Time-varying relationship between oil price and exchange rate

    César Castro Rozo
    Department of Economics, Universidad Pública de Navarra

    Rebeca Jiménez Rodríguez
    Department of Economics, Universidad de Salamanca


20th Conference on International Economics. Granada, June 2019

1. Motivation: Facts


Nominal oil price and US effective exchange rate (U.S. EER)

1. Motivation: Facts


5-Year rolling correlation between nominal oil price and U.S. EER

1. Motivation: Empirical literature


Causality: exchange rate (ER) vs. oil price (OP)

  • ER shock\(\rightarrow\) OP:
    e.g., Trehan (1986), Zhang et al. (2008) and Coudert and Mignon (2016)

  • OP shock\(\rightarrow\) ER:
    e.g., Amano and Van Norden (1998), Lizardo and Mollick (2010) and Ferraro et al. (2015)

  • ER \(\leftrightarrow\) OP:
    e.g., Wang and Wu (2012) and Fratzscher et al., (2014)

1. Motivation: Empirical literature


Lack of consensus in the direction of the causality can be related with:

  1. Data frequency (e.g., monthly vs. quarterly data)

  2. Oil-dependence (i.e., importing vs. exporting countries)

  3. Period of analysis (e.g., 1974-2000 \(\neq\) 1974-2015)

  • Existence of structural breaks:

    • Chen and Chen (2007) do not find evidence for (G-7 countries, 1972-2005).
    • Fratzscher et al. (2014) show evidence in the early 2000s (euro area, 1995-2005)

1. Motivation: Theoretical literature


Sign of the effects based on the source of the shock:

  1. \(\uparrow\) OP shock \(\rightarrow\) U.S. ER?
    • Wealth channel (Oil importing): \(\quad\quad \ \downarrow\) U.S. ER \(\quad\) (-)
    • \(\downarrow\) trade balance (Oil importing): \(\quad\quad \ \downarrow\) U.S. ER \(\quad\) (-)
    • Petrodollar recycling (\(\uparrow D_{USD_{asset}}\)): \(\ \ \quad\uparrow\) U.S. ER \(\quad\) (+)

  2. \(\uparrow\) U.S. ER shock \(\rightarrow\) OP?
    • Oil market: \(\quad\quad\quad \uparrow S_{oil} \ + \downarrow D_{oil} \rightarrow\quad\) \(\downarrow\) OP \(\ \quad\quad\) (-)
    • Financialization: \(\quad\quad\quad\quad\downarrow D_{oil}\rightarrow\quad\) \(\downarrow\) OP \(\ \quad\quad\) (-)

  3. US monetary policy shock?
    \(\ \quad\quad\uparrow r \rightarrow\quad\) \(\uparrow\) U.S. ER \(\rightarrow\quad\downarrow D_{oil} \rightarrow\quad\) \(\downarrow\) OP \(\quad\quad\) (-)

1. Motivation: Objective


This paper:

  • Contribute to better understand the dynamic interaction between U.S. EER and OP

  • How the U.S. EER responses to OP shock may change over time?

  • Study the relationship between OP and U.S. EER changes over time by analyzing the varying reaction of one variable to the shocks of the other.

2. Data


  • Monthly data

  • Sample period: January 1974 - March 2019

  • Total number of observations: 543


  • \(O_t\) : Nominal oil price (WTI in USD per Barrel)
    Source: U.S. Energy Information Administration (EIA)
  • \(EER_t\) US nominal narrow index of effective exchange rate
    Source: Bank for International Settlements (BIS)

3. Methodology: Shock episodes


Timing and duration of shocks

some text

3. Methodology: Shock episodes


Oil price shocks

3. Methodology: Shock episodes


U.S. EER shocks

3. Methodology: Granger causality

p-values for the linear Granger-causality test

some text

  • No evidence of Granger causality \(O_t \rightarrow EER_t\)
  • Exception: \(EER_t \rightarrow O_t\) when lag=1

3. Methodology: Granger causality

p-values for non-linear G-causality test (Diks and Panchenko, 2006)

some text

  • Evidence of causality from \(EER_t \rightarrow O_t\)

3. Methodology: standard VAR model


\(y_t=\)\(a\)\(+\displaystyle\sum_{j=1}^2\) \(A_j\)\(y_{t-j}+u_t\)

    • \(y_t\) (\(2\times1\)) observed variables \((EER_t, O_t)^{\prime}\)
    • \(a\) (2x1) vector of parameters
    • Optimal lags = 2, based on SIC
      Consistent with other studies (see Fratzscher et al., 2014; Ferraro et al., 2015)
    • \(A_1 ,A_2\) are (\(2 \times 2\)) matrices of parameters
    • \(u_t\) (\(2\times1\)) \(\quad\) ; \(\quad u_t \sim \mathcal{N}(0,\) \(\Sigma_u\))

3. Methodology: TVP-VAR model


Time varying parameter model (TVP) VAR model (Primiceri, 2005)

\(y_t =\)\(a_t\) \(+\displaystyle\sum_{j=1}^2\) \(A_{j,t}\) \(\ y_{t-j} + u_t\)


    • \(y_t\) (\(2 \times 1\)) observed variables \((EER_t, O_t)^{\prime}\)
    • \(a_t\) (\(2 \times 1\)) vector of TV-parameters
    • \(A_{1,t}, A_{2,t}\) (\(2 \times 2\)) matrices of TV-parameters
    • \(u_t\) (\(2 \times 1\)) \(\quad\quad\) \(u_t \sim \mathcal{N}(0,\) \(\Omega_t\))

3. Methodology: TVP-VAR model


\(y_t =\)\(a_t\) \(+\displaystyle\sum_{j=1}^2\) \(A_{j,t}\) \(\ y_{t-j} + u_t\)

  1. \(y_t =\) \(a_t\) + \(A_{1,t}\) \(y_{t-1}\) + \(A_{2,t}\) \(y_{t-2}\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)

  2. \(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)


    • \(I_2\) identity matrix (\(2 \times 2\))

    • \(X_t=[1,\ y_{t-1}^{\prime},\ y_{t-2}^{\prime}]\) stacked vector of variables (\(1 \times 5\))

    • \(\alpha_t=(a_t,\ A_{1,t}, \ A_{2,t})\) stacked vector of TV parameters (\(10 \times 1\))

    • \(B_t\) TV lower triangular matrix (\(2 \times 2\))

    • \(\Sigma_t\) TV standard deviations of error term (\(2 \times 2\))

3. Methodology: TVP-VAR model


\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)


Dynamics of the TV parameters


    • \(\alpha_t\) \(= \alpha_{t-1} + \eta_t^\alpha\) \(\quad\quad\quad\quad \ \eta_t^\alpha \sim \mathcal{N}(0,\) \(Q\)\()\quad\ Past\) values of \(y_t\)

    • \(b_t\) \(= b_{t-1} + \eta_t^b\)\(\quad\quad\quad\quad \ \ \eta_t^b \sim \mathcal{N}(0,\) \(S\)\() \ \ \quad\)Unrestricted \(B_t\)

    • \(log\) \(\sigma_t\) \(= log\, \sigma_{t-1} + \eta_t^\sigma \quad \ \ \ \eta_t^\sigma \sim \mathcal{N}(0,\) \(W\)\()\quad\) \(\ \sigma_t\) \(= diag(\) \(\Sigma_t\)\()\)

      • \(\eta_t^\alpha, \eta_t^b, \eta_t^\sigma\) are independent and white noise processes

3. Methodology: TVP-VAR model


Block diagonal matrix \(\rightarrow V\)

\[\begin{equation} V = Var \begin{pmatrix}\begin{bmatrix} \varepsilon_t\\ \eta_t^\alpha\\ \eta_t^b\\ \eta_t^\sigma \end{bmatrix}\end{pmatrix} \quad = \begin{bmatrix} I_2 & 0 & 0 & 0\\ 0 & Q & 0 & 0\\ 0 & 0 & S & 0\\ 0 & 0 & 0 & W \end{bmatrix} \end{equation}\]


    • \(y_t\ (2 \times 1)\ \ \quad\rightarrow\quad I_2\)
    • \(\alpha_t\) \((10 \times 1) \quad\rightarrow\quad\) \(Q\) \((10 \times 10) \quad\rightarrow\quad\) 55 free parameters
    • \(B_t\) \((2 \times 2)\ \ \quad\rightarrow\quad\) \(S\) \((1 \times 1)\)
    • \(\Sigma_t\) \((2 \times 2)\ \ \quad\rightarrow\quad\) \(W\) \((2 \times 2) \quad\rightarrow\quad\) 3 free parameters

3. Methodology: TVP-VAR model

The priors follow the same principles as in Primiceri (2005) and are summarized in the following Table:

some text

3. Methodology: TVP-VAR model


Solution:
  • Simulation algorithm for the joint posterior of \(\alpha^T, B^T, \Sigma^T, Q, S, W\)

  • Bayesian inference: Markov chain Monte Carlo (MCMC) algorithm is based on a Gibbs sampler

  • Training sample used for determining prior parameters (least squares): 60

  • Simulations: 50000 iterations

  • Burn-in steps to initialize the sample: 5000

4. Results: VAR (time-invariant) model

Response of one variable to one unit shock of the other variable in the (time invariant) VAR model for the whole period

some text

4. Results: TVP-VAR model

Standard deviations

some text

4. Results: TVP-VAR model

Impulses \(O_t \rightarrow\) Responses \(EER_t\)TV responses to one standard deviation shock

4. Results: TVP-VAR model

Impulses \(EER_t \rightarrow\) Responses \(O_t\) TV responses to one standard deviation shock

4. Results: TVP-VAR model

Responses to one unit shock after 3, 6, 12, and 24 months

some text

4. Results: TVP-VAR model

Responses of \(EER_t\) to one unit \(O_t\) shock

some text

  • \(O_t \rightarrow EER_t\): Wealth channel (-), trade balance (-), petrodollars recycling (+)

4. Results: TVP-VAR model

Responses of \(O_t\) to one unit \(EER_t\) shock

some text

  • \(EER_t \rightarrow O_t\): Oil market (-), Financialization (-)

4. Results: TVP-VAR model

Responses of \(U.S. EER_t\) to one unit \(O_t\) shock

some text

4. Results: TVP-VAR model

Responses of \(O_t\) to one unit \(EER_t\) shock

some text

5. Concluding Remarks

\(O_t \rightarrow EER_t\)

  • The negative sign response of \(EER_t\) to \(O_t\) shocks in the short-run are highly similar across different period of time.
  • This finding is consistent with most of economic theory, which establishes a depreciation after an increase in \(O_t\).
  • However, the mid- and long-run responses of \(EER_t\) to \(O_t\) shocks are positive before the mid-2000s (statistically significant before the 1990s) which is in line with the petrodollar recycling argument.

5. Concluding Remarks

\(EER_t \rightarrow O_t\)

  • The \(O_t\) declines after an appreciation of \(EER_t\), which is in conformity with the economic theory.
  • While the negative short-run reaction has been similar across different period of time, the long-run reaction differs.
  • In fact, the pattern responses have been highly similar before the mid-1990s, date from which the responses start to be more intensive, with the highest impact being observed in the global financial crisis.

5. Concluding Remarks


  • These findings highlight the importance of considering the period of time in which the oil price shock occurs because the U.S. EER response may differ over time and, consequently, the economic policy reaction which is required to counteract to such a shock may also differ.
  • The decline in oil price observed after an appreciation of U.S. EER is not the same over time and it may generate different adverse effects on investment depending on the period of time the appreciation takes place. The knowledge of such effects may help financial investors to diversify their investments in order to optimize the risk-return profile of their portfolios.




Thank you




4. Appendix

Triangular reduction


To facilitate structural analysis, \(\Omega_t\) is parameterized as:


\(B_t\) \(\Omega_t\) \(B^{\prime}_t = \Sigma_t\) \(\Sigma^{\prime}_t\)


  • \(B_t = \begin{bmatrix} 1 & 0\\ b_{21,t} & 1\end{bmatrix} \quad\quad\quad \Sigma_t = \begin{bmatrix} \sigma_{1,t} & 0\\ 0 & \sigma_{2,t}\end{bmatrix}\)


  • \(u_t = B_t^{-1}\ \Sigma_t\ \varepsilon_t \quad\quad V(\varepsilon)=I_2\)

Triangular reduction

To facilitate structural analysis, the error covariance matrix \(\Omega_t\) is parameterized as:

\(B_t \Omega_t B_t^{\prime} = \Sigma_t \Sigma_t^{\prime}\)

If \(\ u_t = B_t^{-1} \Sigma_t \varepsilon_t\)

  • \(\Omega_t \ = E[u_t u_t^{\prime}] \ = E[B_t^{-1} \Sigma_t \varepsilon_t \ (B_t^{-1} \Sigma_t \varepsilon_t)^{\prime}] = E[B_t^{-1} \Sigma_t \ \varepsilon_t \varepsilon_t^{\prime} \ \Sigma_t^\prime B_t^{-1 \prime}]\)

  • If \(\ V(\varepsilon_t) = E[\varepsilon_t \varepsilon_t^\prime] = I_2\)

  • \(\Omega_t = B_t^{-1} \Sigma_t \ I_2 \ \Sigma_t^{\prime} {B_t^{\prime}}^{-1}\)

  • \(B_t \Omega_t B_t^{\prime} = \Sigma_t \Sigma_t^{\prime}\)

Priors

Choice of \(k_Q\) and \(k_S\) in the prior inverse-Wishart (\(\mathcal{IW}\)) distributions for the hyperparameters

\(X \sim \mathcal{IW}(\bar{X}, \nu)\)

\(V(X)=\bar{X}/\nu\)

  • \(\bar{Q}=k_Q^2 \times \nu \times \hat{V}(\hat{\alpha}_{OLS}) \quad\ \ \nu=pQ\)
  • \(\bar{S}_1=k_S^2 \times \nu \times \hat{V}(\hat{B}_{OLS}) \quad \nu=pS_1\)

  • Lower \(k_Q\) reduces the degree of time variation of shocks to \(past\) values of \(y_t \ (\downarrow k_Q \rightarrow \ \downarrow Q \rightarrow \ \downarrow\alpha_t)\)
  • Larger \(k_S\) increases the degree of time variation of shocks to \(current\) values of \(y_t \ (\uparrow k_S \rightarrow \ \uparrow S_1 \rightarrow \ \uparrow B_t)\)

MCMC Algorithm


\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)


\(\begin{array}{c|c} \ \alpha^T & \ B^T & & \\ \downarrow & \downarrow & \\ Q & S & W \end{array}\) \(\begin{matrix} \quad \nearrow \ \ s^T \searrow \\ =\theta \quad \rightarrow \quad\Sigma^T \\ \quad\nwarrow \quad \hookleftarrow \end{matrix}\)


    • Initialize \(B^T,\ \Sigma^T,\ s^T, \ Q,\ S,\ W\)
    • \(p(\alpha^T/\ \theta^{-\alpha T}, \Sigma^T)\) \(\rightarrow \alpha^T\) \(\ \Rightarrow p(Q\ /\ \alpha^T)\) \(\rightarrow Q\)
    • \(p(B^T/\ \theta^{-S}, \Sigma^T) \ \Rightarrow\) \(B^T \leftarrow\)\(\ S \leftarrow\) \(p(S\ /\ \theta^{-S}, \Sigma^T)\)
    • \(s^T \leftarrow\) \(p(s^T/\ \Sigma^T, \theta) \ \Rightarrow\) \(\ \Sigma^T \leftarrow\) \(p(\Sigma^T/\ \theta, s^T)\ \Rightarrow\) \(\ W \leftarrow\) \(p(W\ /\ \Sigma^T)\)
    • Go to 2