This is a notebook containing the R code for the Bilingualism & Alzheimer’s age of onset/incidence analysis.
library(readxl)
library(meta)
library(metafor)
library(units)
require(grid)
library(bayesmeta)
library(dplyr)
library(doBy)
library(ggplot2)
library(ggthemr)
ggthemr("fresh")
all_data <- read_excel("/Users/John/Documents/Collaborations/Collaboration JG KH Meta Analysis Age of Onset/Meta_Analysis_2019.xlsx", sheet = "Age Effect Size")
all_data <- subset(all_data, select = c("Label","Subgroup","Subgroup2","Subgroup3","ES","SE","StudyID")) %>% `colnames<-`(c("Author","Subgroup","Subgroup2","Subgroup3","TE","seTE","StudyID")) %>% filter(complete.cases(.))
prospective_data <- subset(all_data, Subgroup2 =="Prospective")
age_of_onset_data <- subset(all_data, Subgroup3 != "Incidental_Prospective")
sensitive_data <- summaryBy(TE + seTE ~ StudyID,data = as.data.frame(all_data),FUN=c(mean),na.rm=TRUE)
education_data <- read_excel("/Users/John/Documents/Collaborations/Collaboration JG KH Meta Analysis Age of Onset/Meta_Analysis_2019.xlsx", sheet = "Education Effect Size") %>% select(c("Label","ES")) %>%`colnames<-`(c("Author","Education_ES")) %>% merge(all_data, by = "Author",all.x = FALSE) %>% filter(complete.cases(.))
ses_data <- read_excel("/Users/John/Documents/Collaborations/Collaboration JG KH Meta Analysis Age of Onset/Meta_Analysis_2019.xlsx", sheet = "SES Effect Size") %>% select(c("Label","ES")) %>%`colnames<-`(c("Author","SES_ES")) %>% merge(all_data, by = "Author",all.x = FALSE) %>% filter(complete.cases(.))
m.biling<-metagen(TE,
seTE,
data=all_data,
studlab=paste(Author),
comb.fixed = FALSE,
comb.random = TRUE,
method.tau = "HS",
hakn = FALSE,
prediction=TRUE,
sm="SMD")
study.subgroup<-update.meta(m.biling,
byvar=Subgroup,
comb.random = TRUE,
comb.fixed = FALSE)
study.subgroup
## SMD 95%-CI %W(random) Subgroup
## Lawton: Inc., 2015 -0.2656 [-0.7294; 0.1982] 2.9 Incidental
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 0.9 Incidental
## Sanders: Inc., 2012 -0.1396 [-0.3679; 0.0887] 5.6 Incidental
## Wilson: Inc., 2015 0.3029 [ 0.0627; 0.5431] 5.4 Incidental
## Yeung: Inc., 2014 0.0335 [-0.2020; 0.2690] 5.5 Incidental
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 6.6 Incidental
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 6.6 Age of Onset
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 4.7 Age of Onset
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 4.7 Age of Onset
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 2.9 Age of Onset
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 6.6 Age of Onset
## Clare, 2016 0.3816 [-0.0490; 0.8122] 3.2 Age of Onset
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 4.9 Age of Onset
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.4 Age of Onset
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 6.6 Age of Onset
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 1.5 Age of Onset
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 4.9 Age of Onset
## Ossher (AV), 2013 0.4814 [ 0.0888; 0.8740] 3.6 Age of Onset
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 2.9 Age of Onset
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 2.9 Age of Onset
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 7.2 Age of Onset
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.3 Age of Onset
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 4.1 Age of Onset
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 3.9 Age of Onset
##
## Number of studies combined: k = 24
##
## SMD 95%-CI z p-value
## Random effects model 0.3206 [ 0.2205; 0.4207] 6.28 < 0.0001
## Prediction interval [-0.0707; 0.7120]
##
## Quantifying heterogeneity:
## tau^2 = 0.0330; H = 1.79 [1.45; 2.21]; I^2 = 68.9% [52.6%; 79.5%]
##
## Quantifying residual heterogeneity:
## H = 1.74 [1.40; 2.16]; I^2 = 67.0% [49.0%; 78.7%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 73.84 23 < 0.0001
##
## Results for subgroups (random effects model):
## k SMD 95%-CI Q tau^2 I^2
## Subgroup = Incidental 6 0.1036 [-0.0772; 0.2844] 16.36 0.0271 69.4%
## Subgroup = Age of Onset 18 0.3977 [ 0.2855; 0.5098] 50.34 0.0286 66.2%
##
## Test for subgroup differences (random effects model):
## Q d.f. p-value
## Between groups 7.34 1 0.0067
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
m.biling
## SMD 95%-CI %W(random)
## Lawton: Inc., 2015 -0.2656 [-0.7294; 0.1982] 2.9
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 0.9
## Sanders: Inc., 2012 -0.1396 [-0.3679; 0.0887] 5.6
## Wilson: Inc., 2015 0.3029 [ 0.0627; 0.5431] 5.4
## Yeung: Inc., 2014 0.0335 [-0.2020; 0.2690] 5.5
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 6.6
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 6.6
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 4.7
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 4.7
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 2.9
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 6.6
## Clare, 2016 0.3816 [-0.0490; 0.8122] 3.2
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 4.9
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.4
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 6.6
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 1.5
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 4.9
## Ossher (AV), 2013 0.4814 [ 0.0888; 0.8740] 3.6
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 2.9
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 2.9
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 7.2
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.3
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 4.1
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 3.9
##
## Number of studies combined: k = 24
##
## SMD 95%-CI z p-value
## Random effects model 0.3206 [ 0.2205; 0.4207] 6.28 < 0.0001
## Prediction interval [-0.0707; 0.7120]
##
## Quantifying heterogeneity:
## tau^2 = 0.0330; H = 1.79 [1.45; 2.21]; I^2 = 68.9% [52.6%; 79.5%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 73.84 23 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
meta::forest(study.subgroup,subgroup = TRUE, layout = "JAMA",width = 1200, height = 1500,
text.predict = "95% PI", sortvar=TE,test.subgroup=TRUE,
col.predict = "black",colgap.forest.left =unit(25, "mm"))
taf <- trimfill(study.subgroup)
taf
## SMD 95%-CI %W(random)
## Lawton: Inc., 2015 -0.2656 [-0.7294; 0.1982] 2.8
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 1.0
## Sanders: Inc., 2012 -0.1396 [-0.3679; 0.0887] 4.5
## Wilson: Inc., 2015 0.3029 [ 0.0627; 0.5431] 4.4
## Yeung: Inc., 2014 0.0335 [-0.2020; 0.2690] 4.4
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 5.0
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 5.0
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 4.0
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 4.0
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 2.7
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 5.0
## Clare, 2016 0.3816 [-0.0490; 0.8122] 3.0
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 4.1
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.5
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 5.0
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 1.6
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 4.1
## Ossher (AV), 2013 0.4814 [ 0.0888; 0.8740] 3.2
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 2.8
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 2.7
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 5.3
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.4
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 3.6
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 3.5
## Filled: Craik, 2010 -0.1206 [-0.3959; 0.1547] 4.1
## Filled: Ramakrishnan, 2017 -0.2601 [-0.7336; 0.2134] 2.7
## Filled: Bialystok, 2014 -0.2917 [-0.7603; 0.1769] 2.7
## Filled: Zheng, 2018 -0.3370 [-0.6955; 0.0215] 3.5
## Filled: Wilson: AoO., 2015 -0.7168 [-2.4024; 0.9688] 0.4
## Filled: Perani, 2017 -0.7736 [-1.2371; -0.3101] 2.8
##
## Number of studies combined: k = 30 (with 6 added studies)
##
## SMD 95%-CI z p-value
## Random effects model 0.2203 [ 0.1117; 0.3289] 3.98 < 0.0001
## Prediction interval [-0.2717; 0.7124]
##
## Quantifying heterogeneity:
## tau^2 = 0.0546; H = 2.03 [1.71; 2.42]; I^2 = 75.8% [65.6%; 83.0%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 119.87 29 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
## - Trim-and-fill method to adjust for funnel plot asymmetry
funnel(taf)
m.sensitive<-metagen(TE.mean,
seTE.mean,
data=sensitive_data,
studlab=paste(StudyID),
comb.fixed = FALSE,
comb.random = TRUE,
method.tau = "HS",
hakn = FALSE,
prediction=TRUE,
sm="SMD")
m.sensitive
## SMD 95%-CI %W(random)
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 7.6
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 5.6
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 5.6
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 3.5
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 7.6
## Clare, 2016 0.3816 [-0.0490; 0.8122] 3.9
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 5.8
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.7
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 7.6
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 1.9
## Lawton, 2015 0.0049 [-0.3647; 0.3745] 4.6
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 1.1
## Ossher, 2013 0.4814 [ 0.0888; 0.8740] 4.3
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 3.6
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 3.5
## Sanders, 2012 0.0276 [-0.1427; 0.1980] 7.4
## Wilson, 2015 0.7314 [-0.2314; 1.6943] 1.2
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 4.9
## Yeung, 2014 0.0335 [-0.2020; 0.2690] 6.4
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 7.6
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 4.7
##
## Number of studies combined: k = 21
##
## SMD 95%-CI z p-value
## Random effects model 0.3534 [ 0.2408; 0.4659] 6.15 < 0.0001
## Prediction interval [-0.0662; 0.7729]
##
## Quantifying heterogeneity:
## tau^2 = 0.0369; H = 1.79 [1.43; 2.24]; I^2 = 68.7% [50.9%; 80.0%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 63.84 20 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
meta::forest(m.sensitive,subgroup = FALSE, layout = "JAMA",width = 1200, height = 1500,
text.predict = "95% PI", sortvar=TE,test.subgroup=FALSE,
col.predict = "black",colgap.forest.left =unit(25, "mm"))
taf <- trimfill(m.sensitive)
taf
## SMD 95%-CI %W(random)
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 5.8
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 4.7
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 4.7
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 3.3
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 5.8
## Clare, 2016 0.3816 [-0.0490; 0.8122] 3.6
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 4.9
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.8
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 5.8
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 2.0
## Lawton, 2015 0.0049 [-0.3647; 0.3745] 4.1
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 1.2
## Ossher, 2013 0.4814 [ 0.0888; 0.8740] 3.9
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 3.3
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 3.3
## Sanders, 2012 0.0276 [-0.1427; 0.1980] 5.7
## Wilson, 2015 0.7314 [-0.2314; 1.6943] 1.3
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 4.3
## Yeung, 2014 0.0335 [-0.2020; 0.2690] 5.2
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 5.8
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 4.1
## Filled: Ramakrishnan, 2017 -0.2212 [-0.6947; 0.2523] 3.3
## Filled: Wilson, 2015 -0.2494 [-1.2123; 0.7135] 1.3
## Filled: Bialystok, 2014 -0.2528 [-0.7215; 0.2158] 3.3
## Filled: Zheng, 2018 -0.2981 [-0.6566; 0.0604] 4.1
## Filled: Perani, 2017 -0.7347 [-1.1982; -0.2712] 3.3
##
## Number of studies combined: k = 26 (with 5 added studies)
##
## SMD 95%-CI z p-value
## Random effects model 0.2527 [ 0.1308; 0.3747] 4.06 < 0.0001
## Prediction interval [-0.2687; 0.7742]
##
## Quantifying heterogeneity:
## tau^2 = 0.0600; H = 2.01 [1.66; 2.43]; I^2 = 75.2% [63.8%; 83.0%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 100.82 25 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
## - Trim-and-fill method to adjust for funnel plot asymmetry
funnel(taf)
m.biling_pro<-metagen(TE,
seTE,
data=prospective_data,
studlab=paste(Author),
comb.fixed = FALSE,
comb.random = TRUE,
method.tau = "HS",
hakn = FALSE,
prediction=TRUE,
sm="SMD")
study.subgroup<-update.meta(m.biling_pro,
byvar=Subgroup,
comb.random = TRUE,
comb.fixed = FALSE)
study.subgroup
## SMD 95%-CI %W(random) Subgroup
## Lawton: Inc., 2015 -0.2656 [-0.7294; 0.1982] 5.3 Incidental
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 1.4 Incidental
## Sanders: Inc., 2012 -0.1396 [-0.3679; 0.0887] 13.8 Incidental
## Wilson: Inc., 2015 0.3029 [ 0.0627; 0.5431] 13.1 Incidental
## Yeung: Inc., 2014 0.0335 [-0.2020; 0.2690] 13.4 Incidental
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 18.7 Incidental
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 11.2 Age of Onset
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 22.6 Age of Onset
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.5 Age of Onset
##
## Number of studies combined: k = 9
##
## SMD 95%-CI z p-value
## Random effects model 0.1564 [ 0.0378; 0.2751] 2.58 0.0097
## Prediction interval [-0.1481; 0.4610]
##
## Quantifying heterogeneity:
## tau^2 = 0.0129; H = 1.52 [1.05; 2.21]; I^2 = 56.8% [9.2%; 79.5%]
##
## Quantifying residual heterogeneity:
## H = 1.60 [1.08; 2.35]; I^2 = 60.8% [15.0%; 81.9%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 18.53 8 0.0176
##
## Results for subgroups (random effects model):
## k SMD 95%-CI Q tau^2 I^2
## Subgroup = Incidental 6 0.1036 [-0.0772; 0.2844] 16.36 0.0271 69.4%
## Subgroup = Age of Onset 3 0.2100 [ 0.1061; 0.3140] 1.51 0 0.0%
##
## Test for subgroup differences (random effects model):
## Q d.f. p-value
## Between groups 1.00 1 0.3172
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
m.biling_pro
## SMD 95%-CI %W(random)
## Lawton: Inc., 2015 -0.2656 [-0.7294; 0.1982] 5.3
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 1.4
## Sanders: Inc., 2012 -0.1396 [-0.3679; 0.0887] 13.8
## Wilson: Inc., 2015 0.3029 [ 0.0627; 0.5431] 13.1
## Yeung: Inc., 2014 0.0335 [-0.2020; 0.2690] 13.4
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 18.7
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 11.2
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 22.6
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.5
##
## Number of studies combined: k = 9
##
## SMD 95%-CI z p-value
## Random effects model 0.1564 [ 0.0378; 0.2751] 2.58 0.0097
## Prediction interval [-0.1481; 0.4610]
##
## Quantifying heterogeneity:
## tau^2 = 0.0129; H = 1.52 [1.05; 2.21]; I^2 = 56.8% [9.2%; 79.5%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 18.53 8 0.0176
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
meta::forest(study.subgroup,subgroup = TRUE, layout = "JAMA",width = 1500, height = 1500,
text.predict = "95% PI", sortvar=TE,test.subgroup=TRUE,
col.predict = "black",colgap.forest.left =unit(25, "mm"))
taf <- trimfill(study.subgroup)
taf
## SMD 95%-CI %W(random)
## Lawton: Inc., 2015 -0.2656 [-0.7294; 0.1982] 5.3
## Nebreda, 2011 0.3655 [-0.6216; 1.3526] 1.4
## Sanders: Inc., 2012 -0.1396 [-0.3679; 0.0887] 13.8
## Wilson: Inc., 2015 0.3029 [ 0.0627; 0.5431] 13.1
## Yeung: Inc., 2014 0.0335 [-0.2020; 0.2690] 13.4
## Zahodne, 2014 0.3213 [ 0.1615; 0.4811] 18.7
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 11.2
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 22.6
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.5
##
## Number of studies combined: k = 9 (with 0 added studies)
##
## SMD 95%-CI z p-value
## Random effects model 0.1564 [ 0.0378; 0.2751] 2.58 0.0097
## Prediction interval [-0.1481; 0.4610]
##
## Quantifying heterogeneity:
## tau^2 = 0.0129; H = 1.52 [1.05; 2.21]; I^2 = 56.8% [9.2%; 79.5%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 18.53 8 0.0176
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
## - Trim-and-fill method to adjust for funnel plot asymmetry
funnel(taf)
m.AoO<-metagen(TE,
seTE,
data=age_of_onset_data,
studlab=paste(Author),
comb.fixed = FALSE,
comb.random = TRUE,
method.tau = "HS",
hakn = FALSE,
prediction=TRUE,
sm="SMD")
study.subgroup<-update.meta(m.AoO,
byvar=Subgroup,
comb.random = TRUE,
comb.fixed = FALSE)
study.subgroup
## SMD 95%-CI %W(random) Subgroup
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 9.3 Age of Onset
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 6.4 Age of Onset
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 6.4 Age of Onset
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 3.8 Age of Onset
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 9.3 Age of Onset
## Clare, 2016 0.3816 [-0.0490; 0.8122] 4.3 Age of Onset
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 6.8 Age of Onset
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.8 Age of Onset
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 9.3 Age of Onset
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 2.0 Age of Onset
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 6.8 Age of Onset
## Ossher (AV), 2013 0.4814 [ 0.0888; 0.8740] 4.8 Age of Onset
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 3.9 Age of Onset
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 3.8 Age of Onset
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 10.2 Age of Onset
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.4 Age of Onset
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 5.6 Age of Onset
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 5.3 Age of Onset
##
## Number of studies combined: k = 18
##
## SMD 95%-CI z p-value
## Random effects model 0.3977 [0.2855; 0.5098] 6.95 < 0.0001
## Prediction interval [0.0189; 0.7764]
##
## Quantifying heterogeneity:
## tau^2 = 0.0286; H = 1.72 [1.34; 2.21]; I^2 = 66.2% [44.5%; 79.4%]
##
## Quantifying residual heterogeneity:
## H = 1.72 [1.34; 2.21]; I^2 = 66.2% [44.5%; 79.4%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 50.34 17 < 0.0001
##
## Results for subgroups (random effects model):
## k SMD 95%-CI Q tau^2 I^2
## Subgroup = Age of Onset 18 0.3977 [0.2855; 0.5098] 50.34 0.0286 66.2%
##
## Test for subgroup differences (random effects model):
## Q d.f. p-value
## Between groups 0.00 0 --
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
m.AoO
## SMD 95%-CI %W(random)
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 9.3
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 6.4
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 6.4
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 3.8
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 9.3
## Clare, 2016 0.3816 [-0.0490; 0.8122] 4.3
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 6.8
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.8
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 9.3
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 2.0
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 6.8
## Ossher (AV), 2013 0.4814 [ 0.0888; 0.8740] 4.8
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 3.9
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 3.8
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 10.2
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.4
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 5.6
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 5.3
##
## Number of studies combined: k = 18
##
## SMD 95%-CI z p-value
## Random effects model 0.3977 [0.2855; 0.5098] 6.95 < 0.0001
## Prediction interval [0.0189; 0.7764]
##
## Quantifying heterogeneity:
## tau^2 = 0.0286; H = 1.72 [1.34; 2.21]; I^2 = 66.2% [44.5%; 79.4%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 50.34 17 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
meta::forest(study.subgroup,subgroup = TRUE, layout = "JAMA",width = 1500, height = 1500,
text.predict = "95% PI", sortvar=TE,test.subgroup=TRUE,
col.predict = "black",colgap.forest.left =unit(25, "mm"))
taf <- trimfill(study.subgroup)
taf
## SMD 95%-CI %W(random)
## Alladi, 2013 0.4255 [ 0.2665; 0.5845] 6.4
## Alladi, 2017 0.3597 [ 0.0671; 0.6523] 5.1
## Bialystok, 2007 0.4604 [ 0.1676; 0.7532] 5.1
## Bialystok, 2014 0.7349 [ 0.2663; 1.2035] 3.5
## Chertkow, 2010 0.1190 [-0.0402; 0.2782] 6.4
## Clare, 2016 0.3816 [-0.0490; 0.8122] 3.8
## Craik, 2010 0.5638 [ 0.2885; 0.8391] 5.3
## Duncan, 2017 -0.2744 [-1.0468; 0.4980] 1.9
## Iyer, 2014 0.1776 [ 0.0199; 0.3353] 6.4
## Kowoll, 2016 0.4092 [-0.3155; 1.1339] 2.1
## Lawton: AoO, 2015 0.2754 [ 0.0000; 0.5508] 5.3
## Ossher (AV), 2013 0.4814 [ 0.0888; 0.8740] 4.2
## Perani, 2017 1.2168 [ 0.7533; 1.6803] 3.6
## Ramakrishnan, 2017 0.7033 [ 0.2298; 1.1768] 3.5
## Sanders: AoO, 2012 0.1949 [ 0.0824; 0.3074] 6.8
## Wilson: AoO., 2015 1.1600 [-0.5256; 2.8456] 0.5
## Woumans, 2015 0.1997 [-0.1399; 0.5393] 4.7
## Zheng, 2018 0.7802 [ 0.4217; 1.1387] 4.5
## Filled: Craik, 2010 -0.0655 [-0.3408; 0.2098] 5.3
## Filled: Ramakrishnan, 2017 -0.2050 [-0.6785; 0.2685] 3.5
## Filled: Bialystok, 2014 -0.2366 [-0.7053; 0.2320] 3.5
## Filled: Zheng, 2018 -0.2819 [-0.6404; 0.0766] 4.5
## Filled: Wilson: AoO., 2015 -0.6617 [-2.3473; 1.0238] 0.5
## Filled: Perani, 2017 -0.7185 [-1.1820; -0.2550] 3.6
##
## Number of studies combined: k = 24 (with 6 added studies)
##
## SMD 95%-CI z p-value
## Random effects model 0.2676 [ 0.1444; 0.3908] 4.26 < 0.0001
## Prediction interval [-0.2352; 0.7704]
##
## Quantifying heterogeneity:
## tau^2 = 0.0548; H = 2.01 [1.65; 2.45]; I^2 = 75.3% [63.4%; 83.4%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 93.25 23 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Hunter-Schmidt estimator for tau^2
## - Trim-and-fill method to adjust for funnel plot asymmetry
funnel(taf)
meta::forest(taf,subgroup = TRUE, layout = "JAMA",width = 1500, height = 1500,
text.predict = "95% PI", sortvar=TE,test.subgroup=TRUE,
col.predict = "black",colgap.forest.left =unit(25, "mm"))
m.biling<-metagen(TE,
seTE,
data=education_data,
studlab=paste(Author),
comb.fixed = FALSE,
comb.random = TRUE,
method.tau = "HS",
hakn = FALSE,
prediction=TRUE,
sm="SMD")
Education_Effect<-update.meta(m.biling,
byvar=Education_ES,
comb.random = TRUE,
comb.fixed = FALSE)
metareg(Education_Effect, ~ Education_ES)
##
## Mixed-Effects Model (k = 19; tau^2 estimator: HS)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0293 (SE = 0.0148)
## tau (square root of estimated tau^2 value): 0.1711
## I^2 (residual heterogeneity / unaccounted variability): 61.53%
## H^2 (unaccounted variability / sampling variability): 2.60
## R^2 (amount of heterogeneity accounted for): 8.67%
##
## Test for Residual Heterogeneity:
## QE(df = 17) = 54.4329, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0232, p-val = 0.8790
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3546 0.0625 5.6736 <.0001 0.2321 0.4770 ***
## Education_ES 0.0129 0.0846 0.1522 0.8790 -0.1530 0.1787
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bubble(metareg(Education_Effect, ~ Education_ES))
predicted_education <- predict.rma(metareg(Education_Effect, ~ Education_ES))
edu_data <- cbind(education_data, predicted_education)
ggplot(edu_data, aes(x = pred, y = TE, size = 1/se,fill=Subgroup, colour = Subgroup, group =1))+geom_point(shape = 16)+geom_smooth(method="lm")+labs(title="Education Effect Size on Alzheimer's Age (Incidence and Onset)",subtitle = "Size of points indicate weight in analysis",
x ="Education Effect Size \n Larger Values Indicate Bilinguals have higher Education", y = "Age Effect Size \n Higher Values Indicate Bilinguals were Older than Monolinguals at Onset/Incidence of Dementia")
m.biling<-metagen(TE,
seTE,
data=ses_data,
studlab=paste(Author),
comb.fixed = FALSE,
comb.random = TRUE,
method.tau = "HS",
hakn = FALSE,
prediction=TRUE,
sm="SMD")
SES_Effect<-update.meta(m.biling,
byvar=SES_ES,
comb.random = TRUE,
comb.fixed = FALSE)
metareg(SES_Effect, ~ SES_ES)
##
## Mixed-Effects Model (k = 10; tau^2 estimator: HS)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0144 (SE = 0.0144)
## tau (square root of estimated tau^2 value): 0.1199
## I^2 (residual heterogeneity / unaccounted variability): 37.64%
## H^2 (unaccounted variability / sampling variability): 1.60
## R^2 (amount of heterogeneity accounted for): 3.73%
##
## Test for Residual Heterogeneity:
## QE(df = 8) = 16.6692, p-val = 0.0337
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1719, p-val = 0.6784
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.4301 0.0994 4.3255 <.0001 0.2352 0.6251 ***
## SES_ES -0.1016 0.2450 -0.4147 0.6784 -0.5817 0.3786
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bubble(metareg(SES_Effect, ~ SES_ES), xlab = "SES Effect Size for BL ML Group Difference \n Higher Values indicate Higher SES for BL")
predicted_ses <- predict.rma(metareg(SES_Effect, ~ SES_ES))
ses_data <- cbind(ses_data, predicted_ses)
ggplot(ses_data, aes(x = pred, y = TE, size = 1/se,fill=Subgroup, colour = Subgroup, group =1))+geom_point(shape = 16)+geom_smooth(method="lm")+labs(title="SES Effect Size on Alzheimer's Age (Incidence and Onset)",subtitle = "Size of points indicate weight in analysis",
x ="SES Effect Size \n Larger Values Indicate Bilinguals have higher SES", y = "Age Effect Size \n Higher Values Indicate Bilinguals were Older than Monolinguals at Onset/Incidence of Dementia")