Datafile was created by the code found here: “C:Labsalmondataarea SST.R”
File contains monthly mean SST in each migration area.
SST was extracted from all cells within the migration area. The mean monthly SST was calculated based on all cells within the migration area. The value is recorded in degrees C.
FMC (num) circuli number identifying First marine circulus
FMC.spacing (num) FMC intercirculi spacing
smolt.incr (num) smolt increment (focus to last circuli before FMC)
marine.growth (num) marine growth = FMC to end
total.growth (num) entire scale from 1st circuli to the end
smolt.circ (num) number of smolt circuli
marine.circ (num) number of marine circuli
total.circ (num) number of total circuli
FS.incr (num) first summer at sea growth (FMC to FSM)
FW.incr (num) first winter at sea growth (first circuli after FSM to M1)
PS.incr (num) post-smolt growth (FMC to M1)
FSM.spacing (num) first summer maximum intercirculi spacing
M1.spacing (num) M1 intercirculi spacing
FS.circ (num) First summer, number of circuli
FW.circ (num) First winter, number of circuli
PS.circ (num) Post-smolt, number of circuli
sst<-read_csv(paste(sst.path,"/migrationareasERSST.csv",sep = ""))
## Parsed with column specification:
## cols(
## Dates = col_date(format = ""),
## Area = col_character(),
## ERSST = col_double()
## )
Carlin_full_growth<-readRDS(paste(growth.path,"/Carlin_growth_fulldata.rds",sep = ""))
Clip SST data to only dates within Carlin-tagging period
Create new “Year” and “Month” column using lubridate function to extract values from “Dates.”
Carlin_sst<-sst %>%
filter(Dates >= "1963-01-01",
Dates < "1992-01-01") %>%
mutate(Year = year(Dates)) %>%
mutate(Month = month(Dates))
Calculate annual means by smolt year
Carlin_growth_summarized<- Carlin_full_growth %>%
filter(!is.na(ReleaseYear)) %>%
dplyr::select(JoinID, ReleaseYear, RecaptureYear, FMC, M1, M2, smolt.incr, FS.incr, FW.incr, PS.incr,
smolt.circ, FS.circ, FW.circ, PS.circ) %>%
gather(key = "marker", value = "value", 4:14) %>%
group_by(ReleaseYear, marker) %>%
dplyr::summarize(mean = mean(value, na.rm = TRUE)) %>%
spread(key = "marker", value = "mean") %>%
dplyr::rename("SmoltYear" = "ReleaseYear")
sst_summarized <- Carlin_sst %>%
group_by(Year, Area) %>%
dplyr::summarize(AnnualSST = mean(ERSST)) %>%
spread(key = "Area", value = "AnnualSST") %>%
dplyr::rename("SmoltYear" = "Year")
## extract_numeric() is deprecated: please use readr::parse_number() instead
Carlin_growth_long<- Carlin_full_growth %>%
filter(!is.na(ReleaseYear)) %>%
dplyr::select(JoinID, ReleaseYear, RecaptureYear, FMC, M1, M2, smolt.incr, FS.incr, FW.incr, PS.incr,
smolt.circ, FS.circ, FW.circ, PS.circ) %>%
gather(key = "responsevar", value = "value", 4:14) %>%
group_by(ReleaseYear, responsevar) %>%
dplyr::summarize(meanvalue = mean(value, na.rm = TRUE)) %>%
dplyr::rename("SmoltYear" = "ReleaseYear")
sst_long <- Carlin_sst %>%
filter(!is.na(Area)) %>%
group_by(Year, Area) %>%
dplyr::summarize(AnnualSST = mean(ERSST)) %>%
dplyr::rename("SmoltYear" = "Year")
modelinglong<- Carlin_growth_long %>%
left_join(sst_long, by = "SmoltYear")
modelinglong<- Carlin_growth_long %>%
left_join(sst_long, by = "SmoltYear") %>%
rename("predictvar" = "Area", "meanmarker" = "meanvalue", "meanSST" = "AnnualSST")
responses<-as.vector(unique(as.character(modelinglong$responsevar)))
predictors<-as.vector(unique(as.character(modelinglong$predictvar)))
AIClist<-list()
r2list<-list()
pvlist<-list()
for(i in responses){
for(j in predictors){
temp<-modelinglong %>%
filter(responsevar == i & predictvar == j)
glancesummary<-glance(lm(meanmarker ~ meanSST, data = temp))
AIClist[[i]][j]<-glancesummary$AIC
r2list[[i]][j]<-glancesummary$r.squared
pvlist[[i]][j]<-glancesummary$p.value
}
}
AIClist<-do.call(rbind,AIClist)
r2list<-do.call(rbind,r2list)
pvlist<-do.call(rbind,pvlist)