packages

install.packages("NHANES")
Warning in install.packages :
  cannot open URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.4/PACKAGES.rds': HTTP status was '404 Not Found'
probando la URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.4/NHANES_2.1.0.tgz'
Content type 'application/x-gzip' length 1727490 bytes (1.6 MB)
==================================================
downloaded 1.6 MB

tar: Failed to set default locale

The downloaded binary packages are in
    /var/folders/kk/vxjkvtsx4w13nnvfz58fmly40000gn/T//RtmpwEXFo3/downloaded_packages

Apuntes

#Graficos honestos 
#maximizar la informacion y disminuir la tinta
#organizar de manera jerarquica
#distribucion - Histogramas  
#comparar - barras (+de 6 categorias en horizontal), boxplot
#cambios - en el tiempo un mapeo, lineales, 
#asociaciĂ³n - dispersiĂ³n

datos

data("NHANES")

ver datos

View(NHANES)

veo los nombres de columna

names(NHANES)

veo la distribucion de la informacion

glimpse(NHANES) #int- integro
#fctr-factor 
#abl - numero no integro

el summary de los datos

summary(NHANES)

analisis exploratorio

table(NHANES$Race1,NHANES$Gender)
          
           female male
  Black       614  583
  Hispanic    320  290
  Mexican     452  563
  White      3221 3151
  Other       413  393

test chi-2

chisq.test(table(NHANES$Race1,NHANES$Gender))

    Pearson's Chi-squared test

data:  table(NHANES$Race1, NHANES$Gender)
X-squared = 15.523, df = 4, p-value = 0.003731

cabeza de los filas

colas de las filas

Graficos

Graficas para distribuciĂ³n de datos

graficas para comparar (relevel de pack forcats para ordenar los ejes)

library("forcats")
table(NHANES$Gender,NHANES$SleepTrouble)
        
           No  Yes
  female 2789 1164
  male   3010  809

filter(is.na(#la base de datos$la variable)) para sacar los N.A de las graficas 
LS0tCnRpdGxlOiAiQ3Vyc28gYW7DoWxpc2lzIGRlIGRhdG9zIERyIFVyaWJlIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKaW5zdGFsbC5wYWNrYWdlcygiTkhBTkVTIikKbGlicmFyeSgiTkhBTkVTIikKYGBgCiNBcHVudGVzCmBgYHtyfQojR3JhZmljb3MgaG9uZXN0b3MgCiNtYXhpbWl6YXIgbGEgaW5mb3JtYWNpb24geSBkaXNtaW51aXIgbGEgdGludGEKI29yZ2FuaXphciBkZSBtYW5lcmEgamVyYXJxdWljYQojZGlzdHJpYnVjaW9uIC0gSGlzdG9ncmFtYXMgIAojY29tcGFyYXIgLSBiYXJyYXMgKCtkZSA2IGNhdGVnb3JpYXMgZW4gaG9yaXpvbnRhbCksIGJveHBsb3QKI2NhbWJpb3MgLSBlbiBlbCB0aWVtcG8gdW4gbWFwZW8sIGxpbmVhbGVzLCAKI2Fzb2NpYWNpw7NuIC0gZGlzcGVyc2nDs24KYGBgCiNkYXRvcwpgYGB7cn0KZGF0YSgiTkhBTkVTIikKYGBgCiN2ZXIgZGF0b3MKYGBge3J9ClZpZXcoTkhBTkVTKQpgYGAKI3ZlbyBsb3Mgbm9tYnJlcyBkZSBjb2x1bW5hIApgYGB7cn0KbmFtZXMoTkhBTkVTKQpgYGAKI3ZlbyBsYSBkaXN0cmlidWNpb24gZGUgbGEgaW5mb3JtYWNpb24KYGBge3J9CmdsaW1wc2UoTkhBTkVTKSAjaW50LSBpbnRlZ3JvCiNmY3RyLWZhY3RvciAKI2FibCAtIG51bWVybyBubyBpbnRlZ3JvCmBgYAojZWwgc3VtbWFyeSBkZSBsb3MgZGF0b3MgCmBgYHtyfQpzdW1tYXJ5KE5IQU5FUykKYGBgCiNhbmFsaXNpcyBleHBsb3JhdG9yaW8KYGBge3J9CnRhYmxlKE5IQU5FUyRSYWNlMSxOSEFORVMkR2VuZGVyKQpgYGAKI3Rlc3QgY2hpLTIKYGBge3J9CmNoaXNxLnRlc3QodGFibGUoTkhBTkVTJFJhY2UxLE5IQU5FUyRHZW5kZXIpKQpgYGAKI2NhYmV6YSBkZSBsb3MgZmlsYXMKYGBge3J9CmhlYWQoTkhBTkVTKQpgYGAKI2NvbGFzIGRlIGxhcyBmaWxhcwpgYGB7cn0KdGFpbChOSEFORVMpCmBgYAojR3JhZmljb3MKYGBge3J9CiNxdcOpIG5lY2VzaXRvIHBhcmEgZ3JhZmljYXMgPz9kYXRvcyAsIHNldCBkZSBlamVzLCByZXByZXNlbnRhY2lvbiBlc3RldGljYSAKTkhBTkVTICU+JSAKICBnZ3Bsb3QoYWVzKHg9QWdlLCB5PUhlaWdodCwgY29sb3I9R2VuZGVyLCBzaGFwZT1EaWFiZXRlcykpKwogIGdlb21fcG9pbnQoKQpgYGAKYGBge3J9Ck5IQU5FUyAlPiUgCiAgZ2dwbG90KGFlcyh4PUJNSSwgeT1QdWxzZSwgY29sb3I9R2VuZGVyLCBzaGFwZT1EaWFiZXRlcykpKwogIGdlb21fcG9pbnQoKSsKICBmYWNldF93cmFwKH5EaWFiZXRlcykKICAKYGBgCmBgYHtyfQpOSEFORVMgJT4lIAogIGdncGxvdChhZXMoeD1IZWFkQ2lyYywgeT1ISEluY29tZU1pZCwgc2hhcGU9R2VuZGVyKSkrCiAgZ2VvbV9wb2ludCgpKwogIGdlb21fc21vb3RoKCkKYGBgCmBgYHtyfQogTkhBTkVTICU+JSAKICBnZ3Bsb3QoYWVzKHg9Qk1JLCB5PVNsZWVwSHJzTmlnaHQpKSsKICBnZW9tX3BvaW50KCkrCiAgZ2VvbV9zbW9vdGgoKQpgYGAKI0dyYWZpY2FzIHBhcmEgZGlzdHJpYnVjacOzbiBkZSBkYXRvcwpgYGB7cn0KTkhBTkVTICU+JSAgCmZpbHRlcihEaWFiZXRlcyA9PSJZZXMiKSAlPiUgICAjc2kgcXVpZXJvIGFncmVnYXIgb3RyYSBjb2xvY28gJAogIGdncGxvdChhZXMoeD1BZ2UpKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlucyA9IDEwKSsKICBmYWNldF93cmFwKERpYWJldGVzfkdlbmRlcikKYGBgCgpgYGB7cn0KTkhBTkVTICU+JSAKICBmaWx0ZXIoRGlhYmV0ZXMgJWluJSBjKCJZZXMiLCJObyIpKSAlPiUgCiAgZ2dwbG90KGFlcyh4PUJNSSkpKwogIGdlb21faGlzdG9ncmFtKCkrCiAgZmFjZXRfZ3JpZChSYWNlMX5EaWFiZXRlcykKYGBgCiNncmFmaWNhcyBwYXJhIGNvbXBhcmFyIChyZWxldmVsIGRlIHBhY2sgZm9yY2F0cyBwYXJhIG9yZGVuYXIgbG9zIGVqZXMpCmBgYHtyfQpOSEFORVMgJT4lIAogIGdncGxvdChhZXMoeD1FZHVjYXRpb24sIHk9IEhISW5jb21lTWlkKSkrCiAgZ2VvbV9ib3hwbG90KCkgCmBgYApgYGB7cn0KbGlicmFyeSgiZm9yY2F0cyIpCmBgYApgYGB7cn0KdGFibGUoTkhBTkVTJEdlbmRlcixOSEFORVMkU2xlZXBUcm91YmxlKQpgYGAKCgpgYGB7cn0KbW9zYWljcGxvdCh0YWJsZShOSEFORVMkR2VuZGVyLE5IQU5FUyRTbGVlcFRyb3VibGUpLCBzaGFkZSA9IFQpCmBgYAoKYGBge3J9CmZpbHRlcihpcy5uYSgjbGEgYmFzZSBkZSBkYXRvcyRsYSB2YXJpYWJsZSkpIHBhcmEgc2FjYXIgbG9zIE4uQSBkZSBsYXMgZ3JhZmljYXMgCmBgYAoK