Nominal oil price and US effective exchange rate (U.S. EER)
5-Year rolling correlation between nominal oil price and U.S. EER
Causality: exchange rate (ER) vs. oil price (OP)
ER shock\(\rightarrow\) OP:
e.g., Trehan (1986), Zhang et al. (2008) and Coudert and Mignon (2016)
OP shock\(\rightarrow\) ER:
e.g., Amano and Van Norden (1998), Lizardo and Mollick (2010) and Ferraro et al. (2015)
ER \(\leftrightarrow\) OP:
e.g., Wang and Wu (2012) and Fratzscher et al., (2014)
Data frequency (e.g., monthly vs. quarterly data)
Oil-dependence (i.e., importing vs. exporting countries)
Period of analysis (e.g., 1974-2000 \(\neq\) 1974-2015)
Existence of structural breaks:
This paper:
Contribute to better understand the dynamic interaction between U.S. EER and OP
How the U.S. EER responses to OP shock may change over time?
Study the relationship between OP and U.S. EER changes over time by analyzing the varying reaction of one variable to the shocks of the other.
Monthly data
Sample period: January 1974 - March 2019
\(EER_t\) US nominal narrow index of effective exchange rate
Source: Bank for International Settlements (BIS)
Timing and duration of shocks
Oil price shocks
U.S. EER shocks
p-values for the linear Granger-causality test
p-values for non-linear G-causality test (Diks and Panchenko, 2006)
Time varying parameter model (TVP) VAR model (Primiceri, 2005)
\(y_t =\)\(a_t\) \(+\displaystyle\sum_{j=1}^2\) \(A_{j,t}\) \(\ y_{t-j} + u_t\)
\(y_t =\)\(a_t\) \(+\displaystyle\sum_{j=1}^2\) \(A_{j,t}\) \(\ y_{t-j} + u_t\)
\(y_t =\) \(a_t\) + \(A_{1,t}\) \(y_{t-1}\) + \(A_{2,t}\) \(y_{t-2}\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)
\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)
\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)
Dynamics of the TV parameters
Block diagonal matrix \(\rightarrow V\)
\[\begin{equation} V = Var \begin{pmatrix}\begin{bmatrix} \varepsilon_t\\ \eta_t^\alpha\\ \eta_t^b\\ \eta_t^\sigma \end{bmatrix}\end{pmatrix} \quad = \begin{bmatrix} I_2 & 0 & 0 & 0\\ 0 & Q & 0 & 0\\ 0 & 0 & S & 0\\ 0 & 0 & 0 & W \end{bmatrix} \end{equation}\]
The priors follow the same principles as in Primiceri (2005) and are summarized in the following Table:
Simulation algorithm for the joint posterior of \(\alpha^T, B^T, \Sigma^T, Q, S, W\)
Bayesian inference: Markov chain Monte Carlo (MCMC) algorithm is based on a Gibbs sampler
Training sample used for determining prior parameters (least squares): 60
Simulations: 50000 iterations
Burn-in steps to initialize the sample: 5000
Response of one variable to one unit shock of the other variable in the (time invariant) VAR model for the whole period
Standard deviations
Impulses \(O_t \rightarrow\) Responses \(EER_t\)TV responses to one standard deviation shock
Impulses \(EER_t \rightarrow\) Responses \(O_t\) TV responses to one standard deviation shock
Responses to one unit shock after 3, 6, 12, and 24 months
Responses of \(EER_t\) to one unit \(O_t\) shock
Responses of \(O_t\) to one unit \(EER_t\) shock
Responses of \(U.S. EER_t\) to one unit \(O_t\) shock
Responses of \(O_t\) to one unit \(EER_t\) shock
\(O_t \rightarrow EER_t\)
\(EER_t \rightarrow O_t\)
\(B_t\) \(\Omega_t\) \(B^{\prime}_t = \Sigma_t\) \(\Sigma^{\prime}_t\)
\(B_t \Omega_t B_t^{\prime} = \Sigma_t \Sigma_t^{\prime}\)
If \(\ u_t = B_t^{-1} \Sigma_t \varepsilon_t\)
\(\Omega_t \ = E[u_t u_t^{\prime}] \ = E[B_t^{-1} \Sigma_t \varepsilon_t \ (B_t^{-1} \Sigma_t \varepsilon_t)^{\prime}] = E[B_t^{-1} \Sigma_t \ \varepsilon_t \varepsilon_t^{\prime} \ \Sigma_t^\prime B_t^{-1 \prime}]\)
If \(\ V(\varepsilon_t) = E[\varepsilon_t \varepsilon_t^\prime] = I_2\)
\(\Omega_t = B_t^{-1} \Sigma_t \ I_2 \ \Sigma_t^{\prime} {B_t^{\prime}}^{-1}\)
\(X \sim \mathcal{IW}(\bar{X}, \nu)\)
\(V(X)=\bar{X}/\nu\)\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B_t^{-1} \Sigma_t\) \(\varepsilon_t\)
\(\begin{array}{c|c} \ \alpha^T & \ B^T & & \\ \downarrow & \downarrow & \\ Q & S & W \end{array}\) \(\begin{matrix} \quad \nearrow \ \ s^T \searrow \\ =\theta \quad \rightarrow \quad\Sigma^T \\ \quad\nwarrow \quad \hookleftarrow \end{matrix}\)