## Parsed with column specification:
## cols(
## Occupation = col_character(),
## Industry = col_character(),
## All_workers = col_double(),
## All_weekly = col_double(),
## M_workers = col_double(),
## M_weekly = col_double(),
## F_workers = col_double(),
## F_weekly = col_double()
## )
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 535 obs. of 8 variables:
## $ Occupation : chr "Chief executives" "General and operations managers" "Legislators" "Advertising and promotions managers" ...
## $ Industry : chr "Management" "Management" "Management" "Management" ...
## $ All_workers: num 1046 823 8 55 948 ...
## $ All_weekly : num 2041 1260 NA 1050 1462 ...
## $ M_workers : num 763 621 5 29 570 24 96 466 551 7 ...
## $ M_weekly : num 2251 1347 NA NA 1603 ...
## $ F_workers : num 283 202 4 26 378 35 73 169 573 16 ...
## $ F_weekly : num 1836 1002 NA NA 1258 ...
## - attr(*, "spec")=
## .. cols(
## .. Occupation = col_character(),
## .. Industry = col_character(),
## .. All_workers = col_double(),
## .. All_weekly = col_double(),
## .. M_workers = col_double(),
## .. M_weekly = col_double(),
## .. F_workers = col_double(),
## .. F_weekly = col_double()
## .. )
## Occupation Industry All_workers All_weekly
## Length:535 Length:535 Min. : 0.0 Min. : 354.0
## Class :character Class :character 1st Qu.: 20.0 1st Qu.: 623.0
## Mode :character Mode :character Median : 63.0 Median : 859.0
## Mean : 203.9 Mean : 912.9
## 3rd Qu.: 190.0 3rd Qu.:1122.5
## Max. :2806.0 Max. :2041.0
## NA's :236
## M_workers M_weekly F_workers F_weekly
## Min. : 0.0 Min. : 389 Min. : 0.00 Min. : 380.0
## 1st Qu.: 11.0 1st Qu.: 678 1st Qu.: 2.50 1st Qu.: 544.0
## Median : 32.0 Median : 924 Median : 16.00 Median : 737.0
## Mean : 113.5 Mean :1006 Mean : 90.31 Mean : 809.4
## 3rd Qu.: 100.5 3rd Qu.:1264 3rd Qu.: 68.50 3rd Qu.: 986.0
## Max. :2582.0 Max. :2251 Max. :2262.00 Max. :1836.0
## NA's :326 NA's :366
##
## Agricultural Arts Business
## 9 19 28
## Computational Construction Culinary
## 16 40 13
## Education Engineering Groundskeeping
## 11 21 6
## Healthcare Professional Healthcare Support Legal
## 33 11 5
## Maintenance Management Office
## 37 30 52
## Production Protective Service Sales
## 81 18 18
## Science Service Social Service
## 23 20 8
## Transportation
## 36
## [1] 928
## [1] 535
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
From the box plots we can see the difference in weekly income ampong different genders, overall male weekly salary is higher than female. From the scatter plot, same occupation male weekly salary is higher than female.