | .all | 22.0000000 | 22 |
| order | numeric | hist | .all | NA | ▇▇▅▇▅▃▅▂ |
| pid | numeric | missing | .all | 10.0000000 | 10 |
| pid | numeric | complete | .all | 4908.0000000 | 4908 |
| pid | numeric | n | .all | 4918.0000000 | 4918 |
| pid | numeric | mean | .all | 274.9767726 | 274.98 |
| pid | numeric | sd | .all | 183.9730364 | 183.97 |
| pid | numeric | p0 | .all | 1.0000000 | 1 |
| pid | numeric | p25 | .all | 88.0000000 | 88 |
| pid | numeric | p50 | .all | 273.0000000 | 273 |
| pid | numeric | p75 | .all | 431.0000000 | 431 |
| pid | numeric | p100 | .all | 552.0000000 | 552 |
| pid | numeric | hist | .all | NA | ▇▇▁▆▃▆▃▇ |
| int_corr | numeric | missing | .all | 72.0000000 | 72 |
| int_corr | numeric | complete | .all | 4846.0000000 | 4846 |
| int_corr | numeric | n | .all | 4918.0000000 | 4918 |
| int_corr | numeric | mean | .all | 0.1905530 | 0.19 |
| int_corr | numeric | sd | .all | 0.3085869 | 0.31 |
| int_corr | numeric | p0 | .all | -0.7300000 | -0.73 |
| int_corr | numeric | p25 | .all | -0.0300000 | -0.03 |
| int_corr | numeric | p50 | .all | 0.2100000 | 0.21 |
| int_corr | numeric | p75 | .all | 0.4300000 | 0.43 |
| int_corr | numeric | p100 | .all | 0.9000000 | 0.9 |
| int_corr | numeric | hist | .all | NA | ▁▂▅▆▇▇▅▁ |
| samerace | numeric | missing | .all | 0.0000000 | 0 |
| samerace | numeric | complete | .all | 4918.0000000 | 4918 |
| samerace | numeric | n | .all | 4918.0000000 | 4918 |
| samerace | numeric | mean | .all | 0.4062627 | 0.41 |
| samerace | numeric | sd | .all | 0.4911847 | 0.49 |
| samerace | numeric | p0 | .all | 0.0000000 | 0 |
| samerace | numeric | p25 | .all | 0.0000000 | 0 |
| samerace | numeric | p50 | .all | 0.0000000 | 0 |
| samerace | numeric | p75 | .all | 1.0000000 | 1 |
| samerace | numeric | p100 | .all | 1.0000000 | 1 |
| samerace | numeric | hist | .all | NA | ▇▁▁▁▁▁▁▆ |
| age_o | numeric | missing | .all | 61.0000000 | 61 |
| age_o | numeric | complete | .all | 4857.0000000 | 4857 |
| age_o | numeric | n | .all | 4918.0000000 | 4918 |
| age_o | numeric | mean | .all | 25.7906115 | 25.79 |
| age_o | numeric | sd | .all | 3.3479583 | 3.35 |
| age_o | numeric | p0 | .all | 18.0000000 | 18 |
| age_o | numeric | p25 | .all | 23.0000000 | 23 |
| age_o | numeric | p50 | .all | 25.0000000 | 25 |
| age_o | numeric | p75 | .all | 28.0000000 | 28 |
| age_o | numeric | p100 | .all | 39.0000000 | 39 |
| age_o | numeric | hist | .all | NA | ▁▇▆▇▃▁▁▁ |
| age | numeric | missing | .all | 52.0000000 | 52 |
| age | numeric | complete | .all | 4866.0000000 | 4866 |
| age | numeric | n | .all | 4918.0000000 | 4918 |
| age | numeric | mean | .all | 25.7813399 | 25.78 |
| age | numeric | sd | .all | 3.3523272 | 3.35 |
| age | numeric | p0 | .all | 18.0000000 | 18 |
| age | numeric | p25 | .all | 23.0000000 | 23 |
| age | numeric | p50 | .all | 25.0000000 | 25 |
| age | numeric | p75 | .all | 28.0000000 | 28 |
| age | numeric | p100 | .all | 39.0000000 | 39 |
| age | numeric | hist | .all | NA | ▁▇▆▇▃▁▁▁ |
| field | character | missing | .all | 20.0000000 | 20 |
| field | character | complete | .all | 4898.0000000 | 4898 |
| field | character | n | .all | 4918.0000000 | 4918 |
| field | character | min | .all | 3.0000000 | 3 |
| field | character | max | .all | 51.0000000 | 51 |
| field | character | empty | .all | 0.0000000 | 0 |
| field | character | n_unique | .all | 148.0000000 | 148 |
| race | numeric | missing | .all | 20.0000000 | 20 |
| race | numeric | complete | .all | 4898.0000000 | 4898 |
| race | numeric | n | .all | 4918.0000000 | 4918 |
| race | numeric | mean | .all | 2.7311147 | 2.73 |
| race | numeric | sd | .all | 1.2196805 | 1.22 |
| race | numeric | p0 | .all | 1.0000000 | 1 |
| race | numeric | p25 | .all | 2.0000000 | 2 |
| race | numeric | p50 | .all | 2.0000000 | 2 |
| race | numeric | p75 | .all | 4.0000000 | 4 |
| race | numeric | p100 | .all | 6.0000000 | 6 |
| race | numeric | hist | .all | NA | ▁▇▁▁▃▁▁▁ |
| from | character | missing | .all | 36.0000000 | 36 |
| from | character | complete | .all | 4882.0000000 | 4882 |
| from | character | n | .all | 4918.0000000 | 4918 |
| from | character | min | .all | 2.0000000 | 2 |
| from | character | max | .all | 58.0000000 | 58 |
| from | character | empty | .all | 0.0000000 | 0 |
| from | character | n_unique | .all | 172.0000000 | 172 |
| career | character | missing | .all | 46.0000000 | 46 |
| career | character | complete | .all | 4872.0000000 | 4872 |
| career | character | n | .all | 4918.0000000 | 4918 |
| career | character | min | .all | 2.0000000 | 2 |
| career | character | max | .all | 77.0000000 | 77 |
| career | character | empty | .all | 0.0000000 | 0 |
| career | character | n_unique | .all | 218.0000000 | 218 |
| sports | numeric | missing | .all | 36.0000000 | 36 |
| sports | numeric | complete | .all | 4882.0000000 | 4882 |
| sports | numeric | n | .all | 4918.0000000 | 4918 |
| sports | numeric | mean | .all | 6.3961491 | 6.4 |
| sports | numeric | sd | .all | 2.5661440 | 2.57 |
| sports | numeric | p0 | .all | 1.0000000 | 1 |
| sports | numeric | p25 | .all | 5.0000000 | 5 |
| sports | numeric | p50 | .all | 7.0000000 | 7 |
| sports | numeric | p75 | .all | 8.0000000 | 8 |
| sports | numeric | p100 | .all | 10.0000000 | 10 |
| sports | numeric | hist | .all | NA | ▃▂▃▃▃▅▅▇ |
| tvsports | numeric | missing | .all | 36.0000000 | 36 |
| tvsports | numeric | complete | .all | 4882.0000000 | 4882 |
| tvsports | numeric | n | .all | 4918.0000000 | 4918 |
| tvsports | numeric | mean | .all | 4.5266284 | 4.53 |
| tvsports | numeric | sd | .all | 2.8175787 | 2.82 |
| tvsports | numeric | p0 | .all | 1.0000000 | 1 |
| tvsports | numeric | p25 | .all | 2.0000000 | 2 |
| tvsports | numeric | p50 | .all | 4.0000000 | 4 |
| tvsports | numeric | p75 | .all | 7.0000000 | 7 |
| tvsports | numeric | p100 | .all | 10.0000000 | 10 |
| tvsports | numeric | hist | .all | NA | ▇▃▂▂▂▂▂▃ |
| exercise | numeric | missing | .all | 36.0000000 | 36 |
| exercise | numeric | complete | .all | 4882.0000000 | 4882 |
| exercise | numeric | n | .all | 4918.0000000 | 4918 |
| exercise | numeric | mean | .all | 6.1175748 | 6.12 |
| exercise | numeric | sd | .all | 2.3290348 | 2.33 |
| exercise | numeric | p0 | .all | 1.0000000 | 1 |
| exercise | numeric | p25 | .all | 5.0000000 | 5 |
| exercise | numeric | p50 | .all | 6.0000000 | 6 |
| exercise | numeric | p75 | .all | 8.0000000 | 8 |
| exercise | numeric | p100 | .all | 10.0000000 | 10 |
| exercise | numeric | hist | .all | NA | ▅▃▃▇▇▇▇▇ |
| dining | numeric | missing | .all | 36.0000000 | 36 |
| dining | numeric | complete | .all | 4882.0000000 | 4882 |
| dining | numeric | n | .all | 4918.0000000 | 4918 |
| dining | numeric | mean | .all | 7.6874232 | 7.69 |
| dining | numeric | sd | .all | 1.7874685 | 1.79 |
| dining | numeric | p0 | .all | 1.0000000 | 1 |
| dining | numeric | p25 | .all | 7.0000000 | 7 |
| dining | numeric | p50 | .all | 8.0000000 | 8 |
| dining | numeric | p75 | .all | 9.0000000 | 9 |
| dining | numeric | p100 | .all | 10.0000000 | 10 |
| dining | numeric | hist | .all | NA | ▁▁▁▂▂▅▅▇ |
| museums | numeric | missing | .all | 36.0000000 | 36 |
| museums | numeric | complete | .all | 4882.0000000 | 4882 |
| museums | numeric | n | .all | 4918.0000000 | 4918 |
| museums | numeric | mean | .all | 6.8758705 | 6.88 |
| museums | numeric | sd | .all | 2.0790946 | 2.08 |
| museums | numeric | p0 | .all | 0.0000000 | 0 |
| museums | numeric | p25 | .all | 6.0000000 | 6 |
| museums | numeric | p50 | .all | 7.0000000 | 7 |
| museums | numeric | p75 | .all | 8.0000000 | 8 |
| museums | numeric | p100 | .all | 10.0000000 | 10 |
| museums | numeric | hist | .all | NA | ▁▁▂▅▃▇▇▇ |
| art | numeric | missing | .all | 36.0000000 | 36 |
| art | numeric | complete | .all | 4882.0000000 | 4882 |
| art | numeric | n | .all | 4918.0000000 | 4918 |
| art | numeric | mean | .all | 6.5948382 | 6.59 |
| art | numeric | sd | .all | 2.2880371 | 2.29 |
| art | numeric | p0 | .all | 0.0000000 | 0 |
| art | numeric | p25 | .all | 5.0000000 | 5 |
| art | numeric | p50 | .all | 7.0000000 | 7 |
| art | numeric | p75 | .all | 8.0000000 | 8 |
| art | numeric | p100 | .all | 10.0000000 | 10 |
| art | numeric | hist | .all | NA | ▁▁▃▆▃▆▇▇ |
| hiking | numeric | missing | .all | 36.0000000 | 36 |
| hiking | numeric | complete | .all | 4882.0000000 | 4882 |
| hiking | numeric | n | .all | 4918.0000000 | 4918 |
| hiking | numeric | mean | .all | 5.7677181 | 5.77 |
| hiking | numeric | sd | .all | 2.5561746 | 2.56 |
| hiking | numeric | p0 | .all | 0.0000000 | 0 |
| hiking | numeric | p25 | .all | 4.0000000 | 4 |
| hiking | numeric | p50 | .all | 6.0000000 | 6 |
| hiking | numeric | p75 | .all | 8.0000000 | 8 |
| hiking | numeric | p100 | .all | 10.0000000 | 10 |
| hiking | numeric | hist | .all | NA | ▂▃▅▇▅▅▆▆ |
| gaming | numeric | missing | .all | 36.0000000 | 36 |
| gaming | numeric | complete | .all | 4882.0000000 | 4882 |
| gaming | numeric | n | .all | 4918.0000000 | 4918 |
| gaming | numeric | mean | .all | 4.0202786 | 4.02 |
| gaming | numeric | sd | .all | 2.6734060 | 2.67 |
| gaming | numeric | p0 | .all | 0.0000000 | 0 |
| gaming | numeric | p25 | .all | 2.0000000 | 2 |
| gaming | numeric | p50 | .all | 4.0000000 | 4 |
| gaming | numeric | p75 | .all | 6.0000000 | 6 |
| gaming | numeric | p100 | .all | 14.0000000 | 14 |
| gaming | numeric | hist | .all | NA | ▆▇▆▆▂▁▁▁ |
| clubbing | numeric | missing | .all | 36.0000000 | 36 |
| clubbing | numeric | complete | .all | 4882.0000000 | 4882 |
| clubbing | numeric | n | .all | 4918.0000000 | 4918 |
| clubbing | numeric | mean | .all | 5.7255223 | 5.73 |
| clubbing | numeric | sd | .all | 2.4457314 | 2.45 |
| clubbing | numeric | p0 | .all | 0.0000000 | 0 |
| clubbing | numeric | p25 | .all | 4.0000000 | 4 |
| clubbing | numeric | p50 | .all | 6.0000000 | 6 |
| clubbing | numeric | p75 | .all | 8.0000000 | 8 |
| clubbing | numeric | p100 | .all | 10.0000000 | 10 |
| clubbing | numeric | hist | .all | NA | ▃▂▃▇▅▆▆▅ |
| reading | numeric | missing | .all | 36.0000000 | 36 |
| reading | numeric | complete | .all | 4882.0000000 | 4882 |
| reading | numeric | n | .all | 4918.0000000 | 4918 |
| reading | numeric | mean | .all | 7.6448177 | 7.64 |
| reading | numeric | sd | .all | 2.0228217 | 2.02 |
| reading | numeric | p0 | .all | 1.0000000 | 1 |
| reading | numeric | p25 | .all | 7.0000000 | 7 |
| reading | numeric | p50 | .all | 8.0000000 | 8 |
| reading | numeric | p75 | .all | 9.0000000 | 9 |
| reading | numeric | p100 | .all | 13.0000000 | 13 |
| reading | numeric | hist | .all | NA | ▁▁▁▅▃▇▁▁ |
| tv | numeric | missing | .all | 36.0000000 | 36 |
| tv | numeric | complete | .all | 4882.0000000 | 4882 |
| tv | numeric | n | .all | 4918.0000000 | 4918 |
| tv | numeric | mean | .all | 5.2904547 | 5.29 |
| tv | numeric | sd | .all | 2.4531728 | 2.45 |
| tv | numeric | p0 | .all | 1.0000000 | 1 |
| tv | numeric | p25 | .all | 3.0000000 | 3 |
| tv | numeric | p50 | .all | 6.0000000 | 6 |
| tv | numeric | p75 | .all | 7.0000000 | 7 |
| tv | numeric | p100 | .all | 10.0000000 | 10 |
| tv | numeric | hist | .all | NA | ▇▃▃▆▇▆▅▃ |
| theater | numeric | missing | .all | 36.0000000 | 36 |
| theater | numeric | complete | .all | 4882.0000000 | 4882 |
| theater | numeric | n | .all | 4918.0000000 | 4918 |
| theater | numeric | mean | .all | 6.7201966 | 6.72 |
| theater | numeric | sd | .all | 2.2523538 | 2.25 |
| theater | numeric | p0 | .all | 0.0000000 | 0 |
| theater | numeric | p25 | .all | 5.0000000 | 5 |
| theater | numeric | p50 | .all | 7.0000000 | 7 |
| theater | numeric | p75 | .all | 8.0000000 | 8 |
| theater | numeric | p100 | .all | 10.0000000 | 10 |
| theater | numeric | hist | .all | NA | ▁▁▂▆▃▆▅▇ |
| movies | numeric | missing | .all | 36.0000000 | 36 |
| movies | numeric | complete | .all | 4882.0000000 | 4882 |
| movies | numeric | n | .all | 4918.0000000 | 4918 |
| movies | numeric | mean | .all | 7.9799263 | 7.98 |
| movies | numeric | sd | .all | 1.6715580 | 1.67 |
| movies | numeric | p0 | .all | 0.0000000 | 0 |
| movies | numeric | p25 | .all | 7.0000000 | 7 |
| movies | numeric | p50 | .all | 8.0000000 | 8 |
| movies | numeric | p75 | .all | 9.0000000 | 9 |
| movies | numeric | p100 | .all | 10.0000000 | 10 |
| movies | numeric | hist | .all | NA | ▁▁▁▁▁▃▅▇ |
| concerts | numeric | missing | .all | 36.0000000 | 36 |
| concerts | numeric | complete | .all | 4882.0000000 | 4882 |
| concerts | numeric | n | .all | 4918.0000000 | 4918 |
| concerts | numeric | mean | .all | 6.8244572 | 6.82 |
| concerts | numeric | sd | .all | 2.0960622 | 2.1 |
| concerts | numeric | p0 | .all | 0.0000000 | 0 |
| concerts | numeric | p25 | .all | 6.0000000 | 6 |
| concerts | numeric | p50 | .all | 7.0000000 | 7 |
| concerts | numeric | p75 | .all | 8.0000000 | 8 |
| concerts | numeric | p100 | .all | 10.0000000 | 10 |
| concerts | numeric | hist | .all | NA | ▁▁▂▅▆▆▇▇ |
| music | numeric | missing | .all | 36.0000000 | 36 |
| music | numeric | complete | .all | 4882.0000000 | 4882 |
| music | numeric | n | .all | 4918.0000000 | 4918 |
| music | numeric | mean | .all | 7.7808275 | 7.78 |
| music | numeric | sd | .all | 1.8393525 | 1.84 |
| music | numeric | p0 | .all | 1.0000000 | 1 |
| music | numeric | p25 | .all | 7.0000000 | 7 |
| music | numeric | p50 | .all | 8.0000000 | 8 |
| music | numeric | p75 | .all | 9.0000000 | 9 |
| music | numeric | p100 | .all | 10.0000000 | 10 |
| music | numeric | hist | .all | NA | ▁▁▁▂▂▃▅▇ |
| shopping | numeric | missing | .all | 36.0000000 | 36 |
| shopping | numeric | complete | .all | 4882.0000000 | 4882 |
| shopping | numeric | n | .all | 4918.0000000 | 4918 |
| shopping | numeric | mean | .all | 5.4840229 | 5.48 |
| shopping | numeric | sd | .all | 2.5703482 | 2.57 |
| shopping | numeric | p0 | .all | 1.0000000 | 1 |
| shopping | numeric | p25 | .all | 3.0000000 | 3 |
| shopping | numeric | p50 | .all | 6.0000000 | 6 |
| shopping | numeric | p75 | .all | 7.0000000 | 7 |
| shopping | numeric | p100 | .all | 10.0000000 | 10 |
| shopping | numeric | hist | .all | NA | ▇▃▅▆▆▆▅▆ |
| yoga | numeric | missing | .all | 36.0000000 | 36 |
| yoga | numeric | complete | .all | 4882.0000000 | 4882 |
| yoga | numeric | n | .all | 4918.0000000 | 4918 |
| yoga | numeric | mean | .all | 4.2115936 | 4.21 |
| yoga | numeric | sd | .all | 2.7052281 | 2.71 |
| yoga | numeric | p0 | .all | 0.0000000 | 0 |
| yoga | numeric | p25 | .all | 2.0000000 | 2 |
| yoga | numeric | p50 | .all | 4.0000000 | 4 |
| yoga | numeric | p75 | .all | 6.0000000 | 6 |
| yoga | numeric | p100 | .all | 10.0000000 | 10 |
| yoga | numeric | hist | .all | NA | ▇▆▆▇▅▃▂▃ |
| attr | numeric | missing | .all | 118.0000000 | 118 |
| attr | numeric | complete | .all | 4800.0000000 | 4800 |
| attr | numeric | n | .all | 4918.0000000 | 4918 |
| attr | numeric | mean | .all | 6.0637500 | 6.06 |
| attr | numeric | sd | .all | 1.9491874 | 1.95 |
| attr | numeric | p0 | .all | 0.0000000 | 0 |
| attr | numeric | p25 | .all | 5.0000000 | 5 |
| attr | numeric | p50 | .all | 6.0000000 | 6 |
| attr | numeric | p75 | .all | 7.0000000 | 7 |
| attr | numeric | p100 | .all | 10.0000000 | 10 |
| attr | numeric | hist | .all | NA | ▁▁▂▇▆▆▅▃ |
| sinc | numeric | missing | .all | 161.0000000 | 161 |
| sinc | numeric | complete | .all | 4757.0000000 | 4757 |
| sinc | numeric | n | .all | 4918.0000000 | 4918 |
| sinc | numeric | mean | .all | 7.0538154 | 7.05 |
| sinc | numeric | sd | .all | 1.8065752 | 1.81 |
| sinc | numeric | p0 | .all | 0.0000000 | 0 |
| sinc | numeric | p25 | .all | 6.0000000 | 6 |
| sinc | numeric | p50 | .all | 7.0000000 | 7 |
| sinc | numeric | p75 | .all | 8.0000000 | 8 |
| sinc | numeric | p100 | .all | 10.0000000 | 10 |
| sinc | numeric | hist | .all | NA | ▁▁▁▅▆▇▇▆ |
| intel | numeric | missing | .all | 166.0000000 | 166 |
| intel | numeric | complete | .all | 4752.0000000 | 4752 |
| intel | numeric | n | .all | 4918.0000000 | 4918 |
| intel | numeric | mean | .all | 7.2659933 | 7.27 |
| intel | numeric | sd | .all | 1.5855446 | 1.59 |
| intel | numeric | p0 | .all | 0.0000000 | 0 |
| intel | numeric | p25 | .all | 6.0000000 | 6 |
| intel | numeric | p50 | .all | 7.0000000 | 7 |
| intel | numeric | p75 | .all | 8.0000000 | 8 |
| intel | numeric | p100 | .all | 10.0000000 | 10 |
| intel | numeric | hist | .all | NA | ▁▁▁▃▅▇▇▆ |
| fun | numeric | missing | .all | 197.0000000 | 197 |
| fun | numeric | complete | .all | 4721.0000000 | 4721 |
| fun | numeric | n | .all | 4918.0000000 | 4918 |
| fun | numeric | mean | .all | 6.2887100 | 6.29 |
| fun | numeric | sd | .all | 1.9761549 | 1.98 |
| fun | numeric | p0 | .all | 0.0000000 | 0 |
| fun | numeric | p25 | .all | 5.0000000 | 5 |
| fun | numeric | p50 | .all | 6.0000000 | 6 |
| fun | numeric | p75 | .all | 8.0000000 | 8 |
| fun | numeric | p100 | .all | 10.0000000 | 10 |
| fun | numeric | hist | .all | NA | ▁▁▂▇▇▇▆▃ |
| amb | numeric | missing | .all | 421.0000000 | 421 |
| amb | numeric | complete | .all | 4497.0000000 | 4497 |
| amb | numeric | n | .all | 4918.0000000 | 4918 |
| amb | numeric | mean | .all | 6.6965755 | 6.7 |
| amb | numeric | sd | .all | 1.8329494 | 1.83 |
| amb | numeric | p0 | .all | 0.0000000 | 0 |
| amb | numeric | p25 | .all | 6.0000000 | 6 |
| amb | numeric | p50 | .all | 7.0000000 | 7 |
| amb | numeric | p75 | .all | 8.0000000 | 8 |
| amb | numeric | p100 | .all | 10.0000000 | 10 |
| amb | numeric | hist | .all | NA | ▁▁▁▇▇▇▇▆ |
| shar | numeric | missing | .all | 643.0000000 | 643 |
| shar | numeric | complete | .all | 4275.0000000 | 4275 |
| shar | numeric | n | .all | 4918.0000000 | 4918 |
| shar | numeric | mean | .all | 5.3198830 | 5.32 |
| shar | numeric | sd | .all | 2.1648979 | 2.16 |
| shar | numeric | p0 | .all | 0.0000000 | 0 |
| shar | numeric | p25 | .all | 4.0000000 | 4 |
| shar | numeric | p50 | .all | 5.0000000 | 5 |
| shar | numeric | p75 | .all | 7.0000000 | 7 |
| shar | numeric | p100 | .all | 10.0000000 | 10 |
| shar | numeric | hist | .all | NA | ▁▂▂▇▅▃▂▂ |
| like | numeric | missing | .all | 122.0000000 | 122 |
| like | numeric | complete | .all | 4796.0000000 | 4796 |
| like | numeric | n | .all | 4918.0000000 | 4918 |
| like | numeric | mean | .all | 6.0513970 | 6.05 |
| like | numeric | sd | .all | 1.8513350 | 1.85 |
| like | numeric | p0 | .all | 0.0000000 | 0 |
| like | numeric | p25 | .all | 5.0000000 | 5 |
| like | numeric | p50 | .all | 6.0000000 | 6 |
| like | numeric | p75 | .all | 7.0000000 | 7 |
| like | numeric | p100 | .all | 10.0000000 | 10 |
| like | numeric | hist | .all | NA | ▁▁▂▇▇▇▅▂ |
| prob | numeric | missing | .all | 156.0000000 | 156 |
| prob | numeric | complete | .all | 4762.0000000 | 4762 |
| prob | numeric | n | .all | 4918.0000000 | 4918 |
| prob | numeric | mean | .all | 5.0170097 | 5.02 |
| prob | numeric | sd | .all | 2.1651088 | 2.17 |
| prob | numeric | p0 | .all | 0.0000000 | 0 |
| prob | numeric | p25 | .all | 4.0000000 | 4 |
| prob | numeric | p50 | .all | 5.0000000 | 5 |
| prob | numeric | p75 | .all | 7.0000000 | 7 |
| prob | numeric | p100 | .all | 10.0000000 | 10 |
| prob | numeric | hist | .all | NA | ▂▂▂▇▃▃▂▁ |
| match_es | numeric | missing | .all | 460.0000000 | 460 |
| match_es | numeric | complete | .all | 4458.0000000 | 4458 |
| match_es | numeric | n | .all | 4918.0000000 | 4918 |
| match_es | numeric | mean | .all | 3.1689771 | 3.17 |
| match_es | numeric | sd | .all | 2.3628158 | 2.36 |
| match_es | numeric | p0 | .all | 0.0000000 | 0 |
| match_es | numeric | p25 | .all | 2.0000000 | 2 |
| match_es | numeric | p50 | .all | 3.0000000 | 3 |
| match_es | numeric | p75 | .all | 4.0000000 | 4 |
| match_es | numeric | p100 | .all | 10.0000000 | 10 |
| match_es | numeric | hist | .all | NA | ▇▇▆▇▁▁▁▂ |
| attr3_s | logical | missing | .all | 4918.0000000 | 4918 |
| attr3_s | logical | complete | .all | 0.0000000 | 0 |
| attr3_s | logical | n | .all | 4918.0000000 | 4918 |
| attr3_s | logical | mean | .all | NaN | NaN |
| attr3_s | logical | count | NA | 4918.0000000 | 4918 |
| sinc3_s | logical | missing | .all | 4918.0000000 | 4918 |
| sinc3_s | logical | complete | .all | 0.0000000 | 0 |
| sinc3_s | logical | n | .all | 4918.0000000 | 4918 |
| sinc3_s | logical | mean | .all | NaN | NaN |
| sinc3_s | logical | count | NA | 4918.0000000 | 4918 |
| intel3_s | logical | missing | .all | 4918.0000000 | 4918 |
| intel3_s | logical | complete | .all | 0.0000000 | 0 |
| intel3_s | logical | n | .all | 4918.0000000 | 4918 |
| intel3_s | logical | mean | .all | NaN | NaN |
| intel3_s | logical | count | NA | 4918.0000000 | 4918 |
| fun3_s | logical | missing | .all | 4918.0000000 | 4918 |
| fun3_s | logical | complete | .all | 0.0000000 | 0 |
| fun3_s | logical | n | .all | 4918.0000000 | 4918 |
| fun3_s | logical | mean | .all | NaN | NaN |
| fun3_s | logical | count | NA | 4918.0000000 | 4918 |
| amb3_s | logical | missing | .all | 4918.0000000 | 4918 |
| amb3_s | logical | complete | .all | 0.0000000 | 0 |
| amb3_s | logical | n | .all | 4918.0000000 | 4918 |
| amb3_s | logical | mean | .all | NaN | NaN |
| amb3_s | logical | count | NA | 4918.0000000 | 4918 |
| dec | character | missing | .all | 0.0000000 | 0 |
| dec | character | complete | .all | 4918.0000000 | 4918 |
| dec | character | n | .all | 4918.0000000 | 4918 |
| dec | character | min | .all | 2.0000000 | 2 |
| dec | character | max | .all | 3.0000000 | 3 |
| dec | character | empty | .all | 0.0000000 | 0 |
| dec | character | n_unique | .all | 2.0000000 | 2 |
| match | numeric | missing | .all | 0.0000000 | 0 |
| match | numeric | complete | .all | 4918.0000000 | 4918 |
| match | numeric | n | .all | 4918.0000000 | 4918 |
| match | numeric | mean | .all | 0.4158194 | 0.42 |
| match | numeric | sd | .all | 0.4929128 | 0.49 |
| match | numeric | p0 | .all | 0.0000000 | 0 |
| match | numeric | p25 | .all | 0.0000000 | 0 |
| match | numeric | p50 | .all | 0.0000000 | 0 |
| match | numeric | p75 | .all | 1.0000000 | 1 |
| match | numeric | p100 | .all | 1.0000000 | 1 |
| match | numeric | hist | .all | NA | ▇▁▁▁▁▁▁▆ |
As seguintes variáveis irão ser utilizadas na regressão:
- prob: Representa a probabilidade de que uma pessoa p1 acha que outra pessoa p2 irá querer lhe encontrar novamente.
- attr: Representa o quanto uma pessoa p1 achou outra pessoa p2 atraente.
- like: Representa o quanto uma pessoa p1 gostou de outra pessoa p2.
- int_corr: Representa a correlação de interesses entre duas pessoas p1 e p2.
- intel: Representa o quanto uma pessoa p1 achou outra pessoa p2 inteligente.
mod <- glm(match ~ prob+attr+like+int_corr+intel,
data = data,
family = "binomial")
tidy(mod, conf.int = TRUE, exponentiate = TRUE)| term | estimate | std.error | statistic | p.value | conf.low | conf.high |
|---|---|---|---|---|---|---|
| (Intercept) | 0.0014839 | 0.2548753 | -25.5540040 | 0.0000000 | 0.0008942 | 0.0024290 |
| prob | 1.1992670 | 0.0202251 | 8.9844159 | 0.0000000 | 1.1528091 | 1.2479521 |
| attr | 1.5313203 | 0.0279984 | 15.2197941 | 0.0000000 | 1.4501031 | 1.6183677 |
| like | 1.9185639 | 0.0363641 | 17.9181153 | 0.0000000 | 1.7879198 | 2.0619117 |
| int_corr | 1.0380300 | 0.1211887 | 0.3079885 | 0.7580911 | 0.8186087 | 1.3165521 |
| intel | 0.8159728 | 0.0302849 | -6.7153597 | 0.0000000 | 0.7687265 | 0.8656521 |
| null.deviance | df.null | logLik | AIC | BIC | deviance | df.residual |
|---|---|---|---|---|---|---|
| 6331.339 | 4637 | -2208.293 | 4428.587 | 4467.239 | 4416.587 | 4632 |
## llh llhNull G2 McFadden r2ML
## -2208.2932637 -3338.8632511 2261.1399748 0.3386093 0.3858553
## r2CU
## 0.5056940
Abaixo teremos um gráfico que mostra o coeficiente esperado para cada umas das variáveis escolhidas para fazer parte do modelo.
tidy(mod, conf.int = TRUE, conf.level = 0.95, exponentiate = TRUE) %>%
filter(term != "(Intercept)") %>%
ggplot(aes(term, estimate, ymin = conf.low, ymax = conf.high)) +
geom_bar(stat = "identity") +
geom_hline(yintercept = 1, colour = "darkred") +
labs(x = "Variáveis Analisadas",
title = "Regressão Logística (Intervalo)",
y = expression("Coeficientes"))Pergunta a ser respondida: Que fatores nos dados têm efeito relevante na chance do casal ter um match? Descreva se os efeitos são positivos ou negativos e sua magnitude.
Ao ser utilizado a regressão múltipla logística usando as variáveis
- prob
- attr
- like
- int_corr
- intel
chegamos ao seguinte modelo:
- p(y)/1-p(y) = 0,0014 + 1,199**prob + 1,531**attr + 1,918**like + 1,038**int_corr + 0,815**intel
Tal modelo explica 33.86% da variância da variável resposta segundo McFadden.
Ao analisarmos o modelo podemos concluir que as seguintes variáveis possuem efeito relevante na chance de um casal dar “match” (IC 95%):
- prob: Possuindo uma relação positiva e relevante com o erro b = [1,152; 1,247];
- like: Possuindo uma relação positiva e bastante relevante com o erro b = [1,787; 2,061];
- attr: Possuindo uma relação positiva e relevante com o erro b = [1,450; 1,618];
As demais variáveis (menos relevantes) são descritas a seguir (IC 95%):
- int_corr:: erro b = [0,818; 1.316];
- intel: erro b = [0,768; 0,865].