Back to Homepage

1 DataSet for Adolescents

We have 188 observations with 227 variables. After removing values marked with “.” and missing values, we have 172 observations with 227 variables. There are four duplicated variables: FRU0200, SWT0800, MSC0700, VEG0500. After we remove index variable and duplicated variables, we have 172 observations with 222 variables.

DASH_Score[DASH_Score=="."] <- NA 
DASH_Score=DASH_Score[complete.cases(DASH_Score), ]
DASH_Score=DASH_Score[,-c(1) ]
drops<-c("FRU0200.1","VEG0500.1","SWT0800.1","MSC0700.1")
DASH_Score=DASH_Score[ , !(names(DASH_Score) %in% drops)]
n=dim(DASH_Score)[1]
n
## [1] 172
p=dim(DASH_Score)[2]
p
## [1] 222

(If we only remove rows containing Sex or Age column of NA, we have 187 observations with 222 variables.However, to ensure fair comparison between models dropping high VIF value covariates and models using stepwise variable selection, we are stick to our approach above.)

Notes:

FRU0200 SWT0800 MSC0700 VEG0500

1.1 The SuperWin scoring system

Scatterplots of SuperWIN DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP, pch = 20)
plot(DASHSC_SuperWIN,DBP,  pch = 20)

Correlation between SuperWIN DASH Score and SBP/DBP

From Wiki

    1. In statistics, the Pearson correlation coefficient, also referred to as Pearson’s r, the Pearson product-moment correlation coefficient (PPMCC) or the bivariate correlation, is a measure of the linear correlation between two variables X and Y.

Given paired data \({\displaystyle \left\{(x_{1},y_{1}),\ldots ,(x_{n},y_{n})\right\}}\) consisting of n pairs, \(r_{xy}\) is defined as:

\({\displaystyle r_{xy}={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{{\sqrt {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}{\sqrt {\sum _{i=1}^{n}(y_{i}-{\bar {y}})^{2}}}}}}\)

where n is sample size, \(x_{i},y_{i}\) are the individual sample points indexed with i, \(\bar {x}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}\) and analogously for \(\bar{y}\).

For a sample of size n, the n raw scores \(X_{i},Y_{i}\) are converted to ranks \(\operatorname {rg} X_{i}\), \(\operatorname {rg} Y_{i}\) and \(r_{s}\) is computed from:

\({\displaystyle r_{s}=\rho _{\operatorname {rg} _{X},\operatorname {rg} _{Y}}={\frac {\operatorname {cov} (\operatorname {rg} _{X},\operatorname {rg} _{Y})}{\sigma _{\operatorname {rg} _{X}}\sigma _{\operatorname {rg} _{Y}}}}}\)

where \(\rho\) denotes the usual Pearson correlation coefficient, but applied to the rank variables. \(\operatorname {cov} (\operatorname {rg}_{X},\operatorname {rg}_{Y})\) is the covariance of the rank variables. \(\sigma_{\operatorname {rg} _{X}}\) and \(\sigma_{\operatorname{rg}_{Y}}\) are the standard deviations of the rank variables.

    1. In statistics, the Kendall rank correlation coefficient, commonly referred to as Kendall’s \(\tau\) coefficient, is a statistic used to measure the ordinal association between two measured quantities. A tau test is a non-parametric hypothesis test for statistical dependence based on the tau coefficient.

Let (\(x_1\), \(y_1\)), (\(x_2\), \(y_2\)), …, (\(x_n\), \(y_n\)) be a set of observations of the joint random variables X and Y respectively, such that all the values of ( \({\displaystyle x_{i}}\) ) and ( \({\displaystyle y_{i}}\)) are unique. Any pair of observations \({\displaystyle (x_{i},y_{i})}\) and \({\displaystyle (x_{j},y_{j})}\), where \({\displaystyle i<j}\), are said to be concordant if the ranks for both elements (more precisely, the sort order by x and by y) agree: that is, if both \({\displaystyle x_{i}>x_{j}}\) and \({\displaystyle y_{i}>y_{j}}\); or if both \({\displaystyle x_{i}<x_{j}}\) and \({\displaystyle y_{i}<y_{j}}\) . They are said to be discordant, if \({\displaystyle x_{i}>x_{j}}\) and \({\displaystyle y_{i}<y_{j}}\); or if \({\displaystyle x_{i}<x_{j}}\) and \({\displaystyle y_{i}>y_{j}}\). If \({\displaystyle x_{i}=x_{j}}\) or \({\displaystyle y_{i}=y_{j}}\), the pair is neither concordant nor discordant.

The Kendall \(\tau\) coefficient is defined as:

\({\displaystyle \tau ={\frac {({\text{number of concordant pairs}})-({\text{number of discordant pairs}})}{n(n-1)/2}}.}\)

We have pearson correlation as follows:

data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
round(cor(data111, use="complete.obs", method="pearson"),2) 
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.06 -0.14
## SBP                       -0.06  1.00  0.02
## DBP                       -0.14  0.02  1.00

We have spearman correlation as follows:

round(cor(data111, use="complete.obs", method="spearman"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.07 -0.16
## SBP                       -0.07  1.00  0.07
## DBP                       -0.16  0.07  1.00

We have kendall correlation as follows:

round(cor(data111, use="complete.obs", method="kendall"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.05 -0.11
## SBP                       -0.05  1.00  0.05
## DBP                       -0.11  0.05  1.00

Linear Regression

We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.

SBP as response

As a rule of thumb, a VIF value that exceeds 10 indicates a problematic amount of collinearity (James et al. 2014). Hence, we calculate variance-inflation factor to chek the multicollinearity in the model. We then update our model by removing the the predictor variables (WTKG, Sleep,lightmin,modmin, actweek) with high VIF value. In our final proposed model, we can see that dash score is not statistically significance under \(\alpha\)=0.1.

VIF value for each covariates

car::vif(l21)
## DASHSC_SuperWIN             Age  as.factor(Sex)            WTKG 
##        1.151980        3.145512        2.154770       13.598358 
##             HTM           HTPCT          BMIcal          BMIPCT 
##        7.497614        3.165420        8.993570        1.887895 
##           DMETS           Sleep        lightmin          modmin 
##        4.037340      212.973333      270.427986       11.852353 
##         hardmin        vhardmin         actweek 
##        9.862809        3.536170      145.894301

model after removing high VIF value

## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data21)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.4907  -3.6754  -0.4362   3.9725  17.8078 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     78.2374078 13.6155080   5.746 4.45e-08 ***
## DASHSC_SuperWIN -0.0163387  0.0458422  -0.356  0.72200    
## Age              0.3437532  0.4143797   0.830  0.40802    
## as.factor(Sex)2 -2.4602364  1.4295032  -1.721  0.08716 .  
## HTM             27.4558903  9.6880722   2.834  0.00519 ** 
## HTPCT           -0.0002273  0.0305863  -0.007  0.99408    
## BMIcal          -0.0839217  0.0738199  -1.137  0.25729    
## BMIPCT          -0.0154961  0.0388138  -0.399  0.69024    
## DMETS            0.1054449  0.1902614   0.554  0.58020    
## hardmin          0.0008942  0.0035043   0.255  0.79891    
## vhardmin        -0.0076265  0.0063634  -1.199  0.23248    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.221 on 161 degrees of freedom
## Multiple R-squared:  0.303,  Adjusted R-squared:  0.2597 
## F-statistic:     7 on 10 and 161 DF,  p-value: 4.476e-09

`

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(SBP~DASHSC_SuperWIN,  data=data21)
Full = lm(SBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data21)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + as.factor(Sex) + WTKG, 
##     data = data21)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              HTM  as.factor(Sex)2  
##        74.86837         -0.02739         34.07285         -2.23614  
##            WTKG  
##        -0.03270
m_AIC=lm(SBP~DASHSC_SuperWIN+HTM+as.factor(Sex)+WTKG,  data=data21)
summary(m_AIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + as.factor(Sex) + WTKG, 
##     data = data21)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.9231  -3.7808   0.0802   4.1787  17.4712 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     74.86837    9.94654   7.527 3.07e-12 ***
## DASHSC_SuperWIN -0.02739    0.04437  -0.617   0.5379    
## HTM             34.07285    6.06869   5.615 8.06e-08 ***
## as.factor(Sex)2 -2.23614    1.13493  -1.970   0.0505 .  
## WTKG            -0.03270    0.02187  -1.495   0.1368    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.173 on 167 degrees of freedom
## Multiple R-squared:  0.2881, Adjusted R-squared:  0.271 
## F-statistic: 16.89 on 4 and 167 DF,  p-value: 1.198e-11

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n=dim(data21)[1]
Base = lm(SBP~DASHSC_SuperWIN,  data=data21)
Full = lm(SBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data21)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n),trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + as.factor(Sex), data = data21)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              HTM  as.factor(Sex)2  
##         81.1442          -0.0341          28.8761          -2.6066
m_BIC=lm(SBP~DASHSC_SuperWIN+HTM+as.factor(Sex),  data=data21)
summary(m_BIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + as.factor(Sex), data = data21)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.5963  -3.6625  -0.3443   4.2700  18.1351 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     81.14422    9.05061   8.966 5.81e-16 ***
## DASHSC_SuperWIN -0.03410    0.04431  -0.770   0.4427    
## HTM             28.87610    4.99306   5.783 3.49e-08 ***
## as.factor(Sex)2 -2.60656    1.11163  -2.345   0.0202 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.196 on 168 degrees of freedom
## Multiple R-squared:  0.2785, Adjusted R-squared:  0.2656 
## F-statistic: 21.62 on 3 and 168 DF,  p-value: 6.859e-12
#m_p=lm(SBP~DASHSC_SuperWIN+as.factor(Sex)+HTM,  data=data21)
#summary(m_p)

DBP as response

Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, we update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data22)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.3757  -4.9172   0.1797   5.6430  17.9812 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     103.080120  17.834544   5.780 3.77e-08 ***
## DASHSC_SuperWIN  -0.103086   0.060047  -1.717   0.0880 .  
## Age               1.185599   0.542783   2.184   0.0304 *  
## as.factor(Sex)2   0.299542   1.872463   0.160   0.8731    
## HTM             -17.028083  12.690114  -1.342   0.1815    
## HTPCT            -0.007826   0.040064  -0.195   0.8454    
## BMIcal            0.163795   0.096694   1.694   0.0922 .  
## BMIPCT           -0.040067   0.050841  -0.788   0.4318    
## DMETS            -0.441494   0.249218  -1.772   0.0784 .  
## hardmin           0.010538   0.004590   2.296   0.0230 *  
## vhardmin          0.008604   0.008335   1.032   0.3035    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.148 on 161 degrees of freedom
## Multiple R-squared:  0.1358, Adjusted R-squared:  0.08211 
## F-statistic:  2.53 on 10 and 161 DF,  p-value: 0.007421

`

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(DBP~DASHSC_SuperWIN,  data=data22)
Full = lm(DBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data22)

step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT + Age + HTM, data = data22)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN            HTPCT              Age  
##        87.13563         -0.09209         -0.01265          1.17976  
##             HTM  
##       -14.96233
m2_AIC=lm(DBP~DASHSC_SuperWIN+HTPCT+ Age+HTM,  data=data22)
summary(m2_AIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT + Age + HTM, data = data22)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -24.1724  -5.1785   0.0738   5.4363  18.3770 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      87.13563   11.16068   7.807 6.11e-13 ***
## DASHSC_SuperWIN  -0.09209    0.05865  -1.570   0.1183    
## HTPCT            -0.01265    0.03251  -0.389   0.6978    
## Age               1.17976    0.47436   2.487   0.0139 *  
## HTM             -14.96233    9.26544  -1.615   0.1082    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.186 on 167 degrees of freedom
## Multiple R-squared:  0.09529,    Adjusted R-squared:  0.07362 
## F-statistic: 4.397 on 4 and 167 DF,  p-value: 0.002093

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n22=dim(data22)[1]
Base = lm(DBP~DASHSC_SuperWIN,  data=data22)
Full = lm(DBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data22)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n22),trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT, data = data22)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN            HTPCT  
##        83.17976         -0.10955         -0.06238
m2_BIC=lm(DBP~DASHSC_SuperWIN+HTPCT,  data=data22)
summary(m2_BIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT, data = data22)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.471  -5.060   0.462   5.691  18.982 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     83.17976    2.99196  27.801  < 2e-16 ***
## DASHSC_SuperWIN -0.10955    0.05885  -1.861  0.06442 .  
## HTPCT           -0.06238    0.02301  -2.711  0.00739 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.288 on 169 degrees of freedom
## Multiple R-squared:  0.06144,    Adjusted R-squared:  0.05033 
## F-statistic: 5.532 on 2 and 169 DF,  p-value: 0.00471
#m2_p=lm(DBP~DASHSC_SuperWIN+HTPCT,  data=data22)
#summary(m2_p)

1.2 The Gunther’s scoring system

Scatterplots of Gunther DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP,pch=20)
plot(DASHSC_Gunther,DBP,pch=20)

Correlation between Gunther DASH Score and SBP

We have pearson correlation as follows:

##                DASHSC_Gunther  SBP   DBP
## DASHSC_Gunther           1.00 0.04 -0.17
## SBP                      0.04 1.00  0.02
## DBP                     -0.17 0.02  1.00

We have spearman correlation as follows:

round(cor(data222, use="complete.obs", method="spearman") ,2)
##                DASHSC_Gunther  SBP   DBP
## DASHSC_Gunther           1.00 0.05 -0.15
## SBP                      0.05 1.00  0.07
## DBP                     -0.15 0.07  1.00

We have kendall correlation as follows:

round(cor(data222, use="complete.obs", method="kendall"),2) 
##                DASHSC_Gunther  SBP   DBP
## DASHSC_Gunther           1.00 0.03 -0.11
## SBP                      0.03 1.00  0.05
## DBP                     -0.11 0.05  1.00

Linear Regression

We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.

  • SBP as response

Again, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is not statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + Age + +as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.4274  -3.6258  -0.3318   3.8793  17.5144 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     77.4323742 13.4958417   5.737 4.64e-08 ***
## DASHSC_Gunther  -0.0041570  0.0589016  -0.071  0.94382    
## Age              0.3490019  0.4159385   0.839  0.40267    
## as.factor(Sex)2 -2.4344770  1.4333787  -1.698  0.09136 .  
## HTM             27.6257031  9.6971273   2.849  0.00496 ** 
## HTPCT           -0.0004097  0.0306493  -0.013  0.98935    
## BMIcal          -0.0842574  0.0739000  -1.140  0.25592    
## BMIPCT          -0.0173191  0.0384941  -0.450  0.65338    
## DMETS            0.1078963  0.1902251   0.567  0.57137    
## hardmin          0.0008105  0.0035024   0.231  0.81728    
## vhardmin        -0.0077755  0.0063737  -1.220  0.22428    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.223 on 161 degrees of freedom
## Multiple R-squared:  0.3025, Adjusted R-squared:  0.2592 
## F-statistic: 6.983 on 10 and 161 DF,  p-value: 4.726e-09

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(SBP~DASHSC_Gunther,  data=data11)
Full = lm(SBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data11)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex) + WTKG, 
##     data = data11)
## 
## Coefficients:
##     (Intercept)   DASHSC_Gunther              HTM  as.factor(Sex)2  
##        73.65718         -0.01602         34.48555         -2.21359  
##            WTKG  
##        -0.03363
m_AIC=lm(SBP~DASHSC_Gunther+HTM+as.factor(Sex)+HTM+WTKG,  data=data11)
summary(m_AIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex) + HTM + 
##     WTKG, data = data11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.0669  -3.6721  -0.0413   4.1937  17.0568 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     73.65718    9.80965   7.509 3.41e-12 ***
## DASHSC_Gunther  -0.01602    0.05749  -0.279   0.7809    
## HTM             34.48555    6.02771   5.721 4.79e-08 ***
## as.factor(Sex)2 -2.21359    1.15124  -1.923   0.0562 .  
## WTKG            -0.03363    0.02183  -1.540   0.1254    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.179 on 167 degrees of freedom
## Multiple R-squared:  0.2868, Adjusted R-squared:  0.2697 
## F-statistic: 16.79 on 4 and 167 DF,  p-value: 1.388e-11

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n=dim(data11)[1]
Base = lm(SBP~DASHSC_Gunther,  data=data11)
Full = lm(SBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data11)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n),trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex), data = data11)
## 
## Coefficients:
##     (Intercept)   DASHSC_Gunther              HTM  as.factor(Sex)2  
##        79.94475         -0.02235         29.20332         -2.60014
m_BIC=lm(SBP~DASHSC_Gunther+HTM+as.factor(Sex),  data=data11)
summary(m_BIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex), data = data11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.7676  -3.5669  -0.4077   4.1677  17.6632 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     79.94475    8.95622   8.926  7.4e-16 ***
## DASHSC_Gunther  -0.02235    0.05758  -0.388   0.6983    
## HTM             29.20332    4.97715   5.867  2.3e-08 ***
## as.factor(Sex)2 -2.60014    1.12813  -2.305   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.204 on 168 degrees of freedom
## Multiple R-squared:  0.2766, Adjusted R-squared:  0.2637 
## F-statistic: 21.42 on 3 and 168 DF,  p-value: 8.521e-12
#m_p=lm(SBP~DASHSC_Gunther+as.factor(Sex)+HTM,  data=data11)
#summary(m_p)
  • DBP as response

Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age + as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.1708  -4.3948   0.0457   5.5879  17.9785 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     102.226282  17.601206   5.808 3.28e-08 ***
## DASHSC_Gunther   -0.158401   0.076819  -2.062   0.0408 *  
## Age               1.126544   0.542465   2.077   0.0394 *  
## as.factor(Sex)2   0.148350   1.869405   0.079   0.9368    
## HTM             -14.840655  12.646943  -1.173   0.2423    
## HTPCT            -0.012974   0.039973  -0.325   0.7459    
## BMIcal            0.168842   0.096380   1.752   0.0817 .  
## BMIPCT           -0.046498   0.050204  -0.926   0.3557    
## DMETS            -0.435685   0.248091  -1.756   0.0810 .  
## hardmin           0.010544   0.004568   2.308   0.0223 *  
## vhardmin          0.009076   0.008313   1.092   0.2765    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.116 on 161 degrees of freedom
## Multiple R-squared:  0.1426, Adjusted R-squared:  0.08935 
## F-statistic: 2.678 on 10 and 161 DF,  p-value: 0.004678

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(DBP~DASHSC_Gunther,  data=data12)
Full = lm(DBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data12)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT + Age, data = data12)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther           HTPCT             Age  
##       73.95786        -0.16187        -0.04884         0.65041
m_AIC=lm(DBP~DASHSC_Gunther+ HTPCT+Age,  data=data12)
summary(m_AIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT + Age, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -24.0950  -4.8093   0.3582   5.3002  17.6977 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    73.95786    6.34978  11.647   <2e-16 ***
## DASHSC_Gunther -0.16187    0.07442  -2.175   0.0310 *  
## HTPCT          -0.04884    0.02387  -2.046   0.0423 *  
## Age             0.65041    0.32724   1.988   0.0485 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.174 on 168 degrees of freedom
## Multiple R-squared:  0.09247,    Adjusted R-squared:  0.07627 
## F-statistic: 5.706 on 3 and 168 DF,  p-value: 0.0009615

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n111=dim(data12)[1]
Base = lm(DBP~DASHSC_Gunther,  data=data12)
Full = lm(DBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data12)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n111),trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT, data = data12)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther           HTPCT  
##       84.87401        -0.17185        -0.06364
m_BIC=lm(DBP~DASHSC_Gunther+HTPCT,  data=data12)
summary(m_BIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.0877  -4.9903   0.6082   5.8378  18.6922 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    84.87401    3.21445  26.404  < 2e-16 ***
## DASHSC_Gunther -0.17185    0.07490  -2.294  0.02300 *  
## HTPCT          -0.06364    0.02288  -2.781  0.00603 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.245 on 169 degrees of freedom
## Multiple R-squared:  0.07113,    Adjusted R-squared:  0.06014 
## F-statistic: 6.471 on 2 and 169 DF,  p-value: 0.001959

Correlation between Gunther and SuperWIN

plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)

go to top

2 HTNST dataset (hypertension status=1)

HTNST dataset is a subset of Adolescents dataset. We separate all the patients into four different data sets by their HTNST (hypertension status=1, 2, 3, 4). The corresponding sample size are given as follows

DASH_Score_HTNST1=subset(DASH_Score, DASH_Score$HTNST==1)
n1=dim(DASH_Score_HTNST1)[1]
n1
## [1] 101
DASH_Score_HTNST2=subset(DASH_Score, DASH_Score$HTNST==2)
n2=dim(DASH_Score_HTNST2)[1]
n2
## [1] 62
DASH_Score_HTNST3=subset(DASH_Score, DASH_Score$HTNST==3)
n3=dim(DASH_Score_HTNST3)[1]
n3
## [1] 8
DASH_Score_HTNST4=subset(DASH_Score, DASH_Score$HTNST==4)
n4=dim(DASH_Score_HTNST4)[1]
n4
## [1] 1

2.1 The SuperWin scoring system

Scatterplots of SuperWIN DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP, pch = 20)
plot(DASHSC_SuperWIN,DBP,  pch = 20)

Correlation between SuperWIN DASH Score and SBP/DBP

We have pearson correlation as follows:

data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
round(cor(data111, use="complete.obs", method="pearson"),2) 
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.18 -0.23
## SBP                       -0.18  1.00 -0.04
## DBP                       -0.23 -0.04  1.00

We have spearman correlation as follows:

round(cor(data111, use="complete.obs", method="spearman"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.16 -0.27
## SBP                       -0.16  1.00 -0.01
## DBP                       -0.27 -0.01  1.00

We have kendall correlation as follows:

round(cor(data111, use="complete.obs", method="kendall"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.12 -0.17
## SBP                       -0.12  1.00 -0.01
## DBP                       -0.17 -0.01  1.00

Linear Regression

We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.

SBP as response

We calculate variance-inflation factor to chek the multicollinearity in the model. We then update our model by removing the the predictor variables (WTKG, Sleep,lightmin,modmin, actweek) with high VIF value. In our final proposed model, we can see that dash score is not statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data21)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.4308  -2.4961   0.6625   2.2984   7.8460 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     79.472944  11.939293   6.656 2.15e-09 ***
## DASHSC_SuperWIN -0.034604   0.038219  -0.905  0.36767    
## Age              0.523478   0.331960   1.577  0.11832    
## as.factor(Sex)2 -2.258398   1.200701  -1.881  0.06322 .  
## HTM             23.334589   7.996010   2.918  0.00445 ** 
## HTPCT            0.013804   0.025386   0.544  0.58795    
## BMIcal          -0.101713   0.056679  -1.795  0.07608 .  
## BMIPCT          -0.008072   0.033191  -0.243  0.80840    
## DMETS            0.118250   0.141806   0.834  0.40655    
## hardmin         -0.001500   0.002865  -0.524  0.60179    
## vhardmin        -0.008453   0.005825  -1.451  0.15018    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.812 on 90 degrees of freedom
## Multiple R-squared:  0.4772, Adjusted R-squared:  0.4191 
## F-statistic: 8.215 on 10 and 90 DF,  p-value: 2.559e-09

`

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(SBP~DASHSC_SuperWIN,  data=data21)
Full = lm(SBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data21)

step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + as.factor(Sex) + BMIcal + 
##     Age + Sleep, data = data21)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              HTM  as.factor(Sex)2  
##        78.08291         -0.04119         23.52970         -2.06893  
##          BMIcal              Age            Sleep  
##        -0.08046          0.48063          0.08075
m_AIC=lm(SBP~DASHSC_SuperWIN+HTM+as.factor(Sex)+BMIcal+Age,  data=data21)
summary(m_AIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + as.factor(Sex) + BMIcal + 
##     Age, data = data21)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.2425  -2.1841   0.5032   2.3311   8.0120 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     82.12483    8.21247  10.000  < 2e-16 ***
## DASHSC_SuperWIN -0.03425    0.03765  -0.910   0.3653    
## HTM             24.69724    4.86766   5.074 1.93e-06 ***
## as.factor(Sex)2 -1.75985    0.91499  -1.923   0.0574 .  
## BMIcal          -0.08820    0.04227  -2.087   0.0396 *  
## Age              0.40450    0.22590   1.791   0.0765 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.763 on 95 degrees of freedom
## Multiple R-squared:  0.4623, Adjusted R-squared:  0.434 
## F-statistic: 16.34 on 5 and 95 DF,  p-value: 1.322e-11

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n222=dim(data21)[1]
Base = lm(SBP~DASHSC_SuperWIN,  data=data21)
Full = lm(SBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data21)

step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n222),trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM, data = data21)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              HTM  
##        74.56631         -0.03637         30.72652
m_BIC=lm(SBP~DASHSC_SuperWIN+HTM,  data=data21)
summary(m_BIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM, data = data21)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.3782  -2.5104   0.3789   2.4151  10.5675 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     74.56631    7.27742  10.246  < 2e-16 ***
## DASHSC_SuperWIN -0.03637    0.03843  -0.946    0.346    
## HTM             30.72652    3.96937   7.741 9.02e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.914 on 98 degrees of freedom
## Multiple R-squared:  0.3998, Adjusted R-squared:  0.3876 
## F-statistic: 32.64 on 2 and 98 DF,  p-value: 1.366e-11

DBP as response

Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, we update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data22)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.062  -4.353   1.774   5.249  12.421 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     103.976814  23.700179   4.387 3.11e-05 ***
## DASHSC_SuperWIN  -0.168331   0.075867  -2.219   0.0290 *  
## Age               0.808458   0.658960   1.227   0.2231    
## as.factor(Sex)2   0.309717   2.383460   0.130   0.8969    
## HTM             -13.337810  15.872538  -0.840   0.4030    
## HTPCT             0.006555   0.050392   0.130   0.8968    
## BMIcal            0.206489   0.112512   1.835   0.0698 .  
## BMIPCT           -0.094794   0.065886  -1.439   0.1537    
## DMETS            -0.347802   0.281492  -1.236   0.2198    
## hardmin           0.005303   0.005687   0.932   0.3536    
## vhardmin          0.015700   0.011562   1.358   0.1779    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.567 on 90 degrees of freedom
## Multiple R-squared:  0.1382, Adjusted R-squared:  0.04243 
## F-statistic: 1.443 on 10 and 90 DF,  p-value: 0.1746

`

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(DBP~DASHSC_SuperWIN,  data=data22)
Full = lm(DBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data22)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age, data = data22)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              Age  
##         69.9287          -0.1536           0.6875
m2_AIC=lm(DBP~DASHSC_SuperWIN+ Age,  data=data22)
summary(m2_AIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age, data = data22)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.875  -4.123   1.421   4.976  12.368 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     69.92870    7.20486   9.706 5.27e-16 ***
## DASHSC_SuperWIN -0.15361    0.07305  -2.103    0.038 *  
## Age              0.68746    0.40026   1.718    0.089 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.498 on 98 degrees of freedom
## Multiple R-squared:  0.07858,    Adjusted R-squared:  0.05978 
## F-statistic: 4.179 on 2 and 98 DF,  p-value: 0.01813

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n22=dim(data22)[1]
Base = lm(DBP~DASHSC_SuperWIN,  data=data22)
Full = lm(DBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data22)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n22),trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN, data = data22)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN  
##         81.0210          -0.1687
m2_BIC=lm(DBP~DASHSC_SuperWIN,  data=data22)
summary(m2_BIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN, data = data22)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.277  -4.354   1.088   5.530  12.714 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     81.02096    3.22529  25.121   <2e-16 ***
## DASHSC_SuperWIN -0.16866    0.07323  -2.303   0.0234 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.572 on 99 degrees of freedom
## Multiple R-squared:  0.05085,    Adjusted R-squared:  0.04126 
## F-statistic: 5.304 on 1 and 99 DF,  p-value: 0.02337

2.2 The Gunther’s scoring system

Scatterplots of Gunther DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP,pch=20)
plot(DASHSC_Gunther,DBP,pch=20)

Correlation between Gunther DASH Score and SBP

We have pearson correlation as follows:

##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00 -0.05 -0.21
## SBP                     -0.05  1.00 -0.04
## DBP                     -0.21 -0.04  1.00

We have spearman correlation as follows:

round(cor(data222, use="complete.obs", method="spearman") ,2)
##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00 -0.03 -0.23
## SBP                     -0.03  1.00 -0.01
## DBP                     -0.23 -0.01  1.00

We have kendall correlation as follows:

round(cor(data222, use="complete.obs", method="kendall"),2) 
##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00 -0.03 -0.16
## SBP                     -0.03  1.00 -0.01
## DBP                     -0.16 -0.01  1.00

Linear Regression

We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.

  • SBP as response

Again, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is not statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + Age + +as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.0384  -2.5430   0.7112   2.4047   7.9696 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     79.304925  11.694939   6.781 1.21e-09 ***
## DASHSC_Gunther  -0.054848   0.047608  -1.152  0.25234    
## Age              0.513405   0.331307   1.550  0.12474    
## as.factor(Sex)2 -2.361172   1.205714  -1.958  0.05329 .  
## HTM             23.999044   7.911340   3.033  0.00316 ** 
## HTPCT            0.012641   0.025330   0.499  0.61896    
## BMIcal          -0.098296   0.056727  -1.733  0.08656 .  
## BMIPCT          -0.011230   0.033217  -0.338  0.73609    
## DMETS            0.117461   0.141407   0.831  0.40837    
## hardmin         -0.001409   0.002860  -0.493  0.62333    
## vhardmin        -0.008187   0.005809  -1.409  0.16219    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.801 on 90 degrees of freedom
## Multiple R-squared:  0.4801, Adjusted R-squared:  0.4223 
## F-statistic: 8.311 on 10 and 90 DF,  p-value: 2.038e-09

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(SBP~DASHSC_Gunther,  data=data11)
Full = lm(SBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data11)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex) + BMIcal + 
##     Age + modmin, data = data11)
## 
## Coefficients:
##     (Intercept)   DASHSC_Gunther              HTM  as.factor(Sex)2  
##        84.34466         -0.06139         23.43791         -2.16650  
##          BMIcal              Age           modmin  
##        -0.07426          0.46796         -0.00316
m_AIC=lm(SBP~DASHSC_Gunther+HTM+as.factor(Sex)+WTKG,  data=data11)
summary(m_AIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex) + WTKG, 
##     data = data11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.2426  -2.4636   0.0842   2.5105   9.5517 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     76.97860    8.77375   8.774 6.39e-14 ***
## DASHSC_Gunther  -0.05966    0.04728  -1.262   0.2101    
## HTM             31.58364    5.23897   6.029 3.07e-08 ***
## as.factor(Sex)2 -1.73678    0.95437  -1.820   0.0719 .  
## WTKG            -0.02795    0.01697  -1.647   0.1028    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.802 on 96 degrees of freedom
## Multiple R-squared:  0.4452, Adjusted R-squared:  0.4221 
## F-statistic: 19.26 on 4 and 96 DF,  p-value: 1.167e-11

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n=dim(data11)[1]
Base = lm(SBP~DASHSC_Gunther,  data=data11)
Full =lm(SBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data11)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n),trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex), data = data11)
## 
## Coefficients:
##     (Intercept)   DASHSC_Gunther              HTM  as.factor(Sex)2  
##        83.09022         -0.06945         26.75831         -2.10748
m_BIC=lm(SBP~DASHSC_Gunther+HTM+as.factor(Sex),  data=data11)
summary(m_BIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + as.factor(Sex), data = data11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.9646  -2.4279   0.1571   2.3564   9.9947 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     83.09022    8.02042  10.360  < 2e-16 ***
## DASHSC_Gunther  -0.06945    0.04732  -1.468   0.1454    
## HTM             26.75831    4.38151   6.107  2.1e-08 ***
## as.factor(Sex)2 -2.10748    0.93561  -2.253   0.0265 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.836 on 97 degrees of freedom
## Multiple R-squared:  0.4296, Adjusted R-squared:  0.4119 
## F-statistic: 24.35 on 3 and 97 DF,  p-value: 7.893e-12
  • DBP as response

Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, Sleep,lightmin,modmin,actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age + as.factor(Sex) + HTM + 
##     HTPCT + BMIcal + BMIPCT + DMETS + hardmin + vhardmin, data = data12)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.894  -4.026   1.294   4.944  13.171 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     100.241398  23.275485   4.307 4.21e-05 ***
## DASHSC_Gunther   -0.210997   0.094750  -2.227   0.0285 *  
## Age               0.779404   0.659374   1.182   0.2403    
## as.factor(Sex)2   0.040111   2.399634   0.017   0.9867    
## HTM              -9.837783  15.745297  -0.625   0.5337    
## HTPCT             0.001927   0.050412   0.038   0.9696    
## BMIcal            0.213977   0.112898   1.895   0.0613 .  
## BMIPCT           -0.106869   0.066109  -1.617   0.1095    
## DMETS            -0.351809   0.281431  -1.250   0.2145    
## hardmin           0.005534   0.005692   0.972   0.3335    
## vhardmin          0.016833   0.011561   1.456   0.1489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.565 on 90 degrees of freedom
## Multiple R-squared:  0.1385, Adjusted R-squared:  0.04279 
## F-statistic: 1.447 on 10 and 90 DF,  p-value: 0.1729

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(DBP~DASHSC_Gunther,  data=data12)
Full = lm(DBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data12)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age, data = data12)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther             Age  
##        69.0397         -0.1895          0.7677
m_AIC=lm(DBP~DASHSC_Gunther+Age,  data=data12)
summary(m_AIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age, data = data12)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.590  -4.070   1.270   5.155  12.980 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    69.03966    6.97991   9.891   <2e-16 ***
## DASHSC_Gunther -0.18947    0.08974  -2.111   0.0373 *  
## Age             0.76771    0.39742   1.932   0.0563 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.497 on 98 degrees of freedom
## Multiple R-squared:  0.07891,    Adjusted R-squared:  0.06011 
## F-statistic: 4.198 on 2 and 98 DF,  p-value: 0.01782

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n111=dim(data12)[1]
Base = lm(DBP~DASHSC_Gunther,  data=data12)
Full = lm(DBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data12)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n111),trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther, data = data12)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther  
##        80.8630         -0.1937
m_BIC=lm(DBP~DASHSC_Gunther,  data=data12)
summary(m_BIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.9558  -4.4050   0.4971   5.5233  13.6274 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    80.86300    3.40107   23.78   <2e-16 ***
## DASHSC_Gunther -0.19374    0.09094   -2.13   0.0356 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.599 on 99 degrees of freedom
## Multiple R-squared:  0.04384,    Adjusted R-squared:  0.03418 
## F-statistic: 4.539 on 1 and 99 DF,  p-value: 0.03562

Correlation between Gunther and SuperWIN

plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)

go to top

3 HTNST dataset (hypertension status=2)

## [1] 62

3.1 The SuperWin scoring system

Scatterplots of SuperWIN DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP, pch = 20)
plot(DASHSC_SuperWIN,DBP,  pch = 20)

Correlation between SuperWIN DASH Score and SBP/DBP

We have pearson correlation as follows:

data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
round(cor(data111, use="complete.obs", method="pearson"),2) 
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00  0.05  0.00
## SBP                        0.05  1.00 -0.24
## DBP                        0.00 -0.24  1.00

We have spearman correlation as follows:

round(cor(data111, use="complete.obs", method="spearman"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00  0.01 -0.02
## SBP                        0.01  1.00 -0.17
## DBP                       -0.02 -0.17  1.00

We have kendall correlation as follows:

round(cor(data111, use="complete.obs", method="kendall"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00  0.02  0.00
## SBP                        0.02  1.00 -0.12
## DBP                        0.00 -0.12  1.00

Linear Regression

We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.

SBP as response

We calculate variance-inflation factor to chek the multicollinearity in the model. We then update our model by removing the the predictor variables (WTKG,HTM,BMIcal , Sleep,lightmin,modmin, hardmin, actweek) with high VIF value. In our final proposed model, we can see that dash score is not statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTPCT + 
##     BMIPCT + DMETS + vhardmin, data = data21)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.0493 -2.1411 -0.0412  1.9586 12.8326 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     102.186229   7.860327  13.000  < 2e-16 ***
## DASHSC_SuperWIN   0.006038   0.052588   0.115    0.909    
## Age               1.973863   0.291005   6.783 9.28e-09 ***
## as.factor(Sex)2  -5.005247   1.175519  -4.258 8.29e-05 ***
## HTPCT             0.094857   0.019525   4.858 1.06e-05 ***
## BMIPCT           -0.025821   0.032773  -0.788    0.434    
## DMETS             0.003532   0.163121   0.022    0.983    
## vhardmin          0.004308   0.006287   0.685    0.496    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.067 on 54 degrees of freedom
## Multiple R-squared:  0.6385, Adjusted R-squared:  0.5917 
## F-statistic: 13.63 on 7 and 54 DF,  p-value: 5.335e-10

`

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(SBP~DASHSC_SuperWIN,  data=data21)
Full = lm(SBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data21)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + Age + as.factor(Sex) + 
##     vhardmin, data = data21)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              HTM              Age  
##       65.488307        -0.034477        34.922852         0.756531  
## as.factor(Sex)2         vhardmin  
##       -1.996383         0.007127
m_AIC=lm(SBP~DASHSC_SuperWIN+HTM+Age+as.factor(Sex)+BMIcal+vhardmin,  data=data21)
summary(m_AIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + Age + as.factor(Sex) + 
##     BMIcal + vhardmin, data = data21)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.0471 -1.9918  0.0926  1.6405 12.0792 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     65.549139   9.592212   6.834 7.07e-09 ***
## DASHSC_SuperWIN -0.033211   0.048059  -0.691   0.4924    
## HTM             35.087626   6.374805   5.504 1.00e-06 ***
## Age              0.756902   0.296071   2.556   0.0134 *  
## as.factor(Sex)2 -1.940772   1.274168  -1.523   0.1334    
## BMIcal          -0.013701   0.070025  -0.196   0.8456    
## vhardmin         0.006975   0.005140   1.357   0.1804    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.878 on 55 degrees of freedom
## Multiple R-squared:  0.6654, Adjusted R-squared:  0.6288 
## F-statistic: 18.23 on 6 and 55 DF,  p-value: 1.626e-11

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n222=dim(data21)[1]
Base = lm(SBP~DASHSC_SuperWIN,  data=data21)
Full = lm(SBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data21)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n222),trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + Age, data = data21)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN              HTM              Age  
##        56.62157         -0.01469         39.25890          0.78135
m_BIC=lm(SBP~DASHSC_SuperWIN+HTM+Age,  data=data21)
summary(m_BIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_SuperWIN + HTM + Age, data = data21)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.7229 -2.3043 -0.1498  1.6117 11.4831 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     56.62157    8.09770   6.992 3.02e-09 ***
## DASHSC_SuperWIN -0.01469    0.04744  -0.310   0.7580    
## HTM             39.25890    5.65502   6.942 3.66e-09 ***
## Age              0.78135    0.30051   2.600   0.0118 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.96 on 58 degrees of freedom
## Multiple R-squared:  0.6321, Adjusted R-squared:  0.6131 
## F-statistic: 33.22 on 3 and 58 DF,  p-value: 1.257e-12

DBP as response

Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, we update our model by removing the the predictor variables(WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + Age + as.factor(Sex) + HTPCT + 
##     BMIPCT + DMETS + vhardmin, data = data22)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -21.9414  -4.6728   0.3295   5.6869  14.9465 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     55.744241  17.563548   3.174  0.00248 **
## DASHSC_SuperWIN  0.102624   0.117505   0.873  0.38633   
## Age              1.105120   0.650238   1.700  0.09497 . 
## as.factor(Sex)2  4.553616   2.626645   1.734  0.08869 . 
## HTPCT           -0.092552   0.043628  -2.121  0.03849 * 
## BMIPCT          -0.001011   0.073230  -0.014  0.98903   
## DMETS            0.130928   0.364487   0.359  0.72084   
## vhardmin        -0.011086   0.014049  -0.789  0.43351   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.089 on 54 degrees of freedom
## Multiple R-squared:  0.1951, Adjusted R-squared:  0.09072 
## F-statistic: 1.869 on 7 and 54 DF,  p-value: 0.09285

`

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(DBP~DASHSC_SuperWIN,  data=data22)
Full =lm(DBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data22)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT + as.factor(Sex) + 
##     Age + Sleep + HTM, data = data22)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN            HTPCT  as.factor(Sex)2  
##        80.41289          0.07356          0.03682          1.48331  
##             Age            Sleep              HTM  
##         2.99257          0.24922        -40.87953
m2_AIC=lm(DBP~DASHSC_SuperWIN+HTPCT+ HTPCT+as.factor(Sex)+Age+Sleep+HTM,  data=data22)
summary(m2_AIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT + HTPCT + as.factor(Sex) + 
##     Age + Sleep + HTM, data = data22)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -21.1633  -4.8504   0.9615   5.3218  15.3054 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      80.41289   36.25141   2.218   0.0307 *
## DASHSC_SuperWIN   0.07356    0.10769   0.683   0.4975  
## HTPCT             0.03682    0.08307   0.443   0.6593  
## as.factor(Sex)2   1.48331    3.54677   0.418   0.6774  
## Age               2.99257    1.14841   2.606   0.0118 *
## Sleep             0.24922    0.15455   1.613   0.1126  
## HTM             -40.87953   28.61369  -1.429   0.1588  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.626 on 55 degrees of freedom
## Multiple R-squared:  0.2614, Adjusted R-squared:  0.1808 
## F-statistic: 3.244 on 6 and 55 DF,  p-value: 0.008408

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n22=dim(data22)[1]
Base = lm(DBP~DASHSC_SuperWIN,  data=data22)
Full = lm(DBP~DASHSC_SuperWIN+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data22)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n22),trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT, data = data22)
## 
## Coefficients:
##     (Intercept)  DASHSC_SuperWIN            HTPCT  
##          81.018            0.039           -0.111
m2_BIC=lm(DBP~DASHSC_SuperWIN+HTPCT,  data=data22)
summary(m2_BIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_SuperWIN + HTPCT, data = data22)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.0434  -5.8571  -0.6903   6.7117  17.3543 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     81.01782    5.12484  15.809   <2e-16 ***
## DASHSC_SuperWIN  0.03900    0.10658   0.366   0.7158    
## HTPCT           -0.11099    0.04121  -2.693   0.0092 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.145 on 59 degrees of freedom
## Multiple R-squared:  0.1095, Adjusted R-squared:  0.07932 
## F-statistic: 3.628 on 2 and 59 DF,  p-value: 0.03267

3.2 The Gunther’s scoring system

Scatterplots of Gunther DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP,pch=20)
plot(DASHSC_Gunther,DBP,pch=20)

Correlation between Gunther DASH Score and SBP

We have pearson correlation as follows:

##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00  0.13 -0.08
## SBP                      0.13  1.00 -0.24
## DBP                     -0.08 -0.24  1.00

We have spearman correlation as follows:

round(cor(data222, use="complete.obs", method="spearman") ,2)
##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00  0.10 -0.05
## SBP                      0.10  1.00 -0.17
## DBP                     -0.05 -0.17  1.00

We have kendall correlation as follows:

round(cor(data222, use="complete.obs", method="kendall"),2) 
##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00  0.07 -0.04
## SBP                      0.07  1.00 -0.12
## DBP                     -0.04 -0.12  1.00

Linear Regression

We build a linear regression with SBP/DBP as response and dash score as regressor with other covariates including age, sex, HTNST,WTKG,HTM,HTPCT,BMIcal,BMIPCT, DMETS, sleep,lightmin, Modmin, hardmin, vhardmin and actweek.

  • SBP as response

Again, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG,HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. We can see that dash score is not statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + Age + +as.factor(Sex) + HTPCT + 
##     BMIPCT + DMETS + vhardmin, data = data11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.5048 -2.2546 -0.0657  2.3132 12.4476 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     100.323910   7.952617  12.615  < 2e-16 ***
## DASHSC_Gunther    0.057252   0.067712   0.846 0.401548    
## Age               1.991685   0.288909   6.894 6.13e-09 ***
## as.factor(Sex)2  -4.794268   1.180251  -4.062 0.000158 ***
## HTPCT             0.094008   0.019367   4.854 1.07e-05 ***
## BMIPCT           -0.031726   0.031721  -1.000 0.321701    
## DMETS             0.011101   0.162016   0.069 0.945626    
## vhardmin          0.003336   0.006208   0.537 0.593188    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.041 on 54 degrees of freedom
## Multiple R-squared:  0.6432, Adjusted R-squared:  0.5969 
## F-statistic: 13.91 on 7 and 54 DF,  p-value: 3.83e-10

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(SBP~DASHSC_Gunther,  data=data11)
Full = lm(SBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data11)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + Age + as.factor(Sex), 
##     data = data11)
## 
## Coefficients:
##     (Intercept)   DASHSC_Gunther              HTM              Age  
##        65.69345          0.01728         32.98609          0.84488  
## as.factor(Sex)2  
##        -2.19982
m_AIC=lm(SBP~DASHSC_Gunther+HTM+Age+as.factor(Sex),  data=data11)
summary(m_AIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + Age + as.factor(Sex), 
##     data = data11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7073 -2.4764 -0.0375  1.7843 11.2464 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     65.69345    9.61691   6.831 6.08e-09 ***
## DASHSC_Gunther   0.01728    0.06220   0.278  0.78214    
## HTM             32.98609    6.25897   5.270 2.17e-06 ***
## Age              0.84488    0.29327   2.881  0.00558 ** 
## as.factor(Sex)2 -2.19982    1.23370  -1.783  0.07989 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.882 on 57 degrees of freedom
## Multiple R-squared:  0.6524, Adjusted R-squared:  0.628 
## F-statistic: 26.75 on 4 and 57 DF,  p-value: 1.628e-12

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n=dim(data11)[1]
Base = lm(SBP~DASHSC_Gunther,  data=data11)
Full = lm(SBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data11)
step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n),trace=FALSE)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + Age, data = data11)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther             HTM             Age  
##       56.03493         0.03103        38.09740         0.83279
m_BIC=lm(SBP~DASHSC_Gunther+HTM+Age,  data=data11)
summary(m_BIC)
## 
## Call:
## lm(formula = SBP ~ DASHSC_Gunther + HTM + Age, data = data11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.2949 -2.2861 -0.1414  1.9053 11.0517 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    56.03493    8.09427   6.923 3.95e-09 ***
## DASHSC_Gunther  0.03103    0.06287   0.494  0.62348    
## HTM            38.09740    5.66755   6.722 8.58e-09 ***
## Age             0.83279    0.29865   2.789  0.00715 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.954 on 58 degrees of freedom
## Multiple R-squared:  0.633,  Adjusted R-squared:  0.6141 
## F-statistic: 33.35 on 3 and 58 DF,  p-value: 1.169e-12
  • DBP as response

Similarly, we calculate variance-inflation factor to chek the multicollinearity in the model. Then, We update our model by removing the the predictor variables(WTKG, HTM, BMIcal, Sleep,lightmin,modmin,hardmin, actweek) with high VIF value. We can see that dash score is statistically significance under \(\alpha\)=0.1.

model after removing high VIF value

## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + Age + as.factor(Sex) + HTPCT + 
##     BMIPCT + DMETS + vhardmin, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.0810  -4.3914   0.4871   5.9220  14.3703 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     58.583134  18.005191   3.254  0.00197 **
## DASHSC_Gunther   0.027860   0.153303   0.182  0.85648   
## Age              1.061717   0.654107   1.623  0.11038   
## as.factor(Sex)2  4.231842   2.672157   1.584  0.11911   
## HTPCT           -0.089782   0.043847  -2.048  0.04548 * 
## BMIPCT           0.017589   0.071819   0.245  0.80746   
## DMETS            0.112985   0.366813   0.308  0.75925   
## vhardmin        -0.008646   0.014055  -0.615  0.54103   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.15 on 54 degrees of freedom
## Multiple R-squared:  0.1842, Adjusted R-squared:  0.07844 
## F-statistic: 1.742 on 7 and 54 DF,  p-value: 0.1188

Forward Stepwise: AIC

We use AICp criterion at each step to select our final model.

Base = lm(DBP~DASHSC_Gunther,  data=data12)
Full = lm(DBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data12)

step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT, data = data12)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther           HTPCT  
##       84.18861        -0.04575        -0.10721
m_AIC=lm(DBP~DASHSC_Gunther+HTPCT,  data=data12)
summary(m_AIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.6821  -5.7588  -0.1127   6.4804  17.6607 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    84.18861    5.76421  14.605   <2e-16 ***
## DASHSC_Gunther -0.04575    0.14079  -0.325   0.7463    
## HTPCT          -0.10721    0.04103  -2.613   0.0114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.148 on 59 degrees of freedom
## Multiple R-squared:  0.1091, Adjusted R-squared:  0.07888 
## F-statistic: 3.612 on 2 and 59 DF,  p-value: 0.03313

Forward Stepwise: BIC

We use BICp criterion at each step to select our final model.

n111=dim(data12)[1]
Base = lm(DBP~DASHSC_Gunther,  data=data12)
Full = lm(DBP~DASHSC_Gunther+Age+as.factor(Sex)+WTKG+HTM+HTPCT+BMIcal+BMIPCT+DMETS+Sleep+lightmin+modmin+hardmin+vhardmin+actweek, data=data12)

step(Base, scope = list( upper=Full, lower=~1 ), direction = "forward", k=log(n111),trace=FALSE)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT, data = data12)
## 
## Coefficients:
##    (Intercept)  DASHSC_Gunther           HTPCT  
##       84.18861        -0.04575        -0.10721
m_BIC=lm(DBP~DASHSC_Gunther+HTPCT,  data=data12)
summary(m_BIC)
## 
## Call:
## lm(formula = DBP ~ DASHSC_Gunther + HTPCT, data = data12)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.6821  -5.7588  -0.1127   6.4804  17.6607 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    84.18861    5.76421  14.605   <2e-16 ***
## DASHSC_Gunther -0.04575    0.14079  -0.325   0.7463    
## HTPCT          -0.10721    0.04103  -2.613   0.0114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.148 on 59 degrees of freedom
## Multiple R-squared:  0.1091, Adjusted R-squared:  0.07888 
## F-statistic: 3.612 on 2 and 59 DF,  p-value: 0.03313

Correlation between Gunther and SuperWIN

plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)

go to top

4 HTNST dataset (hypertension status=3)

go to top

## [1] 8

4.1 The SuperWin scoring system

Scatterplots of SuperWIN DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_SuperWIN,SBP, pch = 20)
plot(DASHSC_SuperWIN,DBP,  pch = 20)

Correlation between SuperWIN DASH Score and SBP/DBP

We have pearson correlation as follows:

data111=data.frame(DASHSC_SuperWIN,SBP,DBP)
round(cor(data111, use="complete.obs", method="pearson"),2) 
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.18  0.17
## SBP                       -0.18  1.00 -0.07
## DBP                        0.17 -0.07  1.00

We have spearman correlation as follows:

round(cor(data111, use="complete.obs", method="spearman"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.11  0.17
## SBP                       -0.11  1.00 -0.16
## DBP                        0.17 -0.16  1.00

We have kendall correlation as follows:

round(cor(data111, use="complete.obs", method="kendall"),2)  
##                 DASHSC_SuperWIN   SBP   DBP
## DASHSC_SuperWIN            1.00 -0.04  0.07
## SBP                       -0.04  1.00 -0.11
## DBP                        0.07 -0.11  1.00

4.2 The Gunther’s scoring system

Scatterplots of Gunther DASH Score vs SBP/DBP

par(mfrow=c(1,2))
plot(DASHSC_Gunther,SBP,pch=20)
plot(DASHSC_Gunther,DBP,pch=20)

Correlation between Gunther DASH Score and SBP

We have pearson correlation as follows:

##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00 -0.13  0.22
## SBP                     -0.13  1.00 -0.07
## DBP                      0.22 -0.07  1.00

We have spearman correlation as follows:

round(cor(data222, use="complete.obs", method="spearman") ,2)
##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00  0.00  0.26
## SBP                      0.00  1.00 -0.16
## DBP                      0.26 -0.16  1.00

We have kendall correlation as follows:

round(cor(data222, use="complete.obs", method="kendall"),2) 
##                DASHSC_Gunther   SBP   DBP
## DASHSC_Gunther           1.00  0.04  0.14
## SBP                      0.04  1.00 -0.11
## DBP                      0.14 -0.11  1.00

Correlation between Gunther and SuperWIN

plot(DASHSC_Gunther,DASHSC_SuperWIN,pch=20)

Back to Homepage