knitr::opts_chunk$set(echo = TRUE)
# library(sjPlot)
library(xlsx)
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
library(irr)
## Loading required package: lpSolve
library(car)
## Loading required package: carData
library(sandwich)
freg <- read.xlsx(file="/cloud/project/Jafri/CRMREGR2-20190625.xlsx", sheetIndex = 1, header=TRUE)
dfj <- read.xlsx(file="/cloud/project/Jafri/CRM-STATS-Jafri-20190522.xlsx", sheetIndex = 1, header=TRUE)
freg <- read.xlsx(file="/cloud/project/Jafri/CRMREGR2-20190625.xlsx", sheetIndex = 1, header=TRUE)
fcprdef <- read.xlsx(file="/cloud/project/Jafri/CPRDEF 20190723.xlsx", sheetIndex = 1, header=TRUE)
PostEstReg <- function(DepVarVec, RegObj) {
# requires package 'car'
# DepVarVec is just the dependent variable used in the regression
# RegObj is the regression object returned by the lm or other regression command
yols1a <- DepVarVec
ols1yhat <- fitted(RegObj)
ols1rr <- resid(RegObj, type = "response")
ols1rp <- resid(RegObj, type = "pearson")
print("VIF:")
print(vif(RegObj))
par(mfcol = c(2, 3))
{
plot(ols1yhat, ols1rr, main = "Fitted vs Residuals")
qqnorm(ols1rr)
plot(ols1yhat, ols1rp, main = "Fitted vs Pearson Residuals")
qqnorm(ols1rp)
plot(yols1a, ols1rp, main = "Actual vs Pearson Residuals")
plot(yols1a, ols1yhat, main = "Actual vs Fitted")
}
hist(
ols1rr,
main = "Actual Residuals",
xlab = "Residuals",
border = "black",
col = "skyblue",
# xlim=c(0,125),
las = 1,
breaks = 15
)
print("")
print("")
# residualPlots(RegObj) # removed because was causing formatting error, but could try again with above print statements added, to separate histogram above from residual plots
print("")
print("")
print("correlation of actual and fitted")
print(cor(yols1a, ols1yhat)) # correlation of actual and fitted
print("")
print("")
print("correlation of predicted values and residuals")
print(cor(ols1yhat, ols1rr)) # correlation of predicted values and residuals
print("")
print("")
print("Bootstrapped regression...")
fit11booted <- Boot(RegObj, R = 1000)
print(summary(fit11booted))
print(Confint(fit11booted, level=.90, type="norm"))
}
# end of function PostEstReg
mean(freg$CPTPost)
## [1] 0.7209583
mean(freg$CPTPre)
## [1] 0.6174167
t.test(freg$CPTPost,freg$CPTPre, paired = TRUE)
##
## Paired t-test
##
## data: freg$CPTPost and freg$CPTPre
## t = 6.0442, df = 23, p-value = 3.65e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06810373 0.13897961
## sample estimates:
## mean of the differences
## 0.1035417
mean(freg$CTSPost)
## [1] 0.5754167
mean(freg$CTSPre)
## [1] 0.4279167
t.test(freg$CTSPost,freg$CTSPre, paired = TRUE)
##
## Paired t-test
##
## data: freg$CTSPost and freg$CTSPre
## t = 7.8227, df = 23, p-value = 6.287e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1084947 0.1865053
## sample estimates:
## mean of the differences
## 0.1475
mean(freg$CPRPost)
## [1] 34.375
mean(freg$CPRPre)
## [1] 70.625
t.test(freg$CPRPost,freg$CPRPre, paired = TRUE)
##
## Paired t-test
##
## data: freg$CPRPost and freg$CPRPre
## t = -3.712, df = 23, p-value = 0.001147
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -56.45167 -16.04833
## sample estimates:
## mean of the differences
## -36.25
mean(freg$DEFPost)
## [1] 118.875
mean(freg$DEFPre)
## [1] 152.2083
t.test(freg$DEFPost,freg$DEFPre, paired = TRUE)
##
## Paired t-test
##
## data: freg$DEFPost and freg$DEFPre
## t = -1.78, df = 23, p-value = 0.08829
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -72.071748 5.405081
## sample estimates:
## mean of the differences
## -33.33333
mean(fcprdef$CPRPO)
## [1] 0.4166667
mean(fcprdef$CPRPR)
## [1] 0.7916667
t.test(fcprdef$CPRPO,fcprdef$CPRPR, paired = TRUE)
##
## Paired t-test
##
## data: fcprdef$CPRPO and fcprdef$CPRPR
## t = -2.8399, df = 23, p-value = 0.009278
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6481615 -0.1018385
## sample estimates:
## mean of the differences
## -0.375
mean(fcprdef$DEFIBPO)
## [1] 0.3333333
mean(fcprdef$DEFIBPR)
## [1] 0.625
t.test(fcprdef$DEFIBPO,fcprdef$DEFIBPR, paired = TRUE)
##
## Paired t-test
##
## data: fcprdef$DEFIBPO and fcprdef$DEFIBPR
## t = -2.0701, df = 23, p-value = 0.04986
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5831349679 -0.0001983654
## sample estimates:
## mean of the differences
## -0.2916667
These are regressions to test if any confounding variables are associated with CPT or CTS outcomes. All confounding variables relate to team composition.
For each regression, the following items are reported:
# head(freg[c("ED.MD","RT","NUMB","LeaderTWbin","X..TW","X..PALS","LEDEXP2","STAFFSIX","LDCODEREG","STAFFCODES")], n=50)
# fit11<- lm(CPTPre ~ ED.MD + RT + LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES, data=freg)
fit11<- lm(CPTPre ~ ED.MD + RT + NUMB + LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES + LPALS, data=freg)
summary(fit11)
##
## Call:
## lm(formula = CPTPre ~ ED.MD + RT + NUMB + LeaderTWbin + freg$X..TW +
## freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG +
## freg$STAFFCODES + LPALS, data = freg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.135915 -0.042473 0.004129 0.054686 0.154504
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.883751 0.189452 4.665 0.000546 ***
## ED.MD -0.008519 0.049143 -0.173 0.865260
## RT 0.007392 0.050802 0.145 0.886732
## NUMB -0.009747 0.013213 -0.738 0.474918
## LeaderTWbin 0.038867 0.056703 0.685 0.506087
## freg$X..TW -0.200588 0.119936 -1.672 0.120283
## freg$X..PALS 0.003076 0.175501 0.018 0.986304
## freg$LEDEXP2 -0.030326 0.015787 -1.921 0.078821 .
## freg$STAFFSIX 0.034083 0.135602 0.251 0.805801
## freg$LDCODEREG -0.008149 0.021467 -0.380 0.710879
## freg$STAFFCODES 0.113253 0.136966 0.827 0.424451
## LPALS -0.016253 0.054106 -0.300 0.769015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09976 on 12 degrees of freedom
## Multiple R-squared: 0.3958, Adjusted R-squared: -0.1581
## F-statistic: 0.7146 on 11 and 12 DF, p-value: 0.7074
# tab_model(fit11, vcov.fun = "vcovCL")
PostEstReg(DepVarVec = freg$CPTPre, RegObj = fit11)
## [1] "VIF:"
## ED.MD RT NUMB LeaderTWbin
## 2.659458 1.556105 1.490595 1.884752
## freg$X..TW freg$X..PALS freg$LEDEXP2 freg$STAFFSIX
## 1.553843 2.256168 1.376508 1.698070
## freg$LDCODEREG freg$STAFFCODES LPALS
## 1.505011 1.913060 1.752870
## [1] ""
## [1] ""
## [1] ""
## [1] ""
## [1] "correlation of actual and fitted"
## [1] 0.6291076
## [1] ""
## [1] ""
## [1] "correlation of predicted values and residuals"
## [1] 2.20752e-16
## [1] ""
## [1] ""
## [1] "Bootstrapped regression..."
## Loading required namespace: boot
##
## Number of bootstrap replications R = 992
## original bootBias bootSE bootMed
## (Intercept) 0.8837508 0.10976683 0.623660 0.9218012
## ED.MD -0.0085193 -0.00042760 0.130109 -0.0069392
## RT 0.0073917 0.01970943 0.122608 0.0256062
## NUMB -0.0097465 -0.00422023 0.040632 -0.0120304
## LeaderTWbin 0.0388669 -0.00416830 0.120821 0.0348260
## freg$X..TW -0.2005876 -0.03472042 0.348193 -0.2192862
## freg$X..PALS 0.0030760 -0.08223244 0.416323 -0.0639036
## freg$LEDEXP2 -0.0303256 -0.00928559 0.047974 -0.0356916
## freg$STAFFSIX 0.0340826 0.03334648 0.323008 0.0302424
## freg$LDCODEREG -0.0081486 -0.00035249 0.071189 -0.0097734
## freg$STAFFCODES 0.1132528 -0.03051203 0.487509 0.1094107
## LPALS -0.0162534 -0.00406958 0.111152 -0.0157150
## Bootstrap normal confidence intervals
##
## Estimate 5 % 95 %
## (Intercept) 0.883750842 -0.25184508 1.79981311
## ED.MD -0.008519334 -0.22210215 0.20591868
## RT 0.007391653 -0.21399067 0.18935511
## NUMB -0.009746540 -0.07236023 0.06130760
## LeaderTWbin 0.038866933 -0.15569806 0.24176853
## freg$X..TW -0.200587632 -0.73859309 0.40685865
## freg$X..PALS 0.003075991 -0.59948252 0.77009938
## freg$LEDEXP2 -0.030325562 -0.09995081 0.05787088
## freg$STAFFSIX 0.034082633 -0.53056525 0.53203757
## freg$LDCODEREG -0.008148639 -0.12489175 0.10929946
## freg$STAFFCODES 0.113252793 -0.65811633 0.94564597
## LPALS -0.016253413 -0.19501328 0.17064562
# fit11booted <- Boot(fit11, R = 1000)
# Confint(fit11booted, level=.90, type="norm")
# summary(fit11booted)
\
residualPlots(fit11)
## Test stat Pr(>|Test stat|)
## ED.MD 0.5603 0.58652
## RT -0.8009 0.44013
## NUMB -1.3417 0.20674
## LeaderTWbin -1.8342 0.09379 .
## freg$X..TW 0.0746 0.94191
## freg$X..PALS 0.3436 0.73760
## freg$LEDEXP2 -0.1585 0.87691
## freg$STAFFSIX -0.1907 0.85226
## freg$LDCODEREG -0.4731 0.64537
## freg$STAFFCODES 0.2924 0.77540
## LPALS -0.3539 0.73014
## Tukey test 0.1091 0.91315
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit12<- lm(CPTPost ~ ED.MD + RT + NUMB + freg$LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES + LPALS, data=freg)
summary(fit12)
##
## Call:
## lm(formula = CPTPost ~ ED.MD + RT + NUMB + freg$LeaderTWbin +
## freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX +
## freg$LDCODEREG + freg$STAFFCODES + LPALS, data = freg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.087417 -0.026652 -0.007017 0.017907 0.147134
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8114389 0.1345100 6.033 5.91e-05 ***
## ED.MD 0.0223593 0.0348912 0.641 0.5337
## RT -0.0150070 0.0360691 -0.416 0.6847
## NUMB 0.0008206 0.0093814 0.087 0.9317
## freg$LeaderTWbin 0.0402819 0.0402588 1.001 0.3368
## freg$X..TW -0.0836371 0.0851539 -0.982 0.3454
## freg$X..PALS 0.1010923 0.1246045 0.811 0.4330
## freg$LEDEXP2 -0.0234127 0.0112089 -2.089 0.0587 .
## freg$STAFFSIX -0.1134308 0.0962766 -1.178 0.2616
## freg$LDCODEREG -0.0072582 0.0152412 -0.476 0.6425
## freg$STAFFCODES 0.2414726 0.0972455 2.483 0.0288 *
## LPALS -0.0368509 0.0384153 -0.959 0.3563
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07083 on 12 degrees of freedom
## Multiple R-squared: 0.5794, Adjusted R-squared: 0.1938
## F-statistic: 1.503 on 11 and 12 DF, p-value: 0.2472
PostEstReg(DepVarVec = freg$CPTPost, RegObj = fit12)
## [1] "VIF:"
## ED.MD RT NUMB freg$LeaderTWbin
## 2.659458 1.556105 1.490595 1.884752
## freg$X..TW freg$X..PALS freg$LEDEXP2 freg$STAFFSIX
## 1.553843 2.256168 1.376508 1.698070
## freg$LDCODEREG freg$STAFFCODES LPALS
## 1.505011 1.913060 1.752870
## [1] ""
## [1] ""
## [1] ""
## [1] ""
## [1] "correlation of actual and fitted"
## [1] 0.7611689
## [1] ""
## [1] ""
## [1] "correlation of predicted values and residuals"
## [1] 3.027944e-16
## [1] ""
## [1] ""
## [1] "Bootstrapped regression..."
##
## Number of bootstrap replications R = 996
## original bootBias bootSE bootMed
## (Intercept) 0.81143889 0.01321214 0.379187 0.8110811
## ED.MD 0.02235927 0.00373942 0.076270 0.0256676
## RT -0.01500700 0.00083196 0.078708 -0.0163255
## NUMB 0.00082057 -0.00104905 0.026472 0.0022544
## freg$LeaderTWbin 0.04028192 -0.00365969 0.093578 0.0431576
## freg$X..TW -0.08363706 -0.00646201 0.278871 -0.0895615
## freg$X..PALS 0.10109233 -0.01948498 0.328186 0.1087617
## freg$LEDEXP2 -0.02341271 -0.00080677 0.027770 -0.0244021
## freg$STAFFSIX -0.11343078 0.02186688 0.232713 -0.1170034
## freg$LDCODEREG -0.00725822 0.00062539 0.060771 -0.0071425
## freg$STAFFCODES 0.24147256 0.03019908 0.426957 0.2502006
## LPALS -0.03685095 -0.00708956 0.084281 -0.0421819
## Bootstrap normal confidence intervals
##
## Estimate 5 % 95 %
## (Intercept) 0.8114388912 0.17451955 1.42193395
## ED.MD 0.0223592652 -0.10683264 0.14407233
## RT -0.0150070027 -0.14530133 0.11362341
## NUMB 0.0008205671 -0.04167376 0.04541299
## freg$LeaderTWbin 0.0402819179 -0.10997979 0.19786302
## freg$X..TW -0.0836370631 -0.53587743 0.38152731
## freg$X..PALS 0.1010923309 -0.41924133 0.66039595
## freg$LEDEXP2 -0.0234127071 -0.06828422 0.02307234
## freg$STAFFSIX -0.1134307768 -0.51807673 0.24748143
## freg$LDCODEREG -0.0072582158 -0.10784323 0.09207601
## freg$STAFFCODES 0.2414725580 -0.49100873 0.91355569
## LPALS -0.0368509488 -0.16839165 0.10886886
\
residualPlots(fit12)
## Test stat Pr(>|Test stat|)
## ED.MD -0.7047 0.49566
## RT -1.9108 0.08243 .
## NUMB 0.5350 0.60332
## freg$LeaderTWbin 0.3351 0.74386
## freg$X..TW 0.5026 0.62513
## freg$X..PALS 1.8226 0.09563 .
## freg$LEDEXP2 -1.7546 0.10711
## freg$STAFFSIX 0.2799 0.78473
## freg$LDCODEREG 0.0042 0.99676
## freg$STAFFCODES -0.2239 0.82694
## LPALS 1.7591 0.10631
## Tukey test -2.0901 0.03661 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
freg$CPTDELTA<-freg$CPTPost - freg$CPTPre
fit13<- lm(CPTDELTA ~ ED.MD + RT + NUMB + freg$LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES + LPALS, data=freg)
summary(fit13)
##
## Call:
## lm(formula = CPTDELTA ~ ED.MD + RT + NUMB + freg$LeaderTWbin +
## freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX +
## freg$LDCODEREG + freg$STAFFCODES + LPALS, data = freg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.169813 -0.035257 -0.008683 0.055430 0.131742
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0723120 0.1891733 -0.382 0.709
## ED.MD 0.0308786 0.0490706 0.629 0.541
## RT -0.0223987 0.0507272 -0.442 0.667
## NUMB 0.0105671 0.0131939 0.801 0.439
## freg$LeaderTWbin 0.0014150 0.0566195 0.025 0.980
## freg$X..TW 0.1169506 0.1197594 0.977 0.348
## freg$X..PALS 0.0980163 0.1752423 0.559 0.586
## freg$LEDEXP2 0.0069129 0.0157641 0.439 0.669
## freg$STAFFSIX -0.1475134 0.1354023 -1.089 0.297
## freg$LDCODEREG 0.0008904 0.0214351 0.042 0.968
## freg$STAFFCODES 0.1282198 0.1367649 0.938 0.367
## LPALS -0.0205975 0.0540268 -0.381 0.710
##
## Residual standard error: 0.09961 on 12 degrees of freedom
## Multiple R-squared: 0.265, Adjusted R-squared: -0.4087
## F-statistic: 0.3934 on 11 and 12 DF, p-value: 0.9335
PostEstReg(DepVarVec = freg$CPTDELTA, RegObj = fit13)
## [1] "VIF:"
## ED.MD RT NUMB freg$LeaderTWbin
## 2.659458 1.556105 1.490595 1.884752
## freg$X..TW freg$X..PALS freg$LEDEXP2 freg$STAFFSIX
## 1.553843 2.256168 1.376508 1.698070
## freg$LDCODEREG freg$STAFFCODES LPALS
## 1.505011 1.913060 1.752870
## [1] ""
## [1] ""
## [1] ""
## [1] ""
## [1] "correlation of actual and fitted"
## [1] 0.5147995
## [1] ""
## [1] ""
## [1] "correlation of predicted values and residuals"
## [1] -5.139585e-17
## [1] ""
## [1] ""
## [1] "Bootstrapped regression..."
##
## Number of bootstrap replications R = 995
## original bootBias bootSE bootMed
## (Intercept) -0.07231195 -0.08020562 0.611738 -0.1135667
## ED.MD 0.03087860 0.00243577 0.191579 0.0347095
## RT -0.02239866 -0.01595927 0.209446 -0.0366895
## NUMB 0.01056711 0.00532905 0.044783 0.0127844
## freg$LeaderTWbin 0.00141498 -0.00073591 0.202168 0.0043005
## freg$X..TW 0.11695057 0.01696532 0.484662 0.1245217
## freg$X..PALS 0.09801634 0.04567916 0.667974 0.1562587
## freg$LEDEXP2 0.00691285 0.00638003 0.084245 0.0127328
## freg$STAFFSIX -0.14751341 -0.01902163 0.493624 -0.1545153
## freg$LDCODEREG 0.00089042 -0.00347304 0.081514 0.0039974
## freg$STAFFCODES 0.12821977 0.08361575 0.493474 0.1518451
## LPALS -0.02059754 0.00456557 0.218090 -0.0166284
## Bootstrap normal confidence intervals
##
## Estimate 5 % 95 %
## (Intercept) -0.0723119509 -0.99832616 1.01411350
## ED.MD 0.0308785992 -0.28667640 0.34356205
## RT -0.0223986561 -0.35094670 0.33806793
## NUMB 0.0105671067 -0.06842307 0.07889919
## freg$LeaderTWbin 0.0014149850 -0.33038609 0.33468789
## freg$X..TW 0.1169505685 -0.69721240 0.89718289
## freg$X..PALS 0.0980163399 -1.04638268 1.15105703
## freg$LEDEXP2 0.0069128544 -0.13803710 0.13910274
## freg$STAFFSIX -0.1475134098 -0.94043175 0.68344820
## freg$LDCODEREG 0.0008904232 -0.12971493 0.13844186
## freg$STAFFCODES 0.1282197653 -0.76708873 0.85629675
## LPALS -0.0205975360 -0.38388916 0.33356295
\
residualPlots(fit13)
## Test stat Pr(>|Test stat|)
## ED.MD -1.0992 0.29516
## RT -0.4004 0.69650
## NUMB 1.8582 0.09008 .
## freg$LeaderTWbin 2.2194 0.04842 *
## freg$X..TW 0.2797 0.78489
## freg$X..PALS 0.8172 0.43117
## freg$LEDEXP2 -0.9849 0.34582
## freg$STAFFSIX 0.3917 0.70279
## freg$LDCODEREG 0.4769 0.64277
## freg$STAFFCODES -0.4548 0.65811
## LPALS 1.6224 0.13300
## Tukey test -0.3549 0.72264
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# fit11<- lm(CPTPre ~ ED.MD + RT + LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES, data=freg)
fit11<- lm(CTSPre ~ ED.MD + RT + NUMB + LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES + LPALS, data=freg)
summary(fit11)
##
## Call:
## lm(formula = CTSPre ~ ED.MD + RT + NUMB + LeaderTWbin + freg$X..TW +
## freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG +
## freg$STAFFCODES + LPALS, data = freg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.114836 -0.038243 -0.005925 0.038971 0.143783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.422189 0.164759 2.562 0.0249 *
## ED.MD 0.047396 0.042738 1.109 0.2892
## RT -0.004405 0.044180 -0.100 0.9222
## NUMB -0.008136 0.011491 -0.708 0.4925
## LeaderTWbin 0.036035 0.049312 0.731 0.4790
## freg$X..TW -0.045850 0.104303 -0.440 0.6680
## freg$X..PALS 0.002982 0.152626 0.020 0.9847
## freg$LEDEXP2 -0.021254 0.013730 -1.548 0.1476
## freg$STAFFSIX 0.117971 0.117927 1.000 0.3369
## freg$LDCODEREG 0.025142 0.018669 1.347 0.2029
## freg$STAFFCODES 0.142931 0.119114 1.200 0.2533
## LPALS -0.017302 0.047054 -0.368 0.7195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08675 on 12 degrees of freedom
## Multiple R-squared: 0.4369, Adjusted R-squared: -0.07921
## F-statistic: 0.8465 on 11 and 12 DF, p-value: 0.6053
# tab_model(fit11, vcov.fun = "vcovCL")
PostEstReg(DepVarVec = freg$CTSPre, RegObj = fit11)
## [1] "VIF:"
## ED.MD RT NUMB LeaderTWbin
## 2.659458 1.556105 1.490595 1.884752
## freg$X..TW freg$X..PALS freg$LEDEXP2 freg$STAFFSIX
## 1.553843 2.256168 1.376508 1.698070
## freg$LDCODEREG freg$STAFFCODES LPALS
## 1.505011 1.913060 1.752870
## [1] ""
## [1] ""
## [1] ""
## [1] ""
## [1] "correlation of actual and fitted"
## [1] 0.6610101
## [1] ""
## [1] ""
## [1] "correlation of predicted values and residuals"
## [1] -4.160405e-16
## [1] ""
## [1] ""
## [1] "Bootstrapped regression..."
##
## Number of bootstrap replications R = 991
## original bootBias bootSE bootMed
## (Intercept) 0.4221892 0.0553963 0.626883 0.4511148
## ED.MD 0.0473960 0.0092023 0.189839 0.0487597
## RT -0.0044055 0.0072545 0.158935 0.0076912
## NUMB -0.0081361 -0.0016673 0.054917 -0.0099196
## LeaderTWbin 0.0360346 0.0031613 0.143391 0.0345500
## freg$X..TW -0.0458505 -0.0403645 0.365794 -0.0672660
## freg$X..PALS 0.0029818 -0.0368204 0.480317 -0.0162316
## freg$LEDEXP2 -0.0212543 -0.0036889 0.041042 -0.0233082
## freg$STAFFSIX 0.1179707 0.0216531 0.406394 0.1090854
## freg$LDCODEREG 0.0251422 -0.0041422 0.079724 0.0222432
## freg$STAFFCODES 0.1429312 0.0300531 0.780996 0.1615154
## LPALS -0.0173019 -0.0061345 0.178564 -0.0164472
## Bootstrap normal confidence intervals
##
## Estimate 5 % 95 %
## (Intercept) 0.422189221 -0.66433753 1.39792346
## ED.MD 0.047395953 -0.27406388 0.35045112
## RT -0.004405464 -0.27308402 0.24976403
## NUMB -0.008136064 -0.09679991 0.08386245
## LeaderTWbin 0.036034595 -0.20298430 0.26873096
## freg$X..TW -0.045850476 -0.60716375 0.59619186
## freg$X..PALS 0.002981819 -0.75024907 0.82985352
## freg$LEDEXP2 -0.021254338 -0.08507392 0.04994312
## freg$STAFFSIX 0.117970688 -0.57214171 0.76477685
## freg$LDCODEREG 0.025142188 -0.10185072 0.16041944
## freg$STAFFCODES 0.142931189 -1.17174673 1.39750300
## LPALS -0.017301859 -0.30487873 0.28254393
\
residualPlots(fit11)
## Test stat Pr(>|Test stat|)
## ED.MD -1.3311 0.2101
## RT -0.0348 0.9728
## NUMB -0.8270 0.4258
## LeaderTWbin -1.2443 0.2393
## freg$X..TW -0.2805 0.7843
## freg$X..PALS 0.4596 0.6548
## freg$LEDEXP2 -1.1066 0.2921
## freg$STAFFSIX 1.0282 0.3260
## freg$LDCODEREG -1.6720 0.1227
## freg$STAFFCODES -0.5696 0.5804
## LPALS -0.0995 0.9226
## Tukey test -1.1319 0.2577
fit12<- lm(CTSPost ~ ED.MD + RT + NUMB + freg$LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES + LPALS, data=freg)
summary(fit12)
##
## Call:
## lm(formula = CTSPost ~ ED.MD + RT + NUMB + freg$LeaderTWbin +
## freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX +
## freg$LDCODEREG + freg$STAFFCODES + LPALS, data = freg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.14386 -0.04406 0.01818 0.03779 0.16831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.77315 0.19074 4.053 0.0016 **
## ED.MD 0.01949 0.04948 0.394 0.7005
## RT -0.02438 0.05115 -0.477 0.6422
## NUMB -0.01549 0.01330 -1.164 0.2670
## freg$LeaderTWbin -0.01264 0.05709 -0.221 0.8285
## freg$X..TW -0.03063 0.12075 -0.254 0.8041
## freg$X..PALS -0.12947 0.17669 -0.733 0.4778
## freg$LEDEXP2 -0.02342 0.01589 -1.473 0.1664
## freg$STAFFSIX 0.09057 0.13652 0.663 0.5196
## freg$LDCODEREG 0.02273 0.02161 1.052 0.3137
## freg$STAFFCODES 0.07675 0.13790 0.557 0.5881
## LPALS -0.02032 0.05447 -0.373 0.7157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1004 on 12 degrees of freedom
## Multiple R-squared: 0.4241, Adjusted R-squared: -0.1037
## F-statistic: 0.8035 on 11 and 12 DF, p-value: 0.638
PostEstReg(DepVarVec = freg$CTSPost, RegObj = fit12)
## [1] "VIF:"
## ED.MD RT NUMB freg$LeaderTWbin
## 2.659458 1.556105 1.490595 1.884752
## freg$X..TW freg$X..PALS freg$LEDEXP2 freg$STAFFSIX
## 1.553843 2.256168 1.376508 1.698070
## freg$LDCODEREG freg$STAFFCODES LPALS
## 1.505011 1.913060 1.752870
## [1] ""
## [1] ""
## [1] ""
## [1] ""
## [1] "correlation of actual and fitted"
## [1] 0.651263
## [1] ""
## [1] ""
## [1] "correlation of predicted values and residuals"
## [1] 1.14215e-16
## [1] ""
## [1] ""
## [1] "Bootstrapped regression..."
##
## Number of bootstrap replications R = 991
## original bootBias bootSE bootMed
## (Intercept) 0.773149 -0.0117094 0.512550 0.7696896
## ED.MD 0.019490 -0.0011364 0.124101 0.0306014
## RT -0.024375 -0.0034516 0.135527 -0.0229196
## NUMB -0.015486 0.0059371 0.082552 -0.0122750
## freg$LeaderTWbin -0.012636 -0.0129058 0.169199 -0.0097583
## freg$X..TW -0.030628 -0.0087547 0.382264 -0.0291101
## freg$X..PALS -0.129467 -0.0478203 0.933980 -0.1268113
## freg$LEDEXP2 -0.023418 0.0036551 0.051486 -0.0222434
## freg$STAFFSIX 0.090573 -0.0030826 0.495715 0.0817570
## freg$LDCODEREG 0.022728 0.0048745 0.071045 0.0241231
## freg$STAFFCODES 0.076747 -0.0227580 1.630457 0.0904374
## LPALS -0.020319 -0.0082181 0.150356 -0.0300588
## Bootstrap normal confidence intervals
##
## Estimate 5 % 95 %
## (Intercept) 0.77314874 -0.05821157 1.62792782
## ED.MD 0.01949043 -0.18350133 0.22475494
## RT -0.02437547 -0.24384567 0.20199785
## NUMB -0.01548592 -0.15720874 0.11436264
## freg$LeaderTWbin -0.01263592 -0.27803823 0.27857804
## freg$X..TW -0.03062819 -0.65064243 0.60689550
## freg$X..PALS -0.12946678 -1.61790742 1.45461454
## freg$LEDEXP2 -0.02341769 -0.11175962 0.05761411
## freg$STAFFSIX 0.09057297 -0.72172289 0.90903394
## freg$LDCODEREG 0.02272790 -0.09900531 0.13471203
## freg$STAFFCODES 0.07674716 -2.58235866 2.78136906
## LPALS -0.02031880 -0.25941358 0.23521220
\
residualPlots(fit12)
## Test stat Pr(>|Test stat|)
## ED.MD -1.4858 0.16543
## RT -0.3036 0.76709
## NUMB -0.2616 0.79850
## freg$LeaderTWbin 1.0755 0.30518
## freg$X..TW 0.0715 0.94430
## freg$X..PALS 1.4784 0.16736
## freg$LEDEXP2 -2.4659 0.03135 *
## freg$STAFFSIX 0.8382 0.41977
## freg$LDCODEREG -0.6528 0.52732
## freg$STAFFCODES -0.3888 0.70485
## LPALS 1.1960 0.25683
## Tukey test -0.0823 0.93441
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
freg$CTSDELTA<-freg$CTSPost - freg$CTSPre
fit13<- lm(CTSDELTA ~ ED.MD + RT + NUMB + freg$LeaderTWbin + freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX + freg$LDCODEREG + freg$STAFFCODES + LPALS, data=freg)
summary(fit13)
##
## Call:
## lm(formula = CTSDELTA ~ ED.MD + RT + NUMB + freg$LeaderTWbin +
## freg$X..TW + freg$X..PALS + freg$LEDEXP2 + freg$STAFFSIX +
## freg$LDCODEREG + freg$STAFFCODES + LPALS, data = freg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.154521 -0.040586 -0.005528 0.072272 0.171339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.350960 0.217482 1.614 0.133
## ED.MD -0.027906 0.056414 -0.495 0.630
## RT -0.019970 0.058318 -0.342 0.738
## NUMB -0.007350 0.015168 -0.485 0.637
## freg$LeaderTWbin -0.048671 0.065092 -0.748 0.469
## freg$X..TW 0.015222 0.137681 0.111 0.914
## freg$X..PALS -0.132449 0.201467 -0.657 0.523
## freg$LEDEXP2 -0.002163 0.018123 -0.119 0.907
## freg$STAFFSIX -0.027398 0.155665 -0.176 0.863
## freg$LDCODEREG -0.002414 0.024643 -0.098 0.924
## freg$STAFFCODES -0.066184 0.157231 -0.421 0.681
## LPALS -0.003017 0.062112 -0.049 0.962
##
## Residual standard error: 0.1145 on 12 degrees of freedom
## Multiple R-squared: 0.1981, Adjusted R-squared: -0.5369
## F-statistic: 0.2696 on 11 and 12 DF, p-value: 0.9811
PostEstReg(DepVarVec = freg$CTSDELTA, RegObj = fit13)
## [1] "VIF:"
## ED.MD RT NUMB freg$LeaderTWbin
## 2.659458 1.556105 1.490595 1.884752
## freg$X..TW freg$X..PALS freg$LEDEXP2 freg$STAFFSIX
## 1.553843 2.256168 1.376508 1.698070
## freg$LDCODEREG freg$STAFFCODES LPALS
## 1.505011 1.913060 1.752870
## [1] ""
## [1] ""
## [1] ""
## [1] ""
## [1] "correlation of actual and fitted"
## [1] 0.4451374
## [1] ""
## [1] ""
## [1] "correlation of predicted values and residuals"
## [1] -3.394721e-16
## [1] ""
## [1] ""
## [1] "Bootstrapped regression..."
##
## Number of bootstrap replications R = 999
## original bootBias bootSE bootMed
## (Intercept) 0.3509595 -0.02115166 1.073547 0.34893345
## ED.MD -0.0279055 -0.01968903 0.305071 -0.02724498
## RT -0.0199700 -0.01968962 0.173990 -0.04102681
## NUMB -0.0073499 -0.00026968 0.118294 -0.00583900
## freg$LeaderTWbin -0.0486705 -0.00787419 0.390572 -0.05864105
## freg$X..TW 0.0152223 0.00700997 0.613647 0.03320488
## freg$X..PALS -0.1324486 0.08193324 1.703758 -0.11690642
## freg$LEDEXP2 -0.0021634 0.00724656 0.078972 -0.00017402
## freg$STAFFSIX -0.0273977 -0.03796575 0.790798 -0.04866812
## freg$LDCODEREG -0.0024143 -0.00469481 0.351048 0.00177152
## freg$STAFFCODES -0.0661840 0.03321301 1.196170 -0.06492926
## LPALS -0.0030169 0.00415726 0.184171 -0.00724722
## Bootstrap normal confidence intervals
##
## Estimate 5 % 95 %
## (Intercept) 0.350959522 -1.3937157 2.1379381
## ED.MD -0.027905520 -0.5100142 0.4935812
## RT -0.019970006 -0.2864681 0.2859074
## NUMB -0.007349857 -0.2016567 0.1874964
## freg$LeaderTWbin -0.048670518 -0.6832295 0.6016368
## freg$X..TW 0.015222286 -1.0011465 1.0175712
## freg$X..PALS -0.132448598 -3.0168140 2.5880504
## freg$LEDEXP2 -0.002163356 -0.1393066 0.1204867
## freg$STAFFSIX -0.027397716 -1.2901786 1.3113147
## freg$LDCODEREG -0.002414293 -0.5751415 0.5797025
## freg$STAFFCODES -0.066184032 -2.0669224 1.8681283
## LPALS -0.003016942 -0.3101080 0.2957596
\
residualPlots(fit13)
## Test stat Pr(>|Test stat|)
## ED.MD -0.2541 0.80413
## RT -0.2394 0.81520
## NUMB 0.3817 0.70994
## freg$LeaderTWbin 2.1092 0.05866 .
## freg$X..TW 0.2754 0.78814
## freg$X..PALS 0.8676 0.40413
## freg$LEDEXP2 -0.9805 0.34791
## freg$STAFFSIX -0.0313 0.97562
## freg$LDCODEREG 0.5779 0.57494
## freg$STAFFCODES 0.0866 0.93252
## LPALS 1.1211 0.28611
## Tukey test 0.1958 0.84478
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cor(freg[c("ED.MD", "RT", "Pharm", "NUMB","LeaderTWbin", "X..TW", "X..PALS", "LEDEXP2", "STAFFSIX", "LDCODEREG", "STAFFCODES")])
## ED.MD RT Pharm NUMB LeaderTWbin
## ED.MD 1.00000000 -0.30831321 0.17513348 -0.099686506 -0.38564688
## RT -0.30831321 1.00000000 0.08606630 0.465061815 0.00000000
## Pharm 0.17513348 0.08606630 1.00000000 0.337363248 0.30550505
## NUMB -0.09968651 0.46506181 0.33736325 1.000000000 -0.04866321
## LeaderTWbin -0.38564688 0.00000000 0.30550505 -0.048663206 1.00000000
## X..TW -0.17093398 0.15356711 -0.16267019 -0.035229490 0.27022506
## X..PALS -0.28718487 0.25342902 0.07654671 0.231060976 0.04202907
## LEDEXP2 -0.27335411 0.08260358 -0.09242199 -0.127442791 0.20012993
## STAFFSIX -0.10414788 0.05621465 -0.04024492 0.005149436 -0.17233192
## LDCODEREG -0.22520343 0.07161149 0.16641006 0.147488117 0.25419556
## STAFFCODES -0.31811800 0.23100031 -0.22288030 0.241155275 -0.14042924
## X..TW X..PALS LEDEXP2 STAFFSIX
## ED.MD -0.1709339759 -0.28718487 -0.2733541074 -0.104147880
## RT 0.1535671119 0.25342902 0.0826035775 0.056214652
## Pharm -0.1626701858 0.07654671 -0.0924219921 -0.040244919
## NUMB -0.0352294905 0.23106098 -0.1274427914 0.005149436
## LeaderTWbin 0.2702250594 0.04202907 0.2001299264 -0.172331918
## X..TW 1.0000000000 -0.23561896 -0.0004336818 -0.057511233
## X..PALS -0.2356189573 1.00000000 -0.1150719584 0.428590107
## LEDEXP2 -0.0004336818 -0.11507196 1.0000000000 0.140361290
## STAFFSIX -0.0575112329 0.42859011 0.1403612899 1.000000000
## LDCODEREG -0.2182515138 0.11094511 0.2070377769 -0.082159140
## STAFFCODES 0.1416727951 -0.13223828 0.0623773789 0.131813183
## LDCODEREG STAFFCODES
## ED.MD -0.22520343 -0.31811800
## RT 0.07161149 0.23100031
## Pharm 0.16641006 -0.22288030
## NUMB 0.14748812 0.24115527
## LeaderTWbin 0.25419556 -0.14042924
## X..TW -0.21825151 0.14167280
## X..PALS 0.11094511 -0.13223828
## LEDEXP2 0.20703778 0.06237738
## STAFFSIX -0.08215914 0.13181318
## LDCODEREG 1.00000000 0.25335802
## STAFFCODES 0.25335802 1.00000000
cor(freg[c("ED.MD", "RT", "NUMB","LeaderTWbin", "X..TW", "X..PALS", "LEDEXP2", "STAFFSIX", "LDCODEREG", "STAFFCODES")])
## ED.MD RT NUMB LeaderTWbin X..TW
## ED.MD 1.00000000 -0.30831321 -0.099686506 -0.38564688 -0.1709339759
## RT -0.30831321 1.00000000 0.465061815 0.00000000 0.1535671119
## NUMB -0.09968651 0.46506181 1.000000000 -0.04866321 -0.0352294905
## LeaderTWbin -0.38564688 0.00000000 -0.048663206 1.00000000 0.2702250594
## X..TW -0.17093398 0.15356711 -0.035229490 0.27022506 1.0000000000
## X..PALS -0.28718487 0.25342902 0.231060976 0.04202907 -0.2356189573
## LEDEXP2 -0.27335411 0.08260358 -0.127442791 0.20012993 -0.0004336818
## STAFFSIX -0.10414788 0.05621465 0.005149436 -0.17233192 -0.0575112329
## LDCODEREG -0.22520343 0.07161149 0.147488117 0.25419556 -0.2182515138
## STAFFCODES -0.31811800 0.23100031 0.241155275 -0.14042924 0.1416727951
## X..PALS LEDEXP2 STAFFSIX LDCODEREG STAFFCODES
## ED.MD -0.28718487 -0.2733541074 -0.104147880 -0.22520343 -0.31811800
## RT 0.25342902 0.0826035775 0.056214652 0.07161149 0.23100031
## NUMB 0.23106098 -0.1274427914 0.005149436 0.14748812 0.24115527
## LeaderTWbin 0.04202907 0.2001299264 -0.172331918 0.25419556 -0.14042924
## X..TW -0.23561896 -0.0004336818 -0.057511233 -0.21825151 0.14167280
## X..PALS 1.00000000 -0.1150719584 0.428590107 0.11094511 -0.13223828
## LEDEXP2 -0.11507196 1.0000000000 0.140361290 0.20703778 0.06237738
## STAFFSIX 0.42859011 0.1403612899 1.000000000 -0.08215914 0.13181318
## LDCODEREG 0.11094511 0.2070377769 -0.082159140 1.00000000 0.25335802
## STAFFCODES -0.13223828 0.0623773789 0.131813183 0.25335802 1.00000000
library(xlsx)
library(irr)
fjicc <- read.xlsx(file="Jafri-ICC-20190625.xlsx", sheetIndex = 1, header=TRUE)
# View(fjicc)
# names(fjicc)
fjcpticc <- fjicc[c("CPT_J", "CPT_S", "CPT_K")]
# View(fjcpticc)
icc(fjcpticc, model="twoway", type="agreement", unit="single")
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 48
## Raters = 3
## ICC(A,1) = 0.528
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(47,34.1) = 5.44 , p = 7.19e-07
##
## 95%-Confidence Interval for ICC Population Values:
## 0.317 < ICC < 0.696
fjctsicc <- fjicc[c("CTS_J", "CTS_S", "CTS_K")]
# View(fjctsicc)
icc(fjctsicc, model="twoway", type="agreement", unit="single")
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 48
## Raters = 3
## ICC(A,1) = 0.43
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(47,21.8) = 4.5 , p = 0.000174
##
## 95%-Confidence Interval for ICC Population Values:
## 0.185 < ICC < 0.631