We separate all the patients into four different data sets by their HTNST (hypertension status=1, 2, 3, 4). The corresponding sample size are given as follows
DASH_Score_HTNST1=subset(DASH_Score, DASH_Score$HTNST==1)
n1=dim(DASH_Score_HTNST1)[1]
n1
## [1] 101
DASH_Score_HTNST2=subset(DASH_Score, DASH_Score$HTNST==2)
n2=dim(DASH_Score_HTNST2)[1]
n2
## [1] 62
DASH_Score_HTNST3=subset(DASH_Score, DASH_Score$HTNST==3)
n3=dim(DASH_Score_HTNST3)[1]
n3
## [1] 8
DASH_Score_HTNST4=subset(DASH_Score, DASH_Score$HTNST==4)
n4=dim(DASH_Score_HTNST4)[1]
n4
## [1] 1
Figures of SuperWIN DASH Scores vs SBP/DBP
par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP, pch = 20)
plot(DASHSC_SuperWIN,DBP, pch = 20)
From Wiki
Given paired data \({\displaystyle \left\{(x_{1},y_{1}),\ldots ,(x_{n},y_{n})\right\}}\) consisting of n pairs, \(r_{xy}\) is defined as:
\({\displaystyle r_{xy}={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{{\sqrt {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}{\sqrt {\sum _{i=1}^{n}(y_{i}-{\bar {y}})^{2}}}}}}\)
where n is sample size, \(x_{i},y_{i}\) are the individual sample points indexed with i, \(\bar {x}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}\) and analogously for \(\bar{y}\).
For a sample of size n, the n raw scores \(X_{i},Y_{i}\) are converted to ranks \(\operatorname {rg} X_{i}\), \(\operatorname {rg} Y_{i}\) and \(r_{s}\) is computed from:
\({\displaystyle r_{s}=\rho _{\operatorname {rg} _{X},\operatorname {rg} _{Y}}={\frac {\operatorname {cov} (\operatorname {rg} _{X},\operatorname {rg} _{Y})}{\sigma _{\operatorname {rg} _{X}}\sigma _{\operatorname {rg} _{Y}}}}}\)
where \(\rho\) denotes the usual Pearson correlation coefficient, but applied to the rank variables. \(\operatorname {cov} (\operatorname {rg}_{X},\operatorname {rg}_{Y})\) is the covariance of the rank variables. \(\sigma_{\operatorname {rg} _{X}}\) and \(\sigma_{\operatorname{rg}_{Y}}\) are the standard deviations of the rank variables.
Let (\(x_1\), \(y_1\)), (\(x_2\), \(y_2\)), …, (\(x_n\), \(y_n\)) be a set of observations of the joint random variables X and Y respectively, such that all the values of ( \({\displaystyle x_{i}}\) ) and ( \({\displaystyle y_{i}}\)) are unique. Any pair of observations \({\displaystyle (x_{i},y_{i})}\) and \({\displaystyle (x_{j},y_{j})}\), where \({\displaystyle i<j}\), are said to be concordant if the ranks for both elements (more precisely, the sort order by x and by y) agree: that is, if both \({\displaystyle x_{i}>x_{j}}\) and \({\displaystyle y_{i}>y_{j}}\); or if both \({\displaystyle x_{i}<x_{j}}\) and \({\displaystyle y_{i}<y_{j}}\) . They are said to be discordant, if \({\displaystyle x_{i}>x_{j}}\) and \({\displaystyle y_{i}<y_{j}}\); or if \({\displaystyle x_{i}<x_{j}}\) and \({\displaystyle y_{i}>y_{j}}\). If \({\displaystyle x_{i}=x_{j}}\) or \({\displaystyle y_{i}=y_{j}}\), the pair is neither concordant nor discordant.
The Kendall \(\tau\) coefficient is defined as:
\({\displaystyle \tau ={\frac {({\text{number of concordant pairs}})-({\text{number of discordant pairs}})}{n(n-1)/2}}.}\)
We have pearson correlation as follows:
data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
cor(data111, use="complete.obs", method="pearson")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.0000000 -0.17693881 -0.23834799
## SBP -0.1769388 1.00000000 -0.03844316
## DBP -0.2383480 -0.03844316 1.00000000
We have spearman correlation as follows:
cor(data111, use="complete.obs", method="spearman")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.0000000 -0.15666968 -0.28233730
## SBP -0.1566697 1.00000000 -0.01330125
## DBP -0.2823373 -0.01330125 1.00000000
We have kendall correlation as follows:
cor(data111, use="complete.obs", method="kendall")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.0000000 -0.111159691 -0.183487264
## SBP -0.1111597 1.000000000 -0.007433014
## DBP -0.1834873 -0.007433014 1.000000000
We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.
As a rule of thumb, a VIF value that exceeds 10 indicates a problematic amount of collinearity (James et al. 2014). Hence, we calculate variance-inflation factor to chek the multicollinearity in the model. We then update our model by removing the the predictor variables (WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. In our final proposed model, we can see that dash score is not statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTM +
## HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.4706 -2.4327 0.7348 2.2451 7.8765
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.269708 11.777844 6.730 1.53e-09 ***
## DASHSC_SuperWIN -0.038593 0.037875 -1.019 0.31096
## Age 0.509630 0.332188 1.534 0.12850
## as.factor(Sex)2 -2.232490 1.195335 -1.868 0.06506 .
## HTM 23.656104 7.942889 2.978 0.00372 **
## HTPCT 0.012547 0.025378 0.494 0.62221
## BMIcal -0.101670 0.056546 -1.798 0.07553 .
## BMIPCT -0.006880 0.033169 -0.207 0.83616
## DMETS 0.116584 0.141633 0.823 0.41261
## hardmin -0.001458 0.002863 -0.509 0.61186
## vhardmin -0.008446 0.005817 -1.452 0.15001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.807 on 90 degrees of freedom
## Multiple R-squared: 0.4785, Adjusted R-squared: 0.4205
## F-statistic: 8.257 on 10 and 90 DF, p-value: 2.32e-09
`
Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, we update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTM +
## HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data22)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.895 -4.236 1.523 5.191 12.533
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.021e+02 2.334e+01 4.373 3.29e-05 ***
## DASHSC_SuperWIN -1.752e-01 7.507e-02 -2.334 0.0218 *
## Age 7.487e-01 6.584e-01 1.137 0.2585
## as.factor(Sex)2 4.674e-01 2.369e+00 0.197 0.8441
## HTM -1.158e+01 1.574e+01 -0.735 0.4640
## HTPCT 8.004e-04 5.030e-02 0.016 0.9873
## BMIcal 2.049e-01 1.121e-01 1.828 0.0708 .
## BMIPCT -8.936e-02 6.574e-02 -1.359 0.1775
## DMETS -3.557e-01 2.807e-01 -1.267 0.2084
## hardmin 5.458e-03 5.674e-03 0.962 0.3387
## vhardmin 1.577e-02 1.153e-02 1.368 0.1749
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.546 on 90 degrees of freedom
## Multiple R-squared: 0.1429, Adjusted R-squared: 0.04771
## F-statistic: 1.501 on 10 and 90 DF, p-value: 0.152
Figures of Gunther Dash Scores vs SBP/DBP.
par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP,pch=20)
plot(DASHSC_Gunther,DBP,pch=20)
We have pearson correlation as follows:
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.0000000 -0.11678900 -0.22683921
## SBP -0.1167890 1.00000000 -0.03844316
## DBP -0.2268392 -0.03844316 1.00000000
We have spearman correlation as follows:
cor(data222, use="complete.obs", method="spearman")
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.00000000 -0.09292451 -0.24604678
## SBP -0.09292451 1.00000000 -0.01330125
## DBP -0.24604678 -0.01330125 1.00000000
We have kendall correlation as follows:
cor(data222, use="complete.obs", method="kendall")
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.00000000 -0.063200483 -0.161356125
## SBP -0.06320048 1.000000000 -0.007433014
## DBP -0.16135612 -0.007433014 1.000000000
We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.
Again, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is not statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + Age + +as.factor(Sex) + HTM +
## HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.0804 -2.5092 0.6457 2.2979 7.9679
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.292604 11.778530 6.817 1.03e-09 ***
## DASHSC_Gunther -0.066594 0.050950 -1.307 0.19453
## Age 0.496350 0.331371 1.498 0.13767
## as.factor(Sex)2 -2.404417 1.204911 -1.996 0.04901 *
## HTM 23.626086 7.906586 2.988 0.00362 **
## HTPCT 0.012185 0.025287 0.482 0.63106
## BMIcal -0.097479 0.056570 -1.723 0.08830 .
## BMIPCT -0.008877 0.033036 -0.269 0.78878
## DMETS 0.113209 0.141148 0.802 0.42463
## hardmin -0.001265 0.002861 -0.442 0.65933
## vhardmin -0.008146 0.005797 -1.405 0.16344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.793 on 90 degrees of freedom
## Multiple R-squared: 0.4823, Adjusted R-squared: 0.4247
## F-statistic: 8.384 on 10 and 90 DF, p-value: 1.719e-09
Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age + as.factor(Sex) + HTM +
## HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data12)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.501 -3.968 1.406 4.796 13.210
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.025e+02 2.347e+01 4.367 3.36e-05 ***
## DASHSC_Gunther -2.296e-01 1.015e-01 -2.262 0.0261 *
## Age 7.284e-01 6.603e-01 1.103 0.2729
## as.factor(Sex)2 -1.872e-02 2.401e+00 -0.008 0.9938
## HTM -1.102e+01 1.576e+01 -0.699 0.4861
## HTPCT 7.583e-04 5.039e-02 0.015 0.9880
## BMIcal 2.132e-01 1.127e-01 1.891 0.0618 .
## BMIPCT -9.747e-02 6.583e-02 -1.481 0.1422
## DMETS -3.665e-01 2.813e-01 -1.303 0.1958
## hardmin 5.948e-03 5.701e-03 1.043 0.2996
## vhardmin 1.691e-02 1.155e-02 1.464 0.1467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.559 on 90 degrees of freedom
## Multiple R-squared: 0.1399, Adjusted R-squared: 0.04436
## F-statistic: 1.464 on 10 and 90 DF, p-value: 0.166
plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)
Figures of SuperWIN Dash Scores vs SBP/DBP
par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP, pch = 20)
plot(DASHSC_SuperWIN,DBP, pch = 20)
We have pearson correlation as follows:
data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
cor(data111, use="complete.obs", method="pearson")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.00000000 0.03171442 0.01993377
## SBP 0.03171442 1.00000000 -0.24138687
## DBP 0.01993377 -0.24138687 1.00000000
We have spearman correlation as follows:
cor(data111, use="complete.obs", method="spearman")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.000000000 0.007144684 0.00370576
## SBP 0.007144684 1.000000000 -0.16733660
## DBP 0.003705760 -0.167336596 1.00000000
We have kendall correlation as follows:
cor(data111, use="complete.obs", method="kendall")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.000000000 0.004884999 0.001609611
## SBP 0.004884999 1.000000000 -0.123906963
## DBP 0.001609611 -0.123906963 1.000000000
We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.
We first calculate variance-inflation factor to chek the multicollinearity in the model.Then, we update our model by removing the the predictor variables(WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. In our final proposed model, we can see that dash score is not statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTPCT +
## BMIPCT + DMETS + vhardmin, data = data21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.0682 -2.0953 -0.0935 1.8962 13.0253
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.026e+02 7.860e+00 13.054 < 2e-16 ***
## DASHSC_SuperWIN -5.390e-03 5.416e-02 -0.100 0.921
## Age 1.969e+00 2.904e-01 6.780 9.39e-09 ***
## as.factor(Sex)2 -5.052e+00 1.172e+00 -4.309 7.00e-05 ***
## HTPCT 9.515e-02 1.948e-02 4.885 9.63e-06 ***
## BMIPCT -2.339e-02 3.278e-02 -0.714 0.478
## DMETS 8.532e-04 1.633e-01 0.005 0.996
## vhardmin 4.646e-03 6.309e-03 0.736 0.465
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.068 on 54 degrees of freedom
## Multiple R-squared: 0.6385, Adjusted R-squared: 0.5917
## F-statistic: 13.63 on 7 and 54 DF, p-value: 5.343e-10
Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model.Hence, We update our model by removing the the predictor variables(WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. We can see that dash score is not statistically significance under \(\alpha\)=0.1.
#car::vif(l22)
##
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTPCT +
## BMIPCT + DMETS + vhardmin, data = data22)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.8580 -4.6835 0.4557 5.7941 15.0046
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.516626 17.547160 3.164 0.00256 **
## DASHSC_SuperWIN 0.112030 0.120904 0.927 0.35826
## Age 1.092385 0.648271 1.685 0.09775 .
## as.factor(Sex)2 4.544998 2.617447 1.736 0.08819 .
## HTPCT -0.091394 0.043488 -2.102 0.04027 *
## BMIPCT -0.002351 0.073171 -0.032 0.97448
## DMETS 0.137116 0.364573 0.376 0.70832
## vhardmin -0.011446 0.014085 -0.813 0.42001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.081 on 54 degrees of freedom
## Multiple R-squared: 0.1965, Adjusted R-squared: 0.09231
## F-statistic: 1.886 on 7 and 54 DF, p-value: 0.08987
Figures of Gunther Dash Scores vs SBP/DBP.
par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP, pch=20)
plot(DASHSC_Gunther,DBP, pch=20)
We have pearson correlation as follows:
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.00000000 0.1110893 -0.03736854
## SBP 0.11108934 1.0000000 -0.24138687
## DBP -0.03736854 -0.2413869 1.00000000
We have spearman correlation as follows:
cor(data222, use="complete.obs", method="spearman")
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.000000000 0.09219924 -0.005319152
## SBP 0.092199239 1.00000000 -0.167336596
## DBP -0.005319152 -0.16733660 1.000000000
We have kendall correlation as follows:
cor(data222, use="complete.obs", method="kendall")
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.000000000 0.06676166 -0.004828833
## SBP 0.066761659 1.00000000 -0.123906963
## DBP -0.004828833 -0.12390696 1.000000000
We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.
We first calculate variance-inflation factor to chek the multicollinearity in the model.Then, we update our model by removing the the predictor variables(WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. In our final proposed model, we can see that dash score is not statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + Age + as.factor(Sex) + HTPCT +
## BMIPCT + DMETS + vhardmin, data = data11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.036 -2.175 -0.001 2.110 12.723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 101.239214 8.074053 12.539 < 2e-16 ***
## DASHSC_Gunther 0.034399 0.080207 0.429 0.669718
## Age 1.980205 0.290095 6.826 7.89e-09 ***
## as.factor(Sex)2 -4.899582 1.192202 -4.110 0.000136 ***
## HTPCT 0.094557 0.019456 4.860 1.05e-05 ***
## BMIPCT -0.028574 0.032126 -0.889 0.377716
## DMETS 0.009699 0.163398 0.059 0.952885
## vhardmin 0.003775 0.006308 0.598 0.552034
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.061 on 54 degrees of freedom
## Multiple R-squared: 0.6397, Adjusted R-squared: 0.593
## F-statistic: 13.7 on 7 and 54 DF, p-value: 4.92e-10
Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model.Hence, We update our model by removing the the predictor variables(WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. We can see that dash score is not statistically significance under \(\alpha\)=0.1.
##
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age + as.factor(Sex) + HTPCT +
## BMIPCT + DMETS + vhardmin, data = data12)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.5433 -4.1471 0.5884 5.5230 15.1791
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.181300 18.144955 3.096 0.00311 **
## DASHSC_Gunther 0.100176 0.180250 0.556 0.58067
## Age 1.079164 0.651936 1.655 0.10366
## as.factor(Sex)2 4.499245 2.679255 1.679 0.09887 .
## HTPCT -0.090708 0.043723 -2.075 0.04280 *
## BMIPCT 0.009291 0.072198 0.129 0.89809
## DMETS 0.130439 0.367207 0.355 0.72381
## vhardmin -0.010153 0.014176 -0.716 0.47693
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.127 on 54 degrees of freedom
## Multiple R-squared: 0.1883, Adjusted R-squared: 0.08312
## F-statistic: 1.79 on 7 and 54 DF, p-value: 0.1083
plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)
#head(DASHSC_SuperWIN,10)
Figures of SuperWIN Dash Scores vs SBP/DBP
par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP,pch=20)
plot(DASHSC_SuperWIN,DBP,pch=20)
We have pearson correlation as follows:
data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
cor(data111, use="complete.obs", method="pearson")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.00000000 -0.13204066 0.07196395
## SBP -0.13204066 1.00000000 -0.07311197
## DBP 0.07196395 -0.07311197 1.00000000
We have spearman correlation as follows:
cor(data111, use="complete.obs", method="spearman")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.00000000 -0.1091089 0.04761905
## SBP -0.10910895 1.0000000 -0.15760181
## DBP 0.04761905 -0.1576018 1.00000000
We have kendall correlation as follows:
cor(data111, use="complete.obs", method="kendall")
## DASHSC_SuperWIN SBP DBP
## DASHSC_SuperWIN 1.00000000 -0.03779645 0.0000000
## SBP -0.03779645 1.00000000 -0.1133893
## DBP 0.00000000 -0.11338934 1.0000000
Since we only have 8 subjects in this dataset, we can not perform regression analaysis.
Figures of Gunther Dash Scores vs SBP/DBP
par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP,pch=20)
plot(DASHSC_Gunther,DBP,pch=20)
We have pearson correlation as follows:
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.00000000 -0.12605314 0.07889886
## SBP -0.12605314 1.00000000 -0.07311197
## DBP 0.07889886 -0.07311197 1.00000000
We have spearman correlation as follows:
cor(data222, use="complete.obs", method="spearman")
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.00000000 0.01212322 0.1428571
## SBP 0.01212322 1.00000000 -0.1576018
## DBP 0.14285714 -0.15760181 1.0000000
We have kendall correlation as follows:
cor(data222, use="complete.obs", method="kendall")
## DASHSC_Gunther SBP DBP
## DASHSC_Gunther 1.00000000 0.03779645 0.0000000
## SBP 0.03779645 1.00000000 -0.1133893
## DBP 0.00000000 -0.11338934 1.0000000
plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)