Package dplyr examples

Given is the file survey.csv

survey <- read.csv("F:/R Course/Datasets/survey.csv")
library(tidyverse)
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Registered S3 method overwritten by 'rvest':
##   method            from
##   read_xml.response xml2
## -- Attaching packages -------------------------- tidyverse 1.2.1 --
## v ggplot2 3.1.1     v purrr   0.3.2
## v tibble  2.1.3     v dplyr   0.8.1
## v tidyr   0.8.3     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts ----------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
tbl_surv <- as_tibble(survey)
tbl_surv
## # A tibble: 237 x 12
##    Sex   Wr.Hnd NW.Hnd W.Hnd Fold  Pulse Clap  Exer  Smoke Height M.I  
##    <fct>  <dbl>  <dbl> <fct> <fct> <int> <fct> <fct> <fct>  <dbl> <fct>
##  1 Fema~   18.5   18   Right R on~    92 Left  Some  Never   173  Metr~
##  2 Male    19.5   20.5 Left  R on~   104 Left  None  Regul   178. Impe~
##  3 Male    18     13.3 Right L on~    87 Neit~ None  Occas    NA  <NA> 
##  4 Male    18.8   18.9 Right R on~    NA Neit~ None  Never   160  Metr~
##  5 Male    20     20   Right Neit~    35 Right Some  Never   165  Metr~
##  6 Fema~   18     17.7 Right L on~    64 Right Some  Never   173. Impe~
##  7 Male    17.7   17.7 Right L on~    83 Right Freq  Never   183. Impe~
##  8 Fema~   17     17.3 Right R on~    74 Right Freq  Never   157  Metr~
##  9 Male    20     19.5 Right R on~    72 Right Some  Never   175  Metr~
## 10 Male    18.5   18.5 Right R on~    90 Right Some  Never   167  Metr~
## # ... with 227 more rows, and 1 more variable: Age <dbl>
  1. Males who are have never smoked
surv_Male <- tbl_surv %>% filter(Sex == "Male")
surv_Male
## # A tibble: 118 x 12
##    Sex   Wr.Hnd NW.Hnd W.Hnd Fold  Pulse Clap  Exer  Smoke Height M.I  
##    <fct>  <dbl>  <dbl> <fct> <fct> <int> <fct> <fct> <fct>  <dbl> <fct>
##  1 Male    19.5   20.5 Left  R on~   104 Left  None  Regul   178. Impe~
##  2 Male    18     13.3 Right L on~    87 Neit~ None  Occas    NA  <NA> 
##  3 Male    18.8   18.9 Right R on~    NA Neit~ None  Never   160  Metr~
##  4 Male    20     20   Right Neit~    35 Right Some  Never   165  Metr~
##  5 Male    17.7   17.7 Right L on~    83 Right Freq  Never   183. Impe~
##  6 Male    20     19.5 Right R on~    72 Right Some  Never   175  Metr~
##  7 Male    18.5   18.5 Right R on~    90 Right Some  Never   167  Metr~
##  8 Male    21     21   Right R on~    68 Left  Freq  Never    NA  <NA> 
##  9 Male    16     15.5 Right R on~    60 Right Some  Never    NA  <NA> 
## 10 Male    19.4   19.2 Left  R on~    74 Right Some  Never   183. Impe~
## # ... with 108 more rows, and 1 more variable: Age <dbl>
  1. Students whose pulse rate is greater than 80
surv_Pul <- tbl_surv %>% 
                filter(Pulse > 80) %>% 
                select(Sex, Exer, Smoke, Pulse)
surv_Pul
## # A tibble: 47 x 4
##    Sex    Exer  Smoke Pulse
##    <fct>  <fct> <fct> <int>
##  1 Female Some  Never    92
##  2 Male   None  Regul   104
##  3 Male   None  Occas    87
##  4 Male   Freq  Never    83
##  5 Male   Some  Never    90
##  6 Female Freq  Never    89
##  7 Male   Some  Never    90
##  8 Male   Some  Never    90
##  9 Male   Freq  Regul    84
## 10 Male   None  Never    96
## # ... with 37 more rows