date()
## [1] "Wed Mar 20 12:53:00 2013"
Using the ants data set
suppressMessages(require(spatstat))
SP = ants
plot(SP)
## Cataglyphis Messor
## 1 2
Cataglyphis = ants[ants$marks == "Cataglyphis"]
Messor = ants[ants$marks == "Messor"]
plot(Gest(Cataglyphis))
## lty col key label meaning
## km 1 1 km hat(G)[km](r) Kaplan-Meier estimate of G(r)
## rs 2 2 rs hat(G)[bord](r) border corrected estimate of G(r)
## han 3 3 han hat(G)[han](r) Hanisch estimate of G(r)
## theo 4 4 theo G[pois](r) theoretical Poisson G(r)
plot(Gest(Messor))
## lty col key label meaning
## km 1 1 km hat(G)[km](r) Kaplan-Meier estimate of G(r)
## rs 2 2 rs hat(G)[bord](r) border corrected estimate of G(r)
## han 3 3 han hat(G)[han](r) Hanisch estimate of G(r)
## theo 4 4 theo G[pois](r) theoretical Poisson G(r)
It is observed that the Cataglyphis nests exhibit G values greater than the theoretical values at distances less than 15 feet. This indicates a randomized distribution. At distances greater than 15 feet, G values are less than the theoretical values. This indicates spatial regularity. The Messor nests exhibit G values less than the theoretical values indicating spacial regularity.
plot(Kcross(SP, "Cataglyphis", "Messor"))
## lty col key
## iso 1 1 iso
## trans 2 2 trans
## border 3 3 border
## theo 4 4 theo
## label
## iso hat(K[list(Cataglyphis, Messor)]^{ iso})(r)
## trans hat(K[list(Cataglyphis, Messor)]^{ trans})(r)
## border hat(K[list(Cataglyphis, Messor)]^{ bord})(r)
## theo { K[list(Cataglyphis, Messor)]^{ pois }}(r)
## meaning
## iso Ripley isotropic correction estimate of Kcross["Cataglyphis", "Messor"](r)
## trans translation-corrected estimate of Kcross["Cataglyphis", "Messor"](r)
## border border-corrected estimate of Kcross["Cataglyphis", "Messor"](r)
## theo theoretical Poisson Kcross["Cataglyphis", "Messor"](r)
It is evident that the observed value is greater than the theoretical value. Therefore, there is no evidence for inter-species clustering. Nest locations for each species are independent of eachother.
ANTS = unmark(ants)
SP.model = ppm(ANTS, trend = ~1, interaction = Strauss(r = 100), rbord = 100)
SP.model
## Stationary Strauss process
##
## First order term:
## beta
## 0.0009962
##
## Interaction: Strauss process
## interaction distance: 100
## Fitted interaction parameter gamma: 0.8189
##
## Relevant coefficients:
## Interaction
## -0.1998
##
## For standard errors, type coef(summary(x))
The beta is 0.0009961705, which is greater than the actual intensity of 0.000226. This indicates an inhibition process. The interaction parameter (gamma) is 0.8189, therefore it indicates no interaction since it is less than 1. The presence of a nest at a specific location makes it unlikely that another nest will be in the same location.