Estimación HAC

BARBARA ELIZABETH MEJIA GONZALEZ

20 de junio de 2019

Librerias.

library(foreign)
library(lmtest)
library(sandwich)

Datos.

Ejemplo: - Variables. Identificación del estado (sid), Nombre del estado (state), Crímenes violentos por cada 100,000 habitantes (crime), Asesinatos por cada millón de habitantes (murder), Porcentaje de población que vive en áreas metropolitanas (pctmetro), Porcentaje de población blanca (pctwhite), Porcentaje de población con un mínimo de segundaria como educación (pcths), Porcentaje de población por debajo de la línea de pobreza (poverty), Porcentaje de la población que es padre soltero (single).

Se estimará el estimará el número de crimenes violentos, en función de la población por debajo de la línea de pobreza y el Porcentaje de la población que es padre soltero. (single)

datos_regresion <- read.dta("F:/DESCARGAS/crime.dta")
modelo_estimado_1<-lm(crime~poverty+single,data=datos_regresion)
print(modelo_estimado_1)
## 
## Call:
## lm(formula = crime ~ poverty + single, data = datos_regresion)
## 
## Coefficients:
## (Intercept)      poverty       single  
##   -1368.189        6.787      166.373

Pruebas de Heterocedasticidad y Autocorrelación.

Prueba de Breusch Pagan (White):

prueba_white<-bptest(modelo_estimado_1,~I(poverty^2)+I(single^2)+poverty*single, data=datos_regresion)
print(prueba_white)
## 
##  studentized Breusch-Pagan test
## 
## data:  modelo_estimado_1
## BP = 10.73, df = 5, p-value = 0.057

Podemos decir que hay evidencia de heterocedasticidad ya que (\(P_{value} < 0.05\)).

Prueba de Breusch Godfrey:

bgtest(modelo_estimado_1,order = 2)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  modelo_estimado_1
## LM test = 0.27165, df = 2, p-value = 0.873

Debido a que (\(P_{value}>0.05\)), podemos concluir que no se presenta evidencia de autocorrelación de 2° orden.

bgtest(modelo_estimado_1,order = 1)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  modelo_estimado_1
## LM test = 0.27156, df = 1, p-value = 0.6023

Debido a que (\(P_{value}>0.05\)), podemos concluir que no se presenta evidencia de autocorrelación de 1° orden.

Estimación Robusta.

#Se usará las librerias "lmtest" y "sandwich".

#Sin corregir:
coeftest(modelo_estimado_1)
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -1368.1887   187.2052 -7.3085 2.479e-09 ***
## poverty         6.7874     8.9885  0.7551    0.4539    
## single        166.3727    19.4229  8.5658 3.117e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Corregido:

estimacion_omega<-vcovHC(modelo_estimado_1,type = "HC1")
coeftest(modelo_estimado_1,vcov. = estimacion_omega)
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -1368.1887   284.9180 -4.8020 1.577e-05 ***
## poverty         6.7874    10.9273  0.6211    0.5374    
## single        166.3727    26.2343  6.3418 7.519e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimador HAC.

En caso de haberse detectado la autocorrelación de orden 2, tendría que corregirse así.

#Corregido:

estimacion_omega<-NeweyWest(modelo_estimado_1,lag = 2)
coeftest(modelo_estimado_1,vcov. = estimacion_omega)
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -1368.1887   303.8466 -4.5029 4.280e-05 ***
## poverty         6.7874    10.5943  0.6407    0.5248    
## single        166.3727    25.9154  6.4198 5.708e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1