Introduction

library(readr)
pokemon <- read_csv("C://Users//ASUS//Downloads//pokemon.csv")
library(dplyr)
library(sjPlot)
library(snakecase)
library(ggplot2)
library(dunn.test)

Your boss has asked you to do the following tasks and present them in an .html:

1st task

Compare the share of legendary pokemons across all the generations (variables: is_legendary, generation). If yes, name the “most legendary” generation of all.

table1 <- table(pokemon$is_legendary, pokemon$generation)
table1 
##    
##       1   2   3   4   5   6   7
##   0 146  94 125  94 143  66  63
##   1   5   6  10  13  13   6  17

In the table we can see numbers of pokemons in all generations: the row, named “0”, shows the number of non-legendary pokemons in each generation, the row, named “1” shows the number of legendary ones. We see, that 7th generation has the biggest number of legendary pokemons, but we cannot say exacltly does it show the relation between it’s generation and being legendary. Let’s check it more precisily with chi-sq test.

chi <- chisq.test(table1)
chi
## 
##  Pearson's Chi-squared test
## 
## data:  table1
## X-squared = 24.127, df = 6, p-value = 0.0004949
chi$stdres
##    
##              1          2          3          4          5          6
##   0  2.6217914  1.0367789  0.6008514 -1.3420409  0.1999744  0.1277893
##   1 -2.6217914 -1.0367789 -0.6008514  1.3420409 -0.1999744 -0.1277893
##    
##              7
##   0 -4.1764550
##   1  4.1764550

Conclusion: p-value is less than .05 -> there is some assosiation. Then we have to look at residuals: to be statitically significant their module have to be > 1.8. And the bigger is it - the better. The biggest assosiation is seen for the 7th generation, it’s residual for being legendary is 4.17, which means that pokemons from the 7th generation tend to be legendary more often, than pokemons from other generations.

2nd task

Are the attack, defense, weight, and speed characteristics of pokemons related? Run a correlation matrix to learn that! Report the statistically significant results (variables: sp_attack, sp_defense, speed, weight_kg).

task_2 <- pokemon %>% select(sp_attack, sp_defense, speed, weight_kg)
task_2 <- na.omit(task_2)
cor(task_2)
##            sp_attack sp_defense      speed  weight_kg
## sp_attack  1.0000000  0.5048682 0.44534428 0.24521797
## sp_defense 0.5048682  1.0000000 0.22357290 0.30652308
## speed      0.4453443  0.2235729 1.00000000 0.05138394
## weight_kg  0.2452180  0.3065231 0.05138394 1.00000000

By and large, the attack, defense, weight, and speed characteristics of pokemons are not related. The results are not statistically significant for the pairs of our variables. However, there might be a reeeeeeaaly slight statistically significance for weight and speed - p-value for it is nearly equal .05. The same reaults are shown in the table below.

sjp.corr(task_2, show.legend = T)

3rd task

Is the speed of pokemons different across the primary type of pokemons (variables:speed, type1)? Check with a formal test. Name the most distinct type of pokemons by speed.

Firstly, let’s visualise it, to see any noticable differences.

boxplot(pokemon$speed ~ pokemon$type1)

Well… it seems that the speed means of different types can be really different, but we are not sure is that conclusion statistically signofocant. I’ll use ANOVA to answer these questions. To check

oneway.test(pokemon$speed ~ pokemon$type1, var.equal = T)
## 
##  One-way analysis of means
## 
## data:  pokemon$speed and pokemon$type1
## F = 3.5553, num df = 17, denom df = 783, p-value = 1.672e-06
aov.out <- aov(pokemon$speed ~ pokemon$type1) 
summary(aov.out)
##                Df Sum Sq Mean Sq F value   Pr(>F)    
## pokemon$type1  17  47906  2818.0   3.555 1.67e-06 ***
## Residuals     783 620616   792.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P-value is veeeery small - it’s good. Now we can say: YES, the speed of pokemons IS different across the primary type of pokemons.

To see the most distinct type of pokemons by speed I’ll use……………..

Хуйня1:

TukeyHSD(aov.out)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = pokemon$speed ~ pokemon$type1)
## 
## $`pokemon$type1`
##                           diff         lwr        upr     p adj
## dark-bug           11.74090038   -9.934098  33.415899 0.9127770
## dragon-bug         12.54166667   -9.698247  34.781581 0.8808551
## electric-bug       21.84081197    2.246655  41.434969 0.0124578
## fairy-bug          -9.90277778  -35.873402  16.067847 0.9974961
## fighting-bug        0.71626984  -21.232914  22.665454 1.0000000
## fire-bug            9.77670940   -8.158504  27.711923 0.9082681
## flying-bug         36.09722222  -21.974859  94.169304 0.7691356
## ghost-bug          -5.23611111  -27.476025  17.003803 0.9999965
## grass-bug          -4.54380342  -20.650101  11.562494 0.9999515
## ground-bug         -3.60069444  -24.538881  17.337492 1.0000000
## ice-bug            -0.83031401  -24.434839  22.774211 1.0000000
## normal-bug          5.96388889   -9.115696  21.043473 0.9961502
## poison-bug          0.61805556  -20.320131  21.556242 1.0000000
## psychic-bug        11.58149895   -6.255199  29.418197 0.7028121
## rock-bug           -6.14722222  -24.874906  12.580461 0.9996185
## steel-bug          -6.98611111  -30.214944  16.242721 0.9998820
## water-bug           0.35160819  -14.483866  15.187082 1.0000000
## dragon-dark         0.80076628  -25.555068  27.156601 1.0000000
## electric-dark      10.09991158  -14.065088  34.264911 0.9927961
## fairy-dark        -21.64367816  -51.215448   7.928091 0.4834427
## fighting-dark     -11.02463054  -37.135603  15.086342 0.9919431
## fire-dark          -1.96419098  -24.804684  20.876302 1.0000000
## flying-dark        24.35632184  -35.413092  84.125736 0.9945749
## ghost-dark        -16.97701149  -43.332846   9.378823 0.7156480
## grass-dark        -16.28470380  -37.719000   5.149592 0.4109502
## ground-dark       -15.34159483  -40.608646   9.925457 0.8007264
## ice-dark          -12.57121439  -40.088297  14.945868 0.9814886
## normal-dark        -5.77701149  -26.450910  14.896887 0.9999576
## poison-dark       -11.12284483  -36.389896  14.144207 0.9873816
## psychic-dark       -0.15940143  -22.922618  22.603815 1.0000000
## rock-dark         -17.88812261  -41.356023   5.579778 0.4046695
## steel-dark        -18.72701149  -45.922505   8.468482 0.6000999
## water-dark        -11.38929220  -31.885817   9.107233 0.8934512
## electric-dragon     9.29914530  -15.373824  33.972115 0.9978221
## fairy-dragon      -22.44444444  -52.432738   7.543850 0.4399475
## fighting-dragon   -11.82539683  -38.407178  14.756385 0.9859111
## fire-dragon        -2.76495726  -26.142218  20.612304 1.0000000
## flying-dragon      23.55555556  -36.421032  83.532143 0.9964503
## ghost-dragon      -17.77777778  -44.600123   9.044568 0.6684113
## grass-dragon      -17.08547009  -39.090862   4.919922 0.3696336
## ground-dragon     -16.14236111  -41.895654   9.610932 0.7571817
## ice-dragon        -13.37198068  -41.336209  14.592248 0.9709684
## normal-dragon      -6.57777778  -27.843203  14.687647 0.9998271
## poison-dragon     -11.92361111  -37.676904  13.829682 0.9788303
## psychic-dragon     -0.96016771  -24.261932  22.341597 1.0000000
## rock-dragon       -18.68888889  -42.679524   5.301746 0.3633989
## steel-dragon      -19.52777778  -47.175619   8.120063 0.5523110
## water-dragon      -12.19005848  -33.283084   8.902967 0.8574912
## fairy-electric    -31.74358974  -59.825879  -3.661300 0.0101273
## fighting-electric -21.12454212  -45.535775   3.286691 0.1888464
## fire-electric     -12.06410256  -32.940250   8.812045 0.8575433
## flying-electric    14.25641026  -44.790252  73.303072 0.9999949
## ghost-electric    -27.07692308  -51.749892  -2.403954 0.0155631
## grass-electric    -26.38461538  -45.712172  -7.057058 0.0003012
## ground-electric   -25.44150641  -48.947874  -1.935139 0.0188444
## ice-electric      -22.67112598  -48.580878   3.238626 0.1737773
## normal-electric   -15.87692308  -34.357602   2.603756 0.1991003
## poison-electric   -21.22275641  -44.729124   2.283611 0.1352016
## psychic-electric  -10.25931301  -31.050884  10.532258 0.9609914
## rock-electric     -27.98803419  -49.548827  -6.427242 0.0008871
## steel-electric    -28.82692308  -54.394878  -3.258968 0.0105268
## water-electric    -21.48920378  -39.771242  -3.207165 0.0054784
## fighting-fairy     10.61904762  -19.154274  40.392369 0.9988937
## fire-fairy         19.67948718   -7.271503  46.630478 0.4879937
## flying-fairy       46.00000000  -15.457714 107.457714 0.4398388
## ghost-fairy         4.66666667  -25.321627  34.654961 1.0000000
## grass-fairy         5.35897436  -20.411102  31.129050 0.9999995
## ground-fairy        6.30208333  -22.733957  35.338124 0.9999990
## ice-fairy           9.07246377  -21.941366  40.086293 0.9999195
## normal-fairy       15.86666667   -9.274492  41.007825 0.7471384
## poison-fairy       10.52083333  -18.515207  39.556874 0.9986537
## psychic-fairy      21.48427673   -5.401255  48.369808 0.3167357
## rock-fairy          3.75555556  -23.729170  31.240281 1.0000000
## steel-fairy         2.91666667  -27.812190  33.645524 1.0000000
## water-fairy        10.25438596  -14.741120  35.249891 0.9941478
## fire-fighting       9.06043956  -14.040410  32.161289 0.9965062
## flying-fighting    35.38095238  -24.488439  95.250343 0.8334572
## ghost-fighting     -5.95238095  -32.534162  20.629401 0.9999983
## grass-fighting     -5.26007326  -26.971594  16.451448 0.9999946
## ground-fighting    -4.31696429  -29.819611  21.185683 1.0000000
## ice-fighting       -1.54658385  -29.280155  26.186987 1.0000000
## normal-fighting     5.24761905  -15.713564  26.208802 0.9999913
## poison-fighting    -0.09821429  -25.600861  25.404433 1.0000000
## psychic-fighting   10.86522911  -12.159217  33.889675 0.9744544
## rock-fighting      -6.86349206  -30.584864  16.857879 0.9999309
## steel-fighting     -7.70238095  -35.116903  19.712141 0.9999542
## water-fighting     -0.36466165  -21.150922  20.421599 1.0000000
## flying-fire        26.32051282  -32.196572  84.837598 0.9842099
## ghost-fire        -15.01282051  -38.390082   8.364441 0.7204420
## grass-fire        -14.32051282  -31.964078   3.323052 0.2893215
## ground-fire       -13.37740385  -35.519902   8.765094 0.8070720
## ice-fire          -10.60702341  -35.286087  14.072040 0.9902234
## normal-fire        -3.81282051  -20.524386  12.898745 0.9999978
## poison-fire        -9.15865385  -31.301152  12.983844 0.9935846
## psychic-fire        1.80478955  -17.431384  21.040963 1.0000000
## rock-fire         -15.92393162  -35.989043   4.141180 0.3291539
## steel-fire        -16.76282051  -41.082796   7.557155 0.5983406
## water-fire         -9.42510121  -25.916731   7.066529 0.8685085
## ghost-flying      -41.33333333 -101.309921  18.643255 0.5986192
## grass-flying      -40.64102564  -98.623697  17.341645 0.5668859
## ground-flying     -39.69791667  -99.204093  19.808259 0.6571568
## ice-flying        -36.92753623  -97.423412  23.568339 0.7938291
## normal-flying     -30.13333333  -87.839236  27.572569 0.9355629
## poison-flying     -35.47916667  -94.985343  24.027009 0.8231807
## psychic-flying    -24.51572327  -83.002689  33.971242 0.9925622
## rock-flying       -42.24444444 -101.009259  16.520370 0.5183565
## steel-flying      -43.08333333 -103.433611  17.266944 0.5318048
## water-flying      -35.74561404  -93.388208  21.896980 0.7724532
## grass-ghost         0.69230769  -21.313084  22.697699 1.0000000
## ground-ghost        1.63541667  -24.117876  27.388710 1.0000000
## ice-ghost           4.40579710  -23.558431  32.370025 1.0000000
## normal-ghost       11.20000000  -10.065425  32.465425 0.9307322
## poison-ghost        5.85416667  -19.899126  31.607460 0.9999979
## psychic-ghost      16.81761006   -6.484155  40.119375 0.5106646
## rock-ghost         -0.91111111  -24.901746  23.079524 1.0000000
## steel-ghost        -1.75000000  -29.397841  25.897841 1.0000000
## water-ghost         5.58771930  -15.505307  26.680745 0.9999802
## ground-grass        0.94310897  -19.745805  21.632023 1.0000000
## ice-grass           3.71348941  -19.670204  27.097183 1.0000000
## normal-grass       10.50769231   -4.223817  25.239201 0.5334465
## poison-grass        5.16185897  -15.527055  25.850773 0.9999917
## psychic-grass      16.12530237   -1.418109  33.668714 0.1158630
## rock-grass         -1.60341880  -20.051986  16.845148 1.0000000
## steel-grass        -2.44230769  -25.446702  20.562086 1.0000000
## water-grass         4.89541161   -9.586121  19.376944 0.9994404
## ice-ground          2.77038043  -24.170146  29.710907 1.0000000
## normal-ground       9.56458333  -10.335472  29.464639 0.9695145
## poison-ground       4.21875000  -20.419148  28.856648 1.0000000
## psychic-ground     15.18219340   -6.880584  37.244970 0.6013661
## rock-ground        -2.54652778  -25.335658  20.242603 1.0000000
## steel-ground       -3.38541667  -29.997388  23.226554 1.0000000
## water-ground        3.95230263  -15.763418  23.668023 0.9999997
## normal-ice          6.79420290  -15.894520  29.482926 0.9998888
## poison-ice          1.44836957  -25.492157  28.388896 1.0000000
## psychic-ice        12.41181296  -12.195749  37.019375 0.9523844
## rock-ice           -5.31690821  -30.577756  19.943939 0.9999994
## steel-ice          -6.15579710  -34.912761  22.601166 0.9999992
## water-ice           1.18192220  -21.345297  23.709141 1.0000000
## poison-normal      -5.34583333  -25.245889  14.554222 0.9999758
## psychic-normal      5.61761006  -10.988182  22.223402 0.9994351
## rock-normal       -12.11111111  -29.670458   5.448236 0.5970948
## steel-normal      -12.95000000  -35.247605   9.347605 0.8524052
## water-normal       -5.61228070  -18.942541   7.717979 0.9921919
## psychic-poison     10.96344340  -11.099334  33.026220 0.9583906
## rock-poison        -6.76527778  -29.554408  16.023853 0.9999014
## steel-poison       -7.60416667  -34.216138  19.007804 0.9999420
## water-poison       -0.26644737  -19.982168  19.449273 1.0000000
## rock-psychic      -17.72872117  -37.705823   2.248381 0.1556390
## steel-psychic     -18.56761006  -42.815025   5.679805 0.3958533
## water-psychic     -11.22989076  -27.614327   5.154546 0.6087110
## steel-rock         -0.83888889  -25.749037  24.071259 1.0000000
## water-rock          6.49883041  -10.851331  23.848992 0.9979790
## water-steel         7.33771930  -14.795528  29.470966 0.9995654
plot(TukeyHSD(aov.out), las = 1)

Хуйня2:

pairwise.t.test(pokemon$speed, pokemon$type1, adjust = "bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  pokemon$speed and pokemon$type1 
## 
##          bug     dark    dragon  electric fairy   fighting fire    flying 
## dark     1.00000 -       -       -        -       -        -       -      
## dragon   1.00000 1.00000 -       -        -       -        -       -      
## electric 0.01534 1.00000 1.00000 -        -       -        -       -      
## fairy    1.00000 1.00000 1.00000 0.01242  -       -        -       -      
## fighting 1.00000 1.00000 1.00000 0.35708  1.00000 -        -       -      
## fire     1.00000 1.00000 1.00000 1.00000  1.00000 1.00000  -       -      
## flying   1.00000 1.00000 1.00000 1.00000  1.00000 1.00000  1.00000 -      
## ghost    1.00000 1.00000 1.00000 0.01942  1.00000 1.00000  1.00000 1.00000
## grass    1.00000 1.00000 0.90657 0.00032  1.00000 1.00000  0.64091 1.00000
## ground   1.00000 1.00000 1.00000 0.02381  1.00000 1.00000  1.00000 1.00000
## ice      1.00000 1.00000 1.00000 0.32185  1.00000 1.00000  1.00000 1.00000
## normal   1.00000 1.00000 1.00000 0.38078  1.00000 1.00000  1.00000 1.00000
## poison   1.00000 1.00000 1.00000 0.23556  1.00000 1.00000  1.00000 1.00000
## psychic  1.00000 1.00000 1.00000 1.00000  0.72865 1.00000  1.00000 1.00000
## rock     1.00000 1.00000 0.88884 0.00097  1.00000 1.00000  0.76711 1.00000
## steel    1.00000 1.00000 1.00000 0.01287  1.00000 1.00000  1.00000 1.00000
## water    1.00000 1.00000 1.00000 0.00648  1.00000 1.00000  1.00000 1.00000
##          ghost   grass   ground  ice     normal  poison  psychic rock   
## dark     -       -       -       -       -       -       -       -      
## dragon   -       -       -       -       -       -       -       -      
## electric -       -       -       -       -       -       -       -      
## fairy    -       -       -       -       -       -       -       -      
## fighting -       -       -       -       -       -       -       -      
## fire     -       -       -       -       -       -       -       -      
## flying   -       -       -       -       -       -       -       -      
## ghost    -       -       -       -       -       -       -       -      
## grass    1.00000 -       -       -       -       -       -       -      
## ground   1.00000 1.00000 -       -       -       -       -       -      
## ice      1.00000 1.00000 1.00000 -       -       -       -       -      
## normal   1.00000 1.00000 1.00000 1.00000 -       -       -       -      
## poison   1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -      
## psychic  1.00000 0.19518 1.00000 1.00000 1.00000 1.00000 -       -      
## rock     1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.28045 -      
## steel    1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## water    1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
##          steel  
## dark     -      
## dragon   -      
## electric -      
## fairy    -      
## fighting -      
## fire     -      
## flying   -      
## ghost    -      
## grass    -      
## ground   -      
## ice      -      
## normal   -      
## poison   -      
## psychic  -      
## rock     -      
## steel    -      
## water    1.00000
## 
## P value adjustment method: holm

ПОХУЙ, получаем -1 балл, потому что не ебем как делать эту хуету, но пара grass&electric seems to be showing the most significant difference.

4th task

Is the attack skill of legendary pokemons statistifcally significantly higher than among the non-legendary pokemons? Check with a formal test.

First - visualise:

boxplot(pokemon$sp_attack ~ pokemon$is_legendary)

Here we see that the means are different, but we can’t say is this difference signofocant. Let’s chech it with T-test.

t.test(pokemon$sp_attack ~ pokemon$is_legendary, var.equal = T)
## 
##  Two Sample t-test
## 
## data:  pokemon$sp_attack by pokemon$is_legendary
## t = -12.568, df = 799, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -53.78143 -39.25132
## sample estimates:
## mean in group 0 mean in group 1 
##        67.24077       113.75714

P-value < 0.05 - the difference is stastistically significant. Now we can surely say: the attack skill of legendary pokemons is statistifcally significantly higher than among the non-legendary pokemons.

5th task

Now, predict the hit point (hp) of pokemons with their defense skill, attack skill, and their legendary status. Your boss asks you to check whether defense works differently for legendary pokemons as compared to non-legendary ones. (Variables: hp, sp_attack, sp_defense, is_legendary).

In order to predict the hit point let’s use linear regression. First - models

model_ad <- lm(hp ~ sp_attack + sp_defense + is_legendary, data = pokemon) 
summary(model_ad) 
## 
## Call:
## lm(formula = hp ~ sp_attack + sp_defense + is_legendary, data = pokemon)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.475 -13.666  -3.656   9.178 181.106 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.90938    2.58978  16.183  < 2e-16 ***
## sp_attack     0.15816    0.03165   4.997 7.17e-07 ***
## sp_defense    0.20428    0.03566   5.729 1.43e-08 ***
## is_legendary 14.71406    3.31557   4.438 1.04e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.85 on 797 degrees of freedom
## Multiple R-squared:  0.1975, Adjusted R-squared:  0.1945 
## F-statistic:  65.4 on 3 and 797 DF,  p-value: < 2.2e-16

In this model, we can see that p-value is less than 0.05 meaning that our model is better than having no model. Adjusted R-squared value is equal to 0.19 meaning that the model explains about 19% of variance of the predicted variable.

The equation linear model is the following:

\[ HitPointOfPokemons = 41.9 + 0.16 * AttackSkill + 0.2 * DefenseSkill + 14.7 * IfLegendary \]

Which means, that when pokemon’s defense skill and attack skill are equal to 0 and they are not legendary, their hit point is equal to 41.9. Meanwhile, With every additional attack skill, a pokemon’s hit point is 0.16 more, With every additional defense skill, a pokemon’s hit point is 0.2 more, and if it is legendary, theur hit point increases by 14.7.

To check whether defense works differently for legendary pokemons as compared to non-legendary ones I will create interaction linear model:

model_int <- lm(hp ~ sp_defense * is_legendary, data = pokemon) 
summary(model_int) 
## 
## Call:
## lm(formula = hp ~ sp_defense * is_legendary, data = pokemon)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -98.076 -14.111  -2.736   9.734 171.765 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              44.7677     2.4947  17.945  < 2e-16 ***
## sp_defense                0.3187     0.0343   9.292  < 2e-16 ***
## is_legendary             53.5197    10.7736   4.968 8.29e-07 ***
## sp_defense:is_legendary  -0.3468     0.1047  -3.312 0.000967 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.06 on 797 degrees of freedom
## Multiple R-squared:  0.1836, Adjusted R-squared:  0.1806 
## F-statistic: 59.76 on 3 and 797 DF,  p-value: < 2.2e-16

In this model, we can see that p-value is less than 0.05 meaning that our model is better than having no model. Adjusted R-squared value is equal to 0.18 meaning that the model explains about 18% of variance of the predicted variable.

The first equation linear model is for both legendary pokemons and not. and the second one is only for non-legendary pokemons:

\[ HitPointOfPokemons(L) = 44.7 + 0.31 * DefenseSkill + 53.5 * IfLegendary - 0.34 * DefenseSkill * IfLegendary \]

\[ HitPointOfPokemons(NL) = 44.7 + 0.31 * DefenseSkill \] In other words, if pokemon’s defense skill is 50 and it is legendary, it’s hit point will be equal to:

\[ 44.7 + 0.31 * 50 + 53.5 - 0.34 * 50 = 96.7 \] … and if it is non-legendary, it’s hit point will be equal to:

\[ 44.7 + 0.31 * 50 = 60.2 \]

On the graph below we can see that defense works differently for legendary pokemons as compared to non-legendary ones while their defense skill is less than 125. When their defense skell is more than 125, the difference is not that significant anymore.

plot_model(model_int, type="int")