Preliminaries for analysis.

library(tidyverse)
## ── Attaching packages ──────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0     ✔ purrr   0.2.5
## ✔ tibble  1.4.2     ✔ dplyr   0.7.8
## ✔ tidyr   0.8.1     ✔ stringr 1.3.1
## ✔ readr   1.1.1     ✔ forcats 0.3.0
## ── Conflicts ─────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(here)
## here() starts at /Users/mcfrank/Projects/multirmts
library(langcog)
## 
## Attaching package: 'langcog'
## The following object is masked from 'package:base':
## 
##     scale

Now load data.

d_raw <- read_csv(here("data/RMTS.csv"))
## Parsed with column specification:
## cols(
##   subject = col_character(),
##   same_1 = col_integer(),
##   same_2 = col_integer(),
##   same_3 = col_integer(),
##   diff_1 = col_integer(),
##   diff_2 = col_integer(),
##   diff_3 = col_integer(),
##   `Hesitation (trial numbers)` = col_character(),
##   `Left/Right Bias` = col_character(),
##   guessing = col_character(),
##   FirstBlock = col_character(),
##   RulePreseveration = col_integer(),
##   SameAvg = col_double(),
##   DiffAvg = col_double(),
##   `explanation?` = col_character(),
##   `general notes` = col_character()
## )

Reformat to long format.

d <- d_raw %>%
  filter(!is.na(subject)) %>%
  select(-`Hesitation (trial numbers)`, -`Left/Right Bias`, -guessing, 
         -SameAvg, -DiffAvg, -`general notes`,
         -RulePreseveration, -`explanation?`) %>%
  gather(trial_type, correct, same_1:diff_3) %>%
  separate(trial_type, c("trial_type", "trial_num"))

By trial type.

ms <- d %>%
  group_by(trial_type) %>%
  multi_boot_standard(col = "correct", na.rm = TRUE)

ggplot(ms, 
       aes(x = trial_type, y = mean, col = trial_type)) + 
  geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) + 
  ylim(0,1) + 
  ylab("Proportion correct") + 
  xlab("Trial type") + 
  geom_hline(yintercept = .5, lty = 2)  +
  theme_classic() + 
  ggthemes::scale_color_solarized() + 
  theme(legend.position = "bottom")

By trial type and trial number.

ms <- d %>%
  group_by(trial_type, trial_num) %>%
  multi_boot_standard(col = "correct", na.rm = TRUE)

ggplot(ms, 
       aes(x = trial_num, y = mean, col = trial_type)) + 
  geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper), 
                  position = position_dodge(width = .1)) + 
  geom_line(aes(group = trial_type)) + 
  ylim(0,1) + 
  ylab("Proportion correct") + 
  xlab("Trial type") + 
  geom_hline(yintercept = .5, lty = 2) +
  theme_classic() + 
  ggthemes::scale_color_solarized() + 
  theme(legend.position = "bottom")