Initial Visualization

##install.packages("hexbin")
library(hexbin)
ggplot(diamonds, aes(cut,price)) + geom_boxplot()

ggplot(diamonds, aes(color,price)) + geom_boxplot()

ggplot(diamonds, aes(clarity,price)) + geom_boxplot()

ggplot(diamonds, aes(carat, price)) +
  geom_hex(bins=50)

Subset Data and replot

diamonds2 <- diamonds %>%
  filter(carat <= 2.5)  %>%
  mutate(lprice = log2(price), lcarat = log2(carat))

ggplot(diamonds2, aes(lcarat, lprice)) +
  geom_hex(bins=50)

Simple model and visualization

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)

grid <- diamonds2 %>%
  data_grid(carat = seq_range(carat, 20)) %>%
  mutate(lcarat = log2(carat)) %>%
  add_predictions(mod_diamond, "lprice") %>%
  mutate(price = 2 ^ lprice)

ggplot(diamonds2, aes(carat, price)) +
  geom_hex(bins = 50) +
  geom_line(data = grid, color = "green", size = 1)

Add residuals and plot

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond, "lresid")

ggplot(diamonds2, aes(lcarat, lresid)) +
  geom_hex(bins = 50)

ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()

ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()

Four parameter model and visualization

mod_diamond2 <- lm(
  lprice ~ lcarat + color + cut + clarity, diamonds2
)

grid <- diamonds2 %>%
  data_grid(cut, .model = mod_diamond2) %>%
  add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
##   cut       lcarat color clarity  pred
##   <ord>      <dbl> <chr> <chr>   <dbl>
## 1 Fair      -0.515 G     VS2      11.2
## 2 Good      -0.515 G     VS2      11.3
## 3 Very Good -0.515 G     VS2      11.4
## 4 Premium   -0.515 G     VS2      11.4
## 5 Ideal     -0.515 G     VS2      11.4
ggplot(grid, aes(cut, pred)) +
  geom_point()

Plot residuals of four parameter model

diamonds2 <- diamonds2 %>%
  add_residuals(mod_diamond2, "lresid2")

ggplot(diamonds2, aes(lcarat, lresid2)) +
  geom_hex(bins = 50)

diamonds2 %>%
  filter(abs(lresid2) > 1) %>%
  add_predictions(mod_diamond2) %>%
  mutate(pred = round(2^pred)) %>%
  select(price, pred, carat:table, x:z) %>%
  arrange(price)
## # A tibble: 16 x 11
##    price  pred carat cut       color clarity depth table     x     y     z
##    <int> <dbl> <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  1013   264 0.25  Fair      F     SI2      54.4    64  4.3   4.23  2.32
##  2  1186   284 0.25  Premium   G     SI2      59      60  5.33  5.28  3.12
##  3  1186   284 0.25  Premium   G     SI2      58.8    60  5.33  5.28  3.12
##  4  1262  2644 1.03  Fair      E     I1       78.2    54  5.72  5.59  4.42
##  5  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  6  1415   639 0.35  Fair      G     VS2      65.9    54  5.57  5.53  3.66
##  7  1715   576 0.32  Fair      F     VS2      59.6    60  4.42  4.34  2.61
##  8  1776   412 0.290 Fair      F     SI1      55.8    60  4.48  4.41  2.48
##  9  2160   314 0.34  Fair      F     I1       55.8    62  4.72  4.6   2.6 
## 10  2366   774 0.3   Very Good D     VVS2     60.6    58  4.33  4.35  2.63
## 11  3360  1373 0.51  Premium   F     SI1      62.7    62  5.09  4.96  3.15
## 12  3807  1540 0.61  Good      F     SI2      62.5    65  5.36  5.29  3.33
## 13  3920  1705 0.51  Fair      F     VVS2     65.4    60  4.98  4.9   3.23
## 14  4368  1705 0.51  Fair      F     VVS2     60.7    66  5.21  5.11  3.13
## 15 10011  4048 1.01  Fair      D     SI2      64.6    58  6.25  6.2   4.02
## 16 10470 23622 2.46  Premium   E     SI2      59.7    59  8.82  8.76  5.25

Question #1

In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?

##Answer: Brighter strps represent higher counts. Therefore, based on the plot of lcarat and lprice, besides the positive relationship between carat and price, there are some specific combinations of carat and price that are popular among customers.

Question #2

If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?

##Answer: It says that carat and price does not have a linear relationship, but there is a linear relationship between log price and log carat.

Question #3

Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?

##Answer: There are indeed something usual about these diamonds that have very high and very low residuals. The price for these diamonds are either estremely low (i.e.2571 for 1.30 carat) or extremely high (i.e.18542 for 1.0 carat). I do not think these are pricing errors, because the price is also impacted factors that are not included in the model, i.e. brand.

# Use this chunk to place your code for extracting the high and low residuals

summary(diamonds2$lresid)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -1.964068 -0.245488 -0.008442  0.000000  0.239301  1.934855
extreme_high <- diamonds2 %>% filter(lresid > 1.5 )
extreme_low <- diamonds2 %>% filter(lresid < -1.5 )

extreme_high
## # A tibble: 38 x 14
##    carat cut   color clarity depth table price     x     y     z lprice
##    <dbl> <ord> <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>  <dbl>
##  1  0.51 Fair  F     VVS2     60.7    66  4368  5.21  5.11  3.13   12.1
##  2  0.63 Ideal D     IF       62.5    55  6549  5.47  5.5   3.43   12.7
##  3  0.63 Ideal D     IF       62.5    55  6607  5.5   5.47  3.43   12.7
##  4  1.04 Ideal D     IF       61.8    57 14494  6.49  6.52  4.02   13.8
##  5  1    Ideal D     VVS1     60.7    56 14498  6.47  6.54  3.95   13.8
##  6  1.04 Ideal D     IF       61.8    57 14626  6.52  6.49  4.02   13.8
##  7  1.01 Good  D     IF       63.2    59 15081  6.34  6.38  4.02   13.9
##  8  1.01 Good  D     IF       63.4    59 15081  6.26  6.39  4.01   13.9
##  9  1.01 Very… D     IF       63.4    59 15219  6.39  6.26  4.01   13.9
## 10  1.02 Prem… D     IF       61.5    60 15231  6.45  6.52  3.99   13.9
## # … with 28 more rows, and 3 more variables: lcarat <dbl>, lresid <dbl>,
## #   lresid2 <dbl>
extreme_low
## # A tibble: 21 x 14
##    carat cut   color clarity depth table price     x     y     z lprice
##    <dbl> <ord> <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>  <dbl>
##  1  1.5  Fair  H     I1       65.6    54  2964  7.26  7.09  4.7    11.5
##  2  1.52 Good  E     I1       57.3    58  3105  7.53  7.42  4.28   11.6
##  3  1.52 Good  E     I1       57.3    58  3105  7.53  7.42  4.28   11.6
##  4  1.5  Fair  H     I1       69.3    61  3175  6.99  6.81  4.78   11.6
##  5  1.5  Good  G     I1       57.4    62  3179  7.56  7.39  4.29   11.6
##  6  1.95 Prem… H     I1       60.3    59  5045  8.1   8.05  4.87   12.3
##  7  2    Prem… J     I1       61.5    59  5051  8.11  8.06  4.97   12.3
##  8  2.06 Prem… J     I1       61.2    58  5203  8.1   8.07  4.95   12.3
##  9  2.14 Fair  J     I1       69.4    57  5405  7.74  7.7   5.36   12.4
## 10  2.15 Fair  J     I1       65.5    57  5430  8.01  7.95  5.23   12.4
## # … with 11 more rows, and 3 more variables: lcarat <dbl>, lresid <dbl>,
## #   lresid2 <dbl>

Question #4

Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?

##Answer: Based on the adjusted r square (i.e.0.98), this model does a good job of predicting diamond prices. Given the Pr(>|t|) for most of the variables are below 0.05, i would use this model as a general guide when purchasing dismonds. However, i would not solely depend on the model, because there are also other factors impactig diamond price that might not be captured in the model.

# Use this chunk to place your code for assessing how well the model predicts diamond prices
summary(mod_diamond2)
## 
## Call:
## lm(formula = lprice ~ lcarat + color + cut + clarity, data = diamonds2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.17388 -0.12437 -0.00094  0.11920  2.78322 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|)    
## (Intercept) 12.206978   0.001693 7211.806  < 2e-16 ***
## lcarat       1.886239   0.001124 1677.809  < 2e-16 ***
## color.L     -0.633998   0.002910 -217.872  < 2e-16 ***
## color.Q     -0.137580   0.002676  -51.409  < 2e-16 ***
## color.C     -0.022072   0.002503   -8.819  < 2e-16 ***
## color^4      0.016570   0.002297    7.213 5.54e-13 ***
## color^5     -0.002828   0.002169   -1.304    0.192    
## color^6      0.003533   0.001971    1.793    0.073 .  
## cut.L        0.173866   0.003386   51.349  < 2e-16 ***
## cut.Q       -0.050346   0.002980  -16.897  < 2e-16 ***
## cut.C        0.019129   0.002583    7.407 1.31e-13 ***
## cut^4       -0.002410   0.002066   -1.166    0.243    
## clarity.L    1.308155   0.005179  252.598  < 2e-16 ***
## clarity.Q   -0.334090   0.004839  -69.047  < 2e-16 ***
## clarity.C    0.178423   0.004140   43.093  < 2e-16 ***
## clarity^4   -0.088059   0.003298  -26.697  < 2e-16 ***
## clarity^5    0.035885   0.002680   13.389  < 2e-16 ***
## clarity^6   -0.001371   0.002327   -0.589    0.556    
## clarity^7    0.048221   0.002051   23.512  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1916 on 53795 degrees of freedom
## Multiple R-squared:  0.9828, Adjusted R-squared:  0.9828 
## F-statistic: 1.706e+05 on 18 and 53795 DF,  p-value: < 2.2e-16