packages
install.packages("NHANES")
Warning in install.packages :
cannot open URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.4/PACKAGES.rds': HTTP status was '404 Not Found'
probando la URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.4/NHANES_2.1.0.tgz'
Content type 'application/x-gzip' length 1727490 bytes (1.6 MB)
==================================================
downloaded 1.6 MB
tar: Failed to set default locale
The downloaded binary packages are in
/var/folders/kk/vxjkvtsx4w13nnvfz58fmly40000gn/T//RtmpwEXFo3/downloaded_packages
Apuntes
#Graficos honestos
#maximizar la informacion y disminuir la tinta
#organizar de manera jerarquica
#distribucion - Histogramas
#comparar - barras (+de 6 categorias en horizontal), boxplot
#cambios - en el tiempo un mapeo, lineales,
#asociaciĂ³n - dispersiĂ³n
veo los nombres de columna
names(NHANES)
el summary de los datos
summary(NHANES)
analisis exploratorio
table(NHANES$Race1,NHANES$Gender)
female male
Black 614 583
Hispanic 320 290
Mexican 452 563
White 3221 3151
Other 413 393
test chi-2
chisq.test(table(NHANES$Race1,NHANES$Gender))
Pearson's Chi-squared test
data: table(NHANES$Race1, NHANES$Gender)
X-squared = 15.523, df = 4, p-value = 0.003731
Graficas para distribuciĂ³n de datos


graficas para comparar (relevel de pack forcats para ordenar los ejes)

library("forcats")
table(NHANES$Gender,NHANES$SleepTrouble)
No Yes
female 2789 1164
male 3010 809

filter(is.na(#la base de datos$la variable)) para sacar los N.A de las graficas
LS0tCnRpdGxlOiAiQ3Vyc28gYW7DoWxpc2lzIGRlIGRhdG9zIERyIFVyaWJlIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKaW5zdGFsbC5wYWNrYWdlcygiTkhBTkVTIikKbGlicmFyeSgiTkhBTkVTIikKYGBgCiNBcHVudGVzCmBgYHtyfQojR3JhZmljb3MgaG9uZXN0b3MgCiNtYXhpbWl6YXIgbGEgaW5mb3JtYWNpb24geSBkaXNtaW51aXIgbGEgdGludGEKI29yZ2FuaXphciBkZSBtYW5lcmEgamVyYXJxdWljYQojZGlzdHJpYnVjaW9uIC0gSGlzdG9ncmFtYXMgIAojY29tcGFyYXIgLSBiYXJyYXMgKCtkZSA2IGNhdGVnb3JpYXMgZW4gaG9yaXpvbnRhbCksIGJveHBsb3QKI2NhbWJpb3MgLSBlbiBlbCB0aWVtcG8gdW4gbWFwZW8sIGxpbmVhbGVzLCAKI2Fzb2NpYWNpw7NuIC0gZGlzcGVyc2nDs24KYGBgCiNkYXRvcwpgYGB7cn0KZGF0YSgiTkhBTkVTIikKYGBgCiN2ZXIgZGF0b3MKYGBge3J9ClZpZXcoTkhBTkVTKQpgYGAKI3ZlbyBsb3Mgbm9tYnJlcyBkZSBjb2x1bW5hIApgYGB7cn0KbmFtZXMoTkhBTkVTKQpgYGAKI3ZlbyBsYSBkaXN0cmlidWNpb24gZGUgbGEgaW5mb3JtYWNpb24KYGBge3J9CmdsaW1wc2UoTkhBTkVTKSAjaW50LSBpbnRlZ3JvCiNmY3RyLWZhY3RvciAKI2FibCAtIG51bWVybyBubyBpbnRlZ3JvCmBgYAojZWwgc3VtbWFyeSBkZSBsb3MgZGF0b3MgCmBgYHtyfQpzdW1tYXJ5KE5IQU5FUykKYGBgCiNhbmFsaXNpcyBleHBsb3JhdG9yaW8KYGBge3J9CnRhYmxlKE5IQU5FUyRSYWNlMSxOSEFORVMkR2VuZGVyKQpgYGAKI3Rlc3QgY2hpLTIKYGBge3J9CmNoaXNxLnRlc3QodGFibGUoTkhBTkVTJFJhY2UxLE5IQU5FUyRHZW5kZXIpKQpgYGAKI2NhYmV6YSBkZSBsb3MgZmlsYXMKYGBge3J9CmhlYWQoTkhBTkVTKQpgYGAKI2NvbGFzIGRlIGxhcyBmaWxhcwpgYGB7cn0KdGFpbChOSEFORVMpCmBgYAojR3JhZmljb3MKYGBge3J9CiNxdcOpIG5lY2VzaXRvIHBhcmEgZ3JhZmljYXMgPz9kYXRvcyAsIHNldCBkZSBlamVzLCByZXByZXNlbnRhY2lvbiBlc3RldGljYSAKTkhBTkVTICU+JSAKICBnZ3Bsb3QoYWVzKHg9QWdlLCB5PUhlaWdodCwgY29sb3I9R2VuZGVyLCBzaGFwZT1EaWFiZXRlcykpKwogIGdlb21fcG9pbnQoKQpgYGAKYGBge3J9Ck5IQU5FUyAlPiUgCiAgZ2dwbG90KGFlcyh4PUJNSSwgeT1QdWxzZSwgY29sb3I9R2VuZGVyLCBzaGFwZT1EaWFiZXRlcykpKwogIGdlb21fcG9pbnQoKSsKICBmYWNldF93cmFwKH5EaWFiZXRlcykKICAKYGBgCmBgYHtyfQpOSEFORVMgJT4lIAogIGdncGxvdChhZXMoeD1IZWFkQ2lyYywgeT1ISEluY29tZU1pZCwgc2hhcGU9R2VuZGVyKSkrCiAgZ2VvbV9wb2ludCgpKwogIGdlb21fc21vb3RoKCkKYGBgCmBgYHtyfQogTkhBTkVTICU+JSAKICBnZ3Bsb3QoYWVzKHg9Qk1JLCB5PVNsZWVwSHJzTmlnaHQpKSsKICBnZW9tX3BvaW50KCkrCiAgZ2VvbV9zbW9vdGgoKQpgYGAKI0dyYWZpY2FzIHBhcmEgZGlzdHJpYnVjacOzbiBkZSBkYXRvcwpgYGB7cn0KTkhBTkVTICU+JSAgCmZpbHRlcihEaWFiZXRlcyA9PSJZZXMiKSAlPiUgICAjc2kgcXVpZXJvIGFncmVnYXIgb3RyYSBjb2xvY28gJAogIGdncGxvdChhZXMoeD1BZ2UpKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlucyA9IDEwKSsKICBmYWNldF93cmFwKERpYWJldGVzfkdlbmRlcikKYGBgCgpgYGB7cn0KTkhBTkVTICU+JSAKICBmaWx0ZXIoRGlhYmV0ZXMgJWluJSBjKCJZZXMiLCJObyIpKSAlPiUgCiAgZ2dwbG90KGFlcyh4PUJNSSkpKwogIGdlb21faGlzdG9ncmFtKCkrCiAgZmFjZXRfZ3JpZChSYWNlMX5EaWFiZXRlcykKYGBgCiNncmFmaWNhcyBwYXJhIGNvbXBhcmFyIChyZWxldmVsIGRlIHBhY2sgZm9yY2F0cyBwYXJhIG9yZGVuYXIgbG9zIGVqZXMpCmBgYHtyfQpOSEFORVMgJT4lIAogIGdncGxvdChhZXMoeD1FZHVjYXRpb24sIHk9IEhISW5jb21lTWlkKSkrCiAgZ2VvbV9ib3hwbG90KCkgCmBgYApgYGB7cn0KbGlicmFyeSgiZm9yY2F0cyIpCmBgYApgYGB7cn0KdGFibGUoTkhBTkVTJEdlbmRlcixOSEFORVMkU2xlZXBUcm91YmxlKQpgYGAKCgpgYGB7cn0KbW9zYWljcGxvdCh0YWJsZShOSEFORVMkR2VuZGVyLE5IQU5FUyRTbGVlcFRyb3VibGUpLCBzaGFkZSA9IFQpCmBgYAoKYGBge3J9CmZpbHRlcihpcy5uYSgjbGEgYmFzZSBkZSBkYXRvcyRsYSB2YXJpYWJsZSkpIHBhcmEgc2FjYXIgbG9zIE4uQSBkZSBsYXMgZ3JhZmljYXMgCmBgYAoK