#######################
##### Cid Edson #######
#######################
Gabriel
bw_ps <- list(
plot.symbol = list(col = 1),
box.dot = list(pch = "|"),
box.umbrella = list(col = 1, lty = 1),
box.rectangle = list(col = 1, fill = "seagreen")
)
dados <- read_excel("brutos.xlsx")
dados$planta <- factor(dados$planta,
c("P1G5", "P2G5", "P3G5", "P1G4", "P2G4", "P3G4"))
bwplot(
area.cm ~ planta,
dados,
ylab = "AFR (cm²)",
aspect = "fill",
main = "Plantas",
do.out = FALSE,
par.settings = bw_ps
)

bwplot(
area.cm ~ genotipo,
dados,
ylab = "AFR (cm²)",
aspect = "fill",
main = "Genotipo",
do.out = FALSE,
par.settings = bw_ps
)

g5 <- subset(dados, planta %in% c("P1G5", "P2G5", "P3G5"))
g4 <- subset(dados, planta %in% c("P1G4", "P2G4", "P3G4"))
bwplot(
area.cm ~ planta,
g4,
ylab = "AFR (cm²)",
aspect = "fill",
main = "Plantas",
do.out = FALSE,
par.settings = bw_ps
)

bwplot(
area.cm ~ planta,
g5,
ylab = "AFR (cm²)",
aspect = "fill",
main = "Plantas",
do.out = FALSE,
par.settings = bw_ps
)

comp1 <- lm(area.cm ~ comp1.cm + I(comp1.cm ^ 2), dados)
plot(
area.cm ~ comp1.cm,
data = dados,
ylab = "AFR (cm²)",
xlab = "Comprimento",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(comp1, 2)

##
## Call:
## lm(formula = area.cm ~ comp1.cm + I(comp1.cm^2), data = dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.1800 -1.5565 0.0145 1.7650 15.8718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.32627 1.15445 -1.149 0.251
## comp1.cm 0.15373 0.25417 0.605 0.546
## I(comp1.cm^2) 0.38152 0.01312 29.079 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.678 on 560 degrees of freedom
## Multiple R-squared: 0.9769, Adjusted R-squared: 0.9768
## F-statistic: 1.182e+04 on 2 and 560 DF, p-value: < 2.2e-16
larg1 <- lm(area.cm ~ larg1.cm + I(larg1.cm ^ 2), dados)
plot(
area.cm ~ larg1.cm,
data = dados,
ylab = "AFR (cm²)",
xlab = "Largura",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(larg1, 2)

##
## Call:
## lm(formula = area.cm ~ larg1.cm + I(larg1.cm^2), data = dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.2725 -1.5126 -0.0517 1.5862 15.6815
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.05492 0.87445 0.063 0.9499
## larg1.cm 0.84337 0.40057 2.105 0.0357 *
## I(larg1.cm^2) 1.42866 0.04271 33.451 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.406 on 560 degrees of freedom
## Multiple R-squared: 0.9802, Adjusted R-squared: 0.9801
## F-statistic: 1.383e+04 on 2 and 560 DF, p-value: < 2.2e-16
comp2 <- lm(area.cm ~ comp2.cm + I(comp2.cm ^ 2), dados)
plot(
area.cm ~ comp2.cm,
data = dados,
ylab = "AFR (cm²)",
xlab = "Comprimento",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(comp2, 2)

##
## Call:
## lm(formula = area.cm ~ comp2.cm + I(comp2.cm^2), data = dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.9155 -2.4601 -0.6251 2.3301 28.4228
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03888 1.49553 -0.026 0.979
## comp2.cm 0.21659 0.30674 0.706 0.480
## I(comp2.cm^2) 0.30967 0.01466 21.128 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.008 on 560 degrees of freedom
## Multiple R-squared: 0.9571, Adjusted R-squared: 0.957
## F-statistic: 6249 on 2 and 560 DF, p-value: < 2.2e-16
larg2 <- lm(area.cm ~ larg2.cm + I(larg2.cm ^ 2), dados)
plot(
area.cm ~ larg2.cm,
data = dados,
ylab = "AFR (cm²)",
xlab = "Largura",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(larg2, 2)

##
## Call:
## lm(formula = area.cm ~ larg2.cm + I(larg2.cm^2), data = dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -121.809 -2.959 -0.343 2.797 36.461
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.68529 1.99567 -5.855 8.12e-09 ***
## larg2.cm 7.93674 0.88767 8.941 < 2e-16 ***
## I(larg2.cm^2) 0.53157 0.09192 5.783 1.22e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.333 on 560 degrees of freedom
## Multiple R-squared: 0.8812, Adjusted R-squared: 0.8808
## F-statistic: 2078 on 2 and 560 DF, p-value: < 2.2e-16
rlcl2 <- lm(area.cm ~ c2xl2, dados)
plot(
area.cm ~ c2xl2,
data = dados,
ylab = "AFR (cm²)",
xlab = "Comprimento x Largura",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(rlcl2)

##
## Call:
## lm(formula = area.cm ~ c2xl2, data = dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.5653 -1.3403 -0.2471 1.1636 25.4951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.096686 0.226638 4.839 1.69e-06 ***
## c2xl2 0.703648 0.003783 186.000 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.052 on 561 degrees of freedom
## Multiple R-squared: 0.984, Adjusted R-squared: 0.984
## F-statistic: 3.46e+04 on 1 and 561 DF, p-value: < 2.2e-16
t.dados <- dados[, c(2, 4, 7, 8, 9, 13, 14, 15)]
round(cor(t.dados[2:8]), 5) %>% kable
| area.cm |
1.00000 |
0.97054 |
0.96980 |
1.00000 |
0.96069 |
0.93496 |
0.99199 |
| comp1.cm |
0.97054 |
1.00000 |
0.96215 |
0.97054 |
0.98543 |
0.92391 |
0.96029 |
| larg1.cm |
0.96980 |
0.96215 |
1.00000 |
0.96980 |
0.95052 |
0.96204 |
0.96030 |
| c1xl1 |
1.00000 |
0.97054 |
0.96980 |
1.00000 |
0.96069 |
0.93496 |
0.99199 |
| comp2.cm |
0.96069 |
0.98543 |
0.95052 |
0.96069 |
1.00000 |
0.91120 |
0.96438 |
| larg2.cm |
0.93496 |
0.92391 |
0.96204 |
0.93496 |
0.91120 |
1.00000 |
0.94837 |
| c2xl2 |
0.99199 |
0.96029 |
0.96030 |
0.99199 |
0.96438 |
0.94837 |
1.00000 |
# Análise Geral
n.dados <- dados[, c(2, 4, 17, 20, 23)]
round(cor(n.dados[2:5]), 5) %>% kable
| area.cm |
1.00000 |
0.97828 |
0.99199 |
0.99198 |
| mod.partelli |
0.97828 |
1.00000 |
0.98278 |
0.98277 |
| mod.barros |
0.99199 |
0.98278 |
1.00000 |
0.99999 |
| mod.ant |
0.99198 |
0.98277 |
0.99999 |
1.00000 |
partelli <- lm(area.cm ~ mod.partelli, n.dados)
plot(
area.cm ~ mod.partelli,
data = n.dados,
ylab = "AFR (cm²)",
xlab = "Modelo de Partelli",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(partelli)

##
## Call:
## lm(formula = area.cm ~ mod.partelli, data = n.dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.2582 -2.4650 -0.6044 2.3123 28.1486
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.19354 0.37469 3.185 0.00153 **
## mod.partelli 1.16729 0.01044 111.794 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.007 on 561 degrees of freedom
## Multiple R-squared: 0.957, Adjusted R-squared: 0.957
## F-statistic: 1.25e+04 on 1 and 561 DF, p-value: < 2.2e-16
barros <- lm(area.cm ~ mod.barros, n.dados)
plot(
area.cm ~ mod.barros,
data = n.dados,
ylab = "AFR (cm²)",
xlab = "Modelo de Barros",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(barros)

##
## Call:
## lm(formula = area.cm ~ mod.barros, data = n.dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.5653 -1.3403 -0.2471 1.1636 25.4951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.096686 0.226638 4.839 1.69e-06 ***
## mod.barros 1.054944 0.005672 186.000 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.052 on 561 degrees of freedom
## Multiple R-squared: 0.984, Adjusted R-squared: 0.984
## F-statistic: 3.46e+04 on 1 and 561 DF, p-value: < 2.2e-16
ant <- lm(area.cm ~ mod.ant, n.dados)
plot(
area.cm ~ mod.ant,
data = n.dados,
ylab = "AFR (cm²)",
xlab = "Modelo de Antunes",
main = "Geral",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(ant)

##
## Call:
## lm(formula = area.cm ~ mod.ant, data = n.dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.4967 -1.3755 -0.2706 1.1817 25.4028
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.454754 0.225132 6.462 2.25e-10 ***
## mod.ant 1.001808 0.005388 185.936 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.053 on 561 degrees of freedom
## Multiple R-squared: 0.984, Adjusted R-squared: 0.984
## F-statistic: 3.457e+04 on 1 and 561 DF, p-value: < 2.2e-16
# Genotipo 5
n.g5 <- subset(n.dados, genotipo %in% "G5")
round(cor(n.g5[2:5]), 5) %>% kable
| area.cm |
1.00000 |
0.98087 |
0.99470 |
0.99464 |
| mod.partelli |
0.98087 |
1.00000 |
0.98391 |
0.98396 |
| mod.barros |
0.99470 |
0.98391 |
1.00000 |
0.99999 |
| mod.ant |
0.99464 |
0.98396 |
0.99999 |
1.00000 |
part.g5 <- lm(area.cm ~ mod.partelli, n.g5)
plot(
area.cm ~ mod.partelli,
data = n.g5,
ylab = "AFR (cm²)",
xlab = "Modelo de Partelli",
main = "G5",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(part.g5)

##
## Call:
## lm(formula = area.cm ~ mod.partelli, data = n.g5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.655 -2.512 -0.538 2.351 15.258
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.25558 0.46822 2.682 0.00774 **
## mod.partelli 1.17269 0.01348 86.992 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.405 on 298 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.962
## F-statistic: 7568 on 1 and 298 DF, p-value: < 2.2e-16
barros.g5 <- lm(area.cm ~ mod.barros, n.g5)
plot(
area.cm ~ mod.barros,
data = n.g5,
ylab = "AFR (cm²)",
xlab = "Modelo de Barros",
main = "G5",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(barros.g5)

##
## Call:
## lm(formula = area.cm ~ mod.barros, data = n.g5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.338 -1.186 -0.159 1.083 8.162
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.201309 0.245284 4.898 1.59e-06 ***
## mod.barros 1.050661 0.006294 166.937 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.328 on 298 degrees of freedom
## Multiple R-squared: 0.9894, Adjusted R-squared: 0.9894
## F-statistic: 2.787e+04 on 1 and 298 DF, p-value: < 2.2e-16
ant.g5 <- lm(area.cm ~ mod.ant, n.g5)
plot(
area.cm ~ mod.ant,
data = n.g5,
ylab = "Area em cm²",
xlab = "Modelo de Antunes",
main = "G5",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(ant.g5)

##
## Call:
## lm(formula = area.cm ~ mod.ant, data = n.g5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.2813 -1.1767 -0.1404 1.1236 8.2283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.539787 0.244940 6.286 1.15e-09 ***
## mod.ant 0.998470 0.006014 166.014 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.341 on 298 degrees of freedom
## Multiple R-squared: 0.9893, Adjusted R-squared: 0.9893
## F-statistic: 2.756e+04 on 1 and 298 DF, p-value: < 2.2e-16
# Genotipo 4
n.g4 <- subset(n.dados, genotipo %in% "G4")
round(cor(n.g4[2:5]), 5) %>% kable
| area.cm |
1.00000 |
0.97611 |
0.98963 |
0.98967 |
| mod.partelli |
0.97611 |
1.00000 |
0.98197 |
0.98189 |
| mod.barros |
0.98963 |
0.98197 |
1.00000 |
0.99999 |
| mod.ant |
0.98967 |
0.98189 |
0.99999 |
1.00000 |
part.g4 <- lm(area.cm ~ mod.partelli, n.g4)
plot(
area.cm ~ mod.partelli,
data = n.g4,
ylab = "AFR (cm²)",
xlab = "Modelo de Partelli",
main = "G4",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(part.g4)

##
## Call:
## lm(formula = area.cm ~ mod.partelli, data = n.g4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.8149 -2.7079 -0.7533 2.0936 28.3016
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.06773 0.59540 1.793 0.0741 .
## mod.partelli 1.16316 0.01602 72.584 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.622 on 261 degrees of freedom
## Multiple R-squared: 0.9528, Adjusted R-squared: 0.9526
## F-statistic: 5268 on 1 and 261 DF, p-value: < 2.2e-16
barros.g4 <- lm(area.cm ~ mod.barros, n.g4)
plot(
area.cm ~ mod.barros,
data = n.g4,
ylab = "AFR (cm²)",
xlab = "Modelo de Barros",
main = "G4",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(barros.g4)

##
## Call:
## lm(formula = area.cm ~ mod.barros, data = n.g4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.5749 -1.5553 -0.5546 1.2580 25.5466
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.010525 0.390483 2.588 0.0102 *
## mod.barros 1.058737 0.009511 111.315 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.716 on 261 degrees of freedom
## Multiple R-squared: 0.9794, Adjusted R-squared: 0.9793
## F-statistic: 1.239e+04 on 1 and 261 DF, p-value: < 2.2e-16
ant.g4 <- lm(area.cm ~ mod.ant, n.g4)
plot(
area.cm ~ mod.ant,
data = n.g4,
ylab = "AFR (cm²)",
xlab = "Modelo de Antunes",
main = "G4",
col = rgb(0.4, 0.4, 0.8, 0.6),
pch = 16 ,
cex = 1.3
)
lgraph(ant.g4)

##
## Call:
## lm(formula = area.cm ~ mod.ant, data = n.g4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.504 -1.556 -0.550 1.326 25.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.38495 0.38708 3.578 0.000413 ***
## mod.ant 1.00475 0.00901 111.513 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.71 on 261 degrees of freedom
## Multiple R-squared: 0.9794, Adjusted R-squared: 0.9794
## F-statistic: 1.244e+04 on 1 and 261 DF, p-value: < 2.2e-16
# Médias
exper <- aggregate(area.cm ~ planta + genotipo, dados, "mean")
exper1 <- aggregate(mod.partelli ~ planta + genotipo, dados, "mean")
exper2 <- aggregate(mod.barros ~ planta + genotipo, dados, "mean")
exper3 <- aggregate(mod.ant ~ planta + genotipo, dados, "mean")
exper["mod.partelli"] <- exper1$mod.partelli
exper["mod.barros"] <- exper2$mod.barros
exper["mod.ant"] <- exper3$mod.ant
exper %>% kable
| P1G4 |
G4 |
34.68046 |
28.20471 |
31.90906 |
33.24395 |
| P2G4 |
G4 |
38.08838 |
32.18461 |
35.38572 |
36.89749 |
| P3G4 |
G4 |
35.87663 |
30.23328 |
32.50040 |
33.89551 |
| P1G5 |
G5 |
34.64459 |
28.15157 |
31.39429 |
32.67379 |
| P2G5 |
G5 |
35.64597 |
30.05642 |
32.89590 |
34.31727 |
| P3G5 |
G5 |
36.16997 |
29.44693 |
33.65887 |
35.06601 |