dados<- read.table("C:\\Users\\USER\\Documents\\sobrevivencia2.csv",header = T, sep = ",")
head(dados)
##        Bike_id Publish_period     End_Date Departure_Date
## 1  XL3-1095127             10 1.301357e+18   1.305590e+18
## 3  XL3-1123648             28 1.302307e+18   1.307923e+18
## 4  XL3-1139930             17 1.302826e+18   1.308096e+18
## 6  XL3-1277412             17 1.301616e+18   1.310170e+18
## 8  XL3-1513147              4 1.302221e+18   1.312848e+18
## 10 XL3-1146406             48 1.307318e+18   1.317427e+18
##    Distance_travelled  Color Country_Sold N_Photos  Price N_Inquires
## 1              123525 Silver      Vietnam       27 110000         34
## 3              120000 Silver      Vietnam       28 110000         53
## 4              149374 Silver      Vietnam       27 130000         34
## 6              112167  Black      Vietnam       26 150000         58
## 8              126000  Black      Vietnam       29 150000         20
## 10             154117 Silver         Laos       28 150000         73
##    is_sold
## 1        0
## 3        1
## 4        0
## 6        0
## 8        0
## 10       0
dados$Color<- as.factor(dados$Color)
dados$Country_Sold<- as.factor(dados$Country_Sold)
attach(dados)

Análise descritiva dos dados

Algumas estatísticas

dad<-dados[,c(-1,-6,-7,-11)]
basicStats(dad)
##             Publish_period      End_Date Departure_Date Distance_travelled
## nobs           2660.000000  2.660000e+03   2.660000e+03       2.660000e+03
## NAs               0.000000  0.000000e+00   0.000000e+00       0.000000e+00
## Minimum           0.000000  1.301357e+18   1.305590e+18       6.560000e+03
## Maximum          66.000000  1.402358e+18   1.409702e+18       1.813260e+05
## 1. Quartile       5.000000  1.364947e+18   1.369267e+18       7.151825e+04
## 3. Quartile      17.000000  1.390262e+18   1.395792e+18       1.080158e+05
## Mean             11.968421  1.375150e+18   1.379954e+18       9.012179e+04
## Median            9.000000  1.381277e+18   1.384819e+18       9.051150e+04
## Sum           31836.000000  3.657898e+21   3.670677e+21       2.397240e+08
## SE Mean           0.194594  3.872566e+14   3.876686e+14       5.281289e+02
## LCL Mean         11.586850  1.374390e+18   1.379193e+18       8.908621e+04
## UCL Mean         12.349992  1.375909e+18   1.380714e+18       9.115738e+04
## Variance        100.725591  3.989140e+32   3.997634e+32       7.419276e+08
## Stdev            10.036214  1.997283e+16   1.999408e+16       2.723835e+04
## Skewness          1.482170 -1.173550e+00  -1.024769e+00       2.545200e-02
## Kurtosis          2.995359  1.034617e+00   6.429600e-01      -1.159300e-01
##                 N_Photos        Price   N_Inquires
## nobs         2660.000000 2.660000e+03  2660.000000
## NAs             0.000000 0.000000e+00     0.000000
## Minimum         4.000000 6.000000e+04     1.000000
## Maximum        45.000000 2.100000e+05   306.000000
## 1. Quartile    28.000000 9.000000e+04     4.000000
## 3. Quartile    30.000000 1.000000e+05    15.000000
## Mean           29.622180 9.292707e+04    12.218045
## Median         30.000000 9.000000e+04     8.000000
## Sum         78795.000000 2.471860e+08 32500.000000
## SE Mean         0.040813 2.585055e+02     0.311374
## LCL Mean       29.542152 9.242018e+04    11.607485
## UCL Mean       29.702209 9.343396e+04    12.828605
## Variance        4.430723 1.777547e+08   257.897531
## Stdev           2.104928 1.333247e+04    16.059188
## Skewness       -3.158401 1.638957e+00     6.851322
## Kurtosis       50.685277 6.119893e+00    87.903827
dad<- dados[,c(6,7,11)]
dad$is_sold<- as.factor(dad$is_sold)
summary(dad)
##      Color         Country_Sold  is_sold 
##  Silver :649   Laos      :1472   0:2321  
##  Blue   :608   Philippine: 404   1: 339  
##  Red    :592   Vietnam   : 275           
##  Pearl  :209   Cambodia  : 245           
##  Black  :196   Malaysia  :  57           
##  Pink   :107   Chile     :  41           
##  (Other):299   (Other)   : 166
par(mfrow=c(2,2))
boxplot(dados$Price, las= 2, main = "BoxPlot da variável Preço")
boxplot(dados$N_Inquires, las= 2, main = "BoxPlot da variável Número de conversas")
boxplot(dados$N_Photos, las= 2, main = "BoxPlot da variável N de Fotos")
boxplot(dados$Distance_travelled, las= 2, main = "BoxPlot da variável Distância percorrida")

Teste de normalidade

ad.test(Price)
## 
##  Anderson-Darling normality test
## 
## data:  Price
## A = 126.19, p-value < 2.2e-16
ad.test(Publish_period)
## 
##  Anderson-Darling normality test
## 
## data:  Publish_period
## A = 72.349, p-value < 2.2e-16
ad.test(N_Inquires)
## 
##  Anderson-Darling normality test
## 
## data:  N_Inquires
## A = 261.77, p-value < 2.2e-16
ad.test(N_Photos)
## 
##  Anderson-Darling normality test
## 
## data:  N_Photos
## A = 115.53, p-value < 2.2e-16
ad.test(Distance_travelled)
## 
##  Anderson-Darling normality test
## 
## data:  Distance_travelled
## A = 0.48731, p-value = 0.224

Gráficos

par(mfrow=c(2,2))
histPlot(as.timeSeries(Price))
histPlot(as.timeSeries(Publish_period))
histPlot(as.timeSeries(N_Inquires))
histPlot(as.timeSeries(N_Photos))

histPlot(as.timeSeries(Distance_travelled))

Correlação

dad<-dados[,c(-1,-3,-4,-6,-7,-11)]
corrplot(cor(dad), order = "hclust",tl.col = 'black', tl.cex = 0.75)

R <- round(cor(dad), 2);R
##                    Publish_period Distance_travelled N_Photos Price
## Publish_period               1.00               0.06     0.08  0.16
## Distance_travelled           0.06               1.00    -0.10 -0.12
## N_Photos                     0.08              -0.10     1.00  0.03
## Price                        0.16              -0.12     0.03  1.00
## N_Inquires                   0.26               0.10    -0.12  0.10
##                    N_Inquires
## Publish_period           0.26
## Distance_travelled       0.10
## N_Photos                -0.12
## Price                    0.10
## N_Inquires               1.00

Métodos não parametricos

Kaplan-Meier e LogRank

Curva de sobrevivência para os dados Completos

ekm1<- survfit(Surv(tempos,cens)~1, data= dados);ekm1
## Call: survfit(formula = Surv(tempos, cens) ~ 1, data = dados)
## 
##       n  events  median 0.95LCL 0.95UCL 
##    2660     339      NA      NA      NA
summary(ekm1)
## Call: survfit(formula = Surv(tempos, cens) ~ 1, data = dados)
## 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.1   2660      10    0.996 0.00119        0.994        0.999
##   1.0   2548      15    0.990 0.00192        0.987        0.994
##   2.0   2430      20    0.982 0.00263        0.977        0.987
##   3.0   2284      36    0.967 0.00364        0.960        0.974
##   4.0   2145      20    0.958 0.00413        0.950        0.966
##   5.0   2004      22    0.947 0.00465        0.938        0.956
##   6.0   1877      40    0.927 0.00554        0.916        0.938
##   7.0   1728      56    0.897 0.00666        0.884        0.910
##   8.0   1561      26    0.882 0.00716        0.868        0.896
##   9.0   1445      16    0.872 0.00749        0.858        0.887
##  10.0   1329      13    0.864 0.00778        0.849        0.879
##  11.0   1209       8    0.858 0.00799        0.843        0.874
##  12.0   1110      11    0.850 0.00831        0.833        0.866
##  13.0   1019       6    0.845 0.00851        0.828        0.861
##  14.0    932      13    0.833 0.00899        0.815        0.851
##  15.0    832       2    0.831 0.00908        0.813        0.849
##  16.0    752       4    0.826 0.00930        0.808        0.845
##  17.0    691       2    0.824 0.00942        0.806        0.843
##  18.0    633       5    0.817 0.00979        0.798        0.837
##  20.0    505       1    0.816 0.00990        0.797        0.835
##  21.0    461       5    0.807 0.01056        0.787        0.828
##  22.0    401       2    0.803 0.01088        0.782        0.825
##  24.0    324       1    0.800 0.01113        0.779        0.823
##  25.0    284       2    0.795 0.01174        0.772        0.818
##  28.0    210       1    0.791 0.01228        0.767        0.815
##  29.0    186       1    0.787 0.01293        0.762        0.813
##  38.0     65       1    0.775 0.01750        0.741        0.810
plot(ekm1, ylab = "S(t)", xlab = "Dias", main = "Curva de Sobrevivencia")

Curvas de sobrevivência para as variáveis independentes

Cor

KMcor <- survfit(Surv(tempos, cens)~ Color, data = dados)
KMcor
## Call: survfit(formula = Surv(tempos, cens) ~ Color, data = dados)
## 
##                n events median 0.95LCL 0.95UCL
## Color=Beige    2      0     NA      NA      NA
## Color=Black  196     20     NA      NA      NA
## Color=Blue   608     78     NA      NA      NA
## Color=Brown    1      0     NA      NA      NA
## Color=Gray    73     11     NA      NA      NA
## Color=Green   49      5     NA      NA      NA
## Color=Maroon  26      9     16      10      NA
## Color=Pearl  209     29     38      38      NA
## Color=Pink   107      4     NA      NA      NA
## Color=Purple   1      0     NA      NA      NA
## Color=Red    592     73     NA      NA      NA
## Color=Silver 649     93     NA      NA      NA
## Color=White  106     15     NA      NA      NA
## Color=Yellow  41      2     NA      NA      NA
plot(KMcor, lty = 1:14, col = 1:14, ylab = "S(t)", xlab = "Dias",
     conf.int = F, main ="Curva de Sobrevivência pelas cores das motos")

Preço

#separando o preco em dois(mediana) grupos temos q
summary(Price)#mediana= 90000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   60000   90000   90000   92927  100000  210000
idapreco<- cut(dados$Price, breaks=c(21000,80000,171000),labels=c("1","2"), right=F)
KMpreco2<- survfit(Surv(tempos, cens) ~idapreco, data= dados)
KMpreco2
## Call: survfit(formula = Surv(tempos, cens) ~ idapreco, data = dados)
## 
##    1 observation deleted due to missingness 
##               n events median 0.95LCL 0.95UCL
## idapreco=1   98     34     21      14      25
## idapreco=2 2561    305     NA      NA      NA
plot(KMpreco2, lty = 1:2, col = 2:3, ylab = "S(t)", xlab = "Dias",
     conf.int = F, main = "Curvas de sobrevivências com base no preço")
legend(1,0.3,lty = 1:2, col = 2:3,c("1 < mediana","2 >= mediana"),lwd=1, bty="n")

survdiff(Surv(tempos,cens)~idapreco, data = dados, rho= 0)
## Call:
## survdiff(formula = Surv(tempos, cens) ~ idapreco, data = dados, 
##     rho = 0)
## 
## n=2659, 1 observation deleted due to missingness.
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## idapreco=1   98       34     10.3      54.2      56.7
## idapreco=2 2561      305    328.7       1.7      56.7
## 
##  Chisq= 56.7  on 1 degrees of freedom, p= 5e-14

N_fotos

summary((N_Photos))#30 mediana
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.00   28.00   30.00   29.62   30.00   45.00
idafotos<- cut(dados$N_Photos, breaks=c(4,30,46),labels=c("1","2"), right=F)
length(idafotos)
## [1] 2660
KMfoto <- survfit(Surv(tempos, cens) ~ idafotos, data = dados)
KMfoto
## Call: survfit(formula = Surv(tempos, cens) ~ idafotos, data = dados)
## 
##               n events median 0.95LCL 0.95UCL
## idafotos=1 1284    209     NA      NA      NA
## idafotos=2 1376    130     NA      NA      NA
plot(KMfoto, lty = 1:2, col = 2:3, ylab = "S(t)", xlab = "Dias",
     conf.int = F, main ="Curva de Sobrevivência pelo número de fotos")
legend(1,0.3,lty = 1:2, col = 2:3,c("1 < mediana","2 >= mediana"),lwd=1, bty="n")

survdiff(Surv(tempos,cens)~idafotos, data = dados, rho= 0)
## Call:
## survdiff(formula = Surv(tempos, cens) ~ idafotos, data = dados, 
##     rho = 0)
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## idafotos=1 1284      209      157      17.2      32.5
## idafotos=2 1376      130      182      14.8      32.5
## 
##  Chisq= 32.5  on 1 degrees of freedom, p= 1e-08

N_Dialogos

#---------------------------------------------N_inquires
summary(N_Inquires)#8 mediana
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    4.00    8.00   12.22   15.00  306.00
idainqui<- cut(dados$N_Inquires, breaks=c(1,8,307),labels=c("1","2"), right=F)
KMinqui <- survfit(Surv(tempos, cens) ~ idainqui, data = dados)
KMinqui
## Call: survfit(formula = Surv(tempos, cens) ~ idainqui, data = dados)
## 
##               n events median 0.95LCL 0.95UCL
## idainqui=1 1279    261     NA      NA      NA
## idainqui=2 1381     78     NA      NA      NA
plot(KMinqui, lty = 1:2, col = 2:3, ylab = "S(t)", xlab = "Dias",
     conf.int = F, main ="Curva de Sobrevida pelo número de Inqueritos")
legend(1,0.3,lty = 1:2, col = 2:3,c("1 < mediana","2 >= mediana"),lwd=1, bty="n")

survdiff(Surv(tempos,cens)~idainqui, data = dados, rho= 0)
## Call:
## survdiff(formula = Surv(tempos, cens) ~ idainqui, data = dados, 
##     rho = 0)
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## idainqui=1 1279      261      145      92.6       166
## idainqui=2 1381       78      194      69.3       166
## 
##  Chisq= 166  on 1 degrees of freedom, p= <2e-16

Distância percorrida

summary(Distance_travelled)#90512 mediana
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    6560   71518   90512   90122  108016  181326
idadist<- cut(dados$Distance_travelled, breaks=c(6560,90512,181326),labels=c("1","2"), right=F)
KMdist <- survfit(Surv(tempos, cens) ~ idainqui, data = dados)
KMdist
## Call: survfit(formula = Surv(tempos, cens) ~ idainqui, data = dados)
## 
##               n events median 0.95LCL 0.95UCL
## idainqui=1 1279    261     NA      NA      NA
## idainqui=2 1381     78     NA      NA      NA
plot(KMdist, lty = 1:2, col = 2:3, ylab = "S(t)", xlab = "Dias",
     conf.int = F, main ="Curva de Sobrevida pela distáncia percorrida")
legend(1,0.3,lty = 1:2, col = 2:3,c("1 < mediana","2 >= mediana"),lwd=1, bty="n")

survdiff(Surv(tempos,cens)~idadist, data = dados, rho= 0)
## Call:
## survdiff(formula = Surv(tempos, cens) ~ idadist, data = dados, 
##     rho = 0)
## 
## n=2659, 1 observation deleted due to missingness.
## 
##              N Observed Expected (O-E)^2/E (O-E)^2/V
## idadist=1 1330      206      166      9.57      19.1
## idadist=2 1329      133      173      9.20      19.1
## 
##  Chisq= 19.1  on 1 degrees of freedom, p= 1e-05

Métodos Parametricos

Escolha da Distribuição

ajust1<-survreg(Surv(tempos,cens)~1,dist="exponential")
alpha1<-exp(ajust1$coefficients[1])
ajust2<-survreg(Surv(tempos,cens)~1,dist="weibull")
alpha2<-exp(ajust2$coefficients[1]);
gama<-1/ajust2$scale
ajust3<-survreg(Surv(tempos,cens)~1,dist="lognorm")
#S(T) KAPLA VS ESTIMATIVAS
ekm<- survfit(Surv(tempos,cens)~1, data= dados)
time<-ekm$time
st<-ekm$surv
ste<- exp(-time/alpha1)
stw<- exp(-(time/alpha2)^gama)
stln<- pnorm((-log(time)+ 4.778)/2.0347)
cbind(time,st,ste,stw,stln)
##       time        st       ste       stw      stln
##  [1,]  0.1 0.9962406 0.9989361 0.9984058 0.9997492
##  [2,]  1.0 0.9903758 0.9894119 0.9868017 0.9905693
##  [3,]  2.0 0.9822245 0.9789359 0.9751655 0.9776568
##  [4,]  3.0 0.9667429 0.9685708 0.9641332 0.9647216
##  [5,]  4.0 0.9577290 0.9583154 0.9535150 0.9522360
##  [6,]  5.0 0.9472150 0.9481687 0.9432214 0.9402959
##  [7,]  6.0 0.9270292 0.9381293 0.9331998 0.9289012
##  [8,]  7.0 0.8969866 0.9281963 0.9234151 0.9180230
##  [9,]  8.0 0.8820464 0.9183684 0.9138422 0.9076246
## [10,]  9.0 0.8722798 0.9086446 0.9044619 0.8976691
## [11,] 10.0 0.8637474 0.8990238 0.8952592 0.8881217
## [12,] 11.0 0.8580319 0.8895048 0.8862221 0.8789506
## [13,] 12.0 0.8495289 0.8800866 0.8773404 0.8701274
## [14,] 13.0 0.8445268 0.8707682 0.8686055 0.8616262
## [15,] 14.0 0.8327469 0.8615484 0.8600101 0.8534241
## [16,] 15.0 0.8307451 0.8524262 0.8515477 0.8455004
## [17,] 16.0 0.8263262 0.8434006 0.8432126 0.8378366
## [18,] 17.0 0.8239345 0.8344706 0.8349999 0.8304159
## [19,] 18.0 0.8174264 0.8256351 0.8269050 0.8232231
## [20,] 19.0 0.8174264 0.8168931 0.8189237 0.8162446
## [21,] 20.0 0.8158077 0.8082438 0.8110523 0.8094677
## [22,] 21.0 0.8069595 0.7996860 0.8032873 0.8028811
## [23,] 22.0 0.8029347 0.7912188 0.7956256 0.7964744
## [24,] 23.0 0.8029347 0.7828413 0.7880642 0.7902379
## [25,] 24.0 0.8004565 0.7745525 0.7806004 0.7841630
## [26,] 25.0 0.7948195 0.7663514 0.7732316 0.7782414
## [27,] 26.0 0.7948195 0.7582372 0.7659555 0.7724656
## [28,] 27.0 0.7948195 0.7502089 0.7587697 0.7668288
## [29,] 28.0 0.7910347 0.7422656 0.7516722 0.7613244
## [30,] 29.0 0.7867818 0.7344064 0.7446609 0.7559465
## [31,] 30.0 0.7867818 0.7266304 0.7377339 0.7506895
## [32,] 31.0 0.7867818 0.7189367 0.7308894 0.7455482
## [33,] 32.0 0.7867818 0.7113245 0.7241257 0.7405177
## [34,] 33.0 0.7867818 0.7037930 0.7174412 0.7355934
## [35,] 34.0 0.7867818 0.6963411 0.7108342 0.7307712
## [36,] 35.0 0.7867818 0.6889682 0.7043033 0.7260468
## [37,] 36.0 0.7867818 0.6816733 0.6978470 0.7214167
## [38,] 37.0 0.7867818 0.6744556 0.6914639 0.7168771
## [39,] 38.0 0.7746775 0.6673144 0.6851528 0.7124248
## [40,] 39.0 0.7746775 0.6602488 0.6789122 0.7080566
## [41,] 40.0 0.7746775 0.6532580 0.6727410 0.7037696
## [42,] 41.0 0.7746775 0.6463412 0.6666380 0.6995607
## [43,] 42.0 0.7746775 0.6394977 0.6606020 0.6954275
## [44,] 43.0 0.7746775 0.6327266 0.6546320 0.6913673
## [45,] 44.0 0.7746775 0.6260272 0.6487267 0.6873777
## [46,] 45.0 0.7746775 0.6193988 0.6428853 0.6834564
## [47,] 46.0 0.7746775 0.6128405 0.6371066 0.6796013
## [48,] 47.0 0.7746775 0.6063517 0.6313897 0.6758102
## [49,] 48.0 0.7746775 0.5999315 0.6257336 0.6720812
## [50,] 49.0 0.7746775 0.5935794 0.6201375 0.6684123
## [51,] 50.0 0.7746775 0.5872945 0.6146003 0.6648019
## [52,] 51.0 0.7746775 0.5810761 0.6091212 0.6612481
## [53,] 52.0 0.7746775 0.5749236 0.6036994 0.6577493
## [54,] 54.0 0.7746775 0.5628134 0.5930243 0.6509106
## [55,] 56.0 0.7746775 0.5509582 0.5825686 0.6442738
## [56,] 57.0 0.7746775 0.5451246 0.5774210 0.6410278
## [57,] 59.0 0.7746775 0.5336420 0.5672828 0.6346740
## [58,] 60.0 0.7746775 0.5279917 0.5622908 0.6315639
## [59,] 61.0 0.7746775 0.5224013 0.5573492 0.6284967
## [60,] 63.0 0.7746775 0.5113973 0.5476148 0.6224870
## [61,] 66.0 0.7746775 0.4953245 0.5333751 0.6137689

Escolhendo a melhor distribuição para o modelo de sobrevivencia pelo teste TRV

x1<-survreg(Surv(tempos,cens)~1, data= dados, dist="lognormal") #lognormal tem 2 parametros
x2<-survreg(Surv(tempos,cens)~1, data= dados, dist="exponential") #exponencial tem 1 parametros
x3<-survreg(Surv(tempos,cens)~1, data= dados, dist="weibull") #tem 2 parametros
alpha.e<-exp(x2$coefficients[1])
alpha.w<-exp(x3$coefficients[1])
gama<-1/x3$scale
x4<-flexsurvreg(Surv(tempos,cens)~1, data= dados, dist="gengamma")# gama generalizada tem 3 parametros
TRV1=2*(x4$loglik-x1$loglik[2])
modelo1=1-pchisq(TRV1,1)
TRV2=2*(x4$loglik-x2$loglik[2])
modelo2=1-pchisq(TRV2,2)
TRV3=2*(x4$loglik-x3$loglik[2])
modelo3=1-pchisq(TRV3,1)
distri<- c("exp","weibull","lognormal");distri
## [1] "exp"       "weibull"   "lognormal"
modelos=c(modelo1,modelo2,modelo3);modelos
## [1] 8.939157e-01 8.088587e-07 7.059712e-07
Gráfico de Kaplan-Meier vs distribuições
par(mfrow=c(1,1))
plot(ekm, conf.int=F, xlab="Tempos", ylab="S(t)", main= "Kaplan-Meier vs exponencial" )
lines(c(0,time),c(1,ste), lty=2)
legend(3,0.4,lty=c(1,2),c("Kaplan-Meier", "exponencial"),bty="n",cex=0.8)

plot(ekm, conf.int=F, xlab="Tempos", ylab="S(t)", main= "Kaplan-Meier vs Weibull" )
lines(c(0,time),c(1,stw), lty=2)
legend(3,0.4,lty=c(1,2),c("Kaplan-Meier", "Weibull"),bty="n",cex=0.8)

plot(ekm, conf.int=F, xlab="Tempos", ylab="S(t)", main= "Kaplan-Meiervs log-normal")
lines(c(0,time),c(1,stln), lty=2)
legend(3,0.4,lty=c(1,2),c("Kaplan-Meier", "Log-normal"),bty="n",cex=0.8)

Collet para escolha do melhor modelo

Passo1

1. Ajustar todos os modelos contendo uma unica covariável. Incluir
todas as covariáveis que forem significativas ao nível de 0; 10.
É aconselhável utilizar o teste da razão deverossimilhanças neste passo.
ajuste1<-survreg(Surv(tempos,cens)~1, data= dados, dist="lognorm")
ajuste2<-survreg(Surv(tempos,cens)~Distance_travelled, data= dados, dist="lognorm")
summary(ajust2)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ 1, dist = "weibull")
##              Value Std. Error     z      p
## (Intercept) 4.6941     0.1055 44.49 <2e-16
## Log(scale)  0.0828     0.0454  1.82  0.068
## 
## Scale= 1.09 
## 
## Weibull distribution
## Loglik(model)= -1877.2   Loglik(intercept only)= -1877.2
## Number of Newton-Raphson Iterations: 10 
## n= 2660
ajuste3<-survreg(Surv(tempos,cens)~N_Photos, data= dados, dist="lognorm")
summary(ajuste3)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ N_Photos, data = dados, 
##     dist = "lognorm")
##               Value Std. Error     z       p
## (Intercept) -0.7709     0.7631 -1.01    0.31
## N_Photos     0.1862     0.0264  7.05 1.8e-12
## Log(scale)   0.6783     0.0423 16.03 < 2e-16
## 
## Scale= 1.97 
## 
## Log Normal distribution
## Loglik(model)= -1839.5   Loglik(intercept only)= -1865
##  Chisq= 50.99 on 1 degrees of freedom, p= 9.3e-13 
## Number of Newton-Raphson Iterations: 5 
## n= 2660
ajuste4<-survreg(Surv(tempos,cens)~N_Inquires, data= dados, dist="lognorm")
summary(ajuste4)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ N_Inquires, data = dados, 
##     dist = "lognorm")
##               Value Std. Error    z      p
## (Intercept) 3.49654    0.10763 32.5 <2e-16
## N_Inquires  0.10473    0.00891 11.8 <2e-16
## Log(scale)  0.55693    0.04185 13.3 <2e-16
## 
## Scale= 1.75 
## 
## Log Normal distribution
## Loglik(model)= -1758.2   Loglik(intercept only)= -1865
##  Chisq= 213.47 on 1 degrees of freedom, p= 2.4e-48 
## Number of Newton-Raphson Iterations: 5 
## n= 2660
ajuste5<-survreg(Surv(tempos,cens)~Price, data= dados, dist="lognorm")
summary(ajuste5)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ Price, data = dados, dist = "lognorm")
##                Value Std. Error     z       p
## (Intercept) 1.85e+00   4.59e-01  4.03 5.5e-05
## Price       3.13e-05   5.08e-06  6.16 7.1e-10
## Log(scale)  6.88e-01   4.24e-02 16.25 < 2e-16
## 
## Scale= 1.99 
## 
## Log Normal distribution
## Loglik(model)= -1844   Loglik(intercept only)= -1865
##  Chisq= 41.91 on 1 degrees of freedom, p= 9.6e-11 
## Number of Newton-Raphson Iterations: 5 
## n= 2660
ajuste6<-survreg(Surv(tempos,cens)~Color, data= dados, dist="lognorm")
summary(ajuste6)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ Color, data = dados, dist = "lognorm")
##                 Value Std. Error     z      p
## (Intercept)   12.8322   813.3195  0.02   0.99
## ColorBlack    -7.9480   813.3195 -0.01   0.99
## ColorBlue     -8.0969   813.3195 -0.01   0.99
## ColorBrown    -4.7233  1429.9126  0.00   1.00
## ColorGray     -7.9780   813.3195 -0.01   0.99
## ColorGreen    -7.6169   813.3196 -0.01   0.99
## ColorMaroon   -9.6240   813.3196 -0.01   0.99
## ColorPearl    -8.1915   813.3195 -0.01   0.99
## ColorPink     -6.5785   813.3196 -0.01   0.99
## ColorPurple   -1.0345  1429.9126  0.00   1.00
## ColorRed      -8.0493   813.3195 -0.01   0.99
## ColorSilver   -8.2466   813.3195 -0.01   0.99
## ColorWhite    -8.3344   813.3195 -0.01   0.99
## ColorYellow   -7.0512   813.3197 -0.01   0.99
## Log(scale)     0.6959     0.0424 16.41 <2e-16
## 
## Scale= 2.01 
## 
## Log Normal distribution
## Loglik(model)= -1850.6   Loglik(intercept only)= -1865
##  Chisq= 28.79 on 13 degrees of freedom, p= 0.007 
## Number of Newton-Raphson Iterations: 12 
## n= 2660
ajuste7<-survreg(Surv(tempos,cens)~Country_Sold, data= dados, dist="lognorm")
summary(ajuste7)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ Country_Sold, data = dados, 
##     dist = "lognorm")
##                                          Value Std. Error     z       p
## (Intercept)                           3.10e+00   6.82e-01  4.54 5.5e-06
## Country_SoldAruba                     1.06e+01   1.09e+03  0.01  0.9922
## Country_SoldBahamas                   1.30e+00   1.31e+00  1.00  0.3190
## Country_SoldBotswana                  1.03e+01   1.57e+03  0.01  0.9948
## Country_SoldBrunei                    1.02e+00   1.07e+00  0.95  0.3408
## Country_SoldBurundi                  -5.04e-01   1.63e+00 -0.31  0.7576
## Country_SoldCambodia                  9.65e-01   7.02e-01  1.38  0.1690
## Country_SoldCayman Islands           -2.00e+00   2.02e+00 -0.99  0.3213
## Country_SoldChile                     3.38e-01   7.83e-01  0.43  0.6665
## Country_SoldCommonwealth Of Dominica  9.14e+00   0.00e+00   Inf < 2e-16
## Country_SoldD.R.Congo                 1.05e+01   1.58e+03  0.01  0.9947
## Country_SoldGuatemala                 5.00e-01   1.11e+00  0.45  0.6515
## Country_SoldIndonesia                 3.15e-01   8.10e-01  0.39  0.6978
## Country_SoldKazakhstan                5.23e+00   0.00e+00   Inf < 2e-16
## Country_SoldLaos                      2.02e+00   6.87e-01  2.93  0.0033
## Country_SoldLiberia                   9.93e+00   0.00e+00   Inf < 2e-16
## Country_SoldMalawi                    9.22e-01   8.55e-01  1.08  0.2807
## Country_SoldMalaysia                  1.17e+00   7.73e-01  1.51  0.1313
## Country_SoldMicronesia                1.69e+00   1.01e+00  1.68  0.0936
## Country_SoldMyanmar                  -6.39e-03   1.34e+00  0.00  0.9962
## Country_SoldNew Zealand               8.87e+00   2.21e+03  0.00  0.9968
## Country_SoldNigeria                   9.32e+00   0.00e+00   Inf < 2e-16
## Country_SoldPhilippine                8.82e-01   6.94e-01  1.27  0.2034
## Country_SoldRussian Federation        9.83e+00   0.00e+00   Inf < 2e-16
## Country_SoldSamoa                     1.07e+01   0.00e+00   Inf < 2e-16
## Country_SoldSt.Maarten                9.61e+00   0.00e+00   Inf < 2e-16
## Country_SoldThailand                  1.01e+01   1.82e+03  0.01  0.9956
## Country_SoldTurks And Caicos Islands  1.04e+01   1.39e+03  0.01  0.9941
## Country_SoldUganda                    3.61e-01   1.49e+00  0.24  0.8082
## Country_SoldVietnam                   1.48e+00   7.02e-01  2.10  0.0354
## Log(scale)                            6.40e-01   4.22e-02 15.15 < 2e-16
## 
## Scale= 1.9 
## 
## Log Normal distribution
## Loglik(model)= -1815   Loglik(intercept only)= -1865
##  Chisq= 99.95 on 29 degrees of freedom, p= 1e-09 
## Number of Newton-Raphson Iterations: 14 
## n= 2660
as variavés cor e país que foi vendido não tem influencia no modelo

passo 2

As covariáveis significativas no passo 1 são então ajustadas

conjuntamente. Na presença de certas covariáveis, outras podem deixar

de ser significativas. Consequentemente, ajusta-se modelos reduzidos,

excluindo uma unica covariável. Verifica-se as covariáveis que provocam

um aumento estatisticamente significativo na estatstica da razão de

verossimilhanças. Somente aquelas que atingiram a significância permanecem

no modelo.

ajuste8<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price, data= dados, dist="lognorm")
ajuste9<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires, data= dados, dist="lognorm")
anova(ajuste8,ajuste9)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2         Distance_travelled + N_Photos + N_Inquires      2655 3422.343
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -51.69896 6.469689e-13
ajuste10<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+Price, data= dados, dist="lognorm")
anova(ajuste8,ajuste10)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2              Distance_travelled + N_Photos + Price      2655 3598.260
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -227.6164 1.973225e-51
ajuste11<-survreg(Surv(tempos,cens)~Distance_travelled+N_Inquires+Price, data= dados, dist="lognorm")
anova(ajuste8,ajuste11)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2            Distance_travelled + N_Inquires + Price      2655 3440.377
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -69.73361 6.787952e-17
ajuste12<-survreg(Surv(tempos,cens)~N_Photos+N_Inquires+Price, data= dados, dist="lognorm")
anova(ajuste8,ajuste12)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2                      N_Photos + N_Inquires + Price      2655 3403.219
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -32.57498 1.146817e-08

Nenhuma variável foi retirada

passo3

Ajusta-se um novo modelo com as covariáveis retidas no passo 2.

Neste passo as covariáveis excluidas no passo 2 retornam ao modelo para

confirmar que elas não são estatisticamente significativas.

(nenhuma variável foi retirada)

passo4

As eventuais covariáveis significativas no passo 3 são incluídas

ao modelo juntamente com aquelas do passo 2. Neste passo retorna-se com

as covariáveis excluídas no passo 1 para confirmar que elas não são

estatisticamente significativas.

ajuste13<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+Color, data= dados, dist="lognorm")
anova(ajuste8,ajuste13)
##                                                        Terms Resid. Df
## 1         Distance_travelled + N_Photos + N_Inquires + Price      2654
## 2 Distance_travelled + N_Photos + N_Inquires + Price + Color      2641
##      -2*LL Test Df Deviance     Pr(>Chi)
## 1 3370.644      NA       NA           NA
## 2 3335.245    = 13 35.39868 0.0007351088
ajuste14<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+Country_Sold, data= dados, dist="lognorm")
anova(ajuste8,ajuste14)
##                                                               Terms
## 1                Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + Country_Sold
##   Resid. Df    -2*LL Test Df Deviance     Pr(>Chi)
## 1      2654 3370.644      NA       NA           NA
## 2      2625 3262.946    = 29 107.6977 5.535194e-11

passo5

Ajusta-se um modelo incluindo as covariáveis significativas no

passo 4. Neste passo é testado se alguma delas pode ser retirada do modelo.

ajuste15<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires, data= dados, dist="lognorm")
anova(ajuste8,ajuste15)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2         Distance_travelled + N_Photos + N_Inquires      2655 3422.343
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -51.69896 6.469689e-13
ajuste16<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+Price, data= dados, dist="lognorm")
anova(ajuste8,ajuste16)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2              Distance_travelled + N_Photos + Price      2655 3598.260
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -227.6164 1.973225e-51
ajuste17<-survreg(Surv(tempos,cens)~Distance_travelled+N_Inquires+Price, data= dados, dist="lognorm")
anova(ajuste8,ajuste17)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2            Distance_travelled + N_Inquires + Price      2655 3440.377
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -69.73361 6.787952e-17
ajuste18<-survreg(Surv(tempos,cens)~N_Photos+N_Inquires+Price, data= dados, dist="lognorm")
anova(ajuste8,ajuste18)
##                                                Terms Resid. Df    -2*LL
## 1 Distance_travelled + N_Photos + N_Inquires + Price      2654 3370.644
## 2                      N_Photos + N_Inquires + Price      2655 3403.219
##   Test Df  Deviance     Pr(>Chi)
## 1      NA        NA           NA
## 2    = -1 -32.57498 1.146817e-08

Passo6

Utilizando as covariáveis que sobreviveram ao passo 5 ajusta-se o

modelo final para os efeitos principais. Para completar a modelagem deve-se

verificar a possibilidade de inclusão de termos de interação. Testa-se cada

uma das interações duas a duas possíveis entre as covariáveis incluídas no

modelo. O modelo final fica determinado pelos efeitos principais identificados

no passo 5 e os termos de interação significativos identificados neste passo.

ajuste19<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(Distance_travelled*N_Photos), data= dados, dist="lognorm")
anova(ajuste8,ajuste19)
##                                                                                  Terms
## 1                                   Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + (Distance_travelled * N_Photos)
##   Resid. Df    -2*LL Test Df Deviance  Pr(>Chi)
## 1      2654 3370.644      NA       NA        NA
## 2      2653 3369.548    =  1 1.095159 0.2953309
ajuste20<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(Distance_travelled*N_Inquires), data= dados, dist="lognorm")
anova(ajuste8,ajuste20)
##                                                                                    Terms
## 1                                     Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + (Distance_travelled * N_Inquires)
##   Resid. Df    -2*LL Test Df Deviance   Pr(>Chi)
## 1      2654 3370.644      NA       NA         NA
## 2      2653 3366.917    =  1 3.726522 0.05355479
ajuste21<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(Distance_travelled*Price), data= dados, dist="lognorm")
anova(ajuste8,ajuste21)
##                                                                               Terms
## 1                                Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + (Distance_travelled * Price)
##   Resid. Df    -2*LL Test Df Deviance    Pr(>Chi)
## 1      2654 3370.644      NA       NA          NA
## 2      2653 3359.920    =  1 10.72354 0.001057813
ajuste22<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(N_Photos*N_Inquires), data= dados, dist="lognorm")
anova(ajuste8,ajuste22)
##                                                                          Terms
## 1                           Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + (N_Photos * N_Inquires)
##   Resid. Df    -2*LL Test Df  Deviance  Pr(>Chi)
## 1      2654 3370.644      NA        NA        NA
## 2      2653 3370.308    =  1 0.3356108 0.5623738
ajuste23<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(N_Photos*Price), data= dados, dist="lognorm")
anova(ajuste8,ajuste23)
##                                                                     Terms
## 1                      Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + (N_Photos * Price)
##   Resid. Df    -2*LL Test Df Deviance  Pr(>Chi)
## 1      2654 3370.644      NA       NA        NA
## 2      2653 3368.197    =  1 2.446227 0.1178077
ajuste24<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(N_Inquires*Price), data= dados, dist="lognorm")
anova(ajuste8,ajuste24)
##                                                                       Terms
## 1                        Distance_travelled + N_Photos + N_Inquires + Price
## 2 Distance_travelled + N_Photos + N_Inquires + Price + (N_Inquires * Price)
##   Resid. Df    -2*LL Test Df  Deviance  Pr(>Chi)
## 1      2654 3370.644      NA        NA        NA
## 2      2653 3370.511    =  1 0.1322858 0.7160738

ModeloFinal

modelofinal<-survreg(Surv(tempos,cens)~Distance_travelled+N_Photos+N_Inquires+Price+(Distance_travelled*N_Inquires), data= dados, dist="lognorm")
summary(modelofinal)
## 
## Call:
## survreg(formula = Surv(tempos, cens) ~ Distance_travelled + N_Photos + 
##     N_Inquires + Price + (Distance_travelled * N_Inquires), data = dados, 
##     dist = "lognorm")
##                                   Value Std. Error     z       p
## (Intercept)                   -6.51e+00   8.54e-01 -7.62 2.5e-14
## Distance_travelled             1.55e-05   2.90e-06  5.34 9.3e-08
## N_Photos                       1.86e-01   2.24e-02  8.30 < 2e-16
## N_Inquires                     1.49e-01   2.47e-02  6.03 1.6e-09
## Price                          3.27e-05   4.65e-06  7.03 2.0e-12
## Distance_travelled:N_Inquires -4.73e-07   2.45e-07 -1.93   0.054
## Log(scale)                     4.70e-01   4.14e-02 11.36 < 2e-16
## 
## Scale= 1.6 
## 
## Log Normal distribution
## Loglik(model)= -1683.5   Loglik(intercept only)= -1865
##  Chisq= 363 on 5 degrees of freedom, p= 2.8e-76 
## Number of Newton-Raphson Iterations: 5 
## n= 2660

adequação do modelo

###analise de residuos
modelofinal$coefficients
##                   (Intercept)            Distance_travelled 
##                 -6.505190e+00                  1.549905e-05 
##                      N_Photos                    N_Inquires 
##                  1.856982e-01                  1.487064e-01 
##                         Price Distance_travelled:N_Inquires 
##                  3.272951e-05                 -4.726824e-07
xb<- modelofinal$coefficients[1]+modelofinal$coefficients[2]*Distance_travelled+modelofinal$coefficients[3]*N_Photos+modelofinal$coefficients[4]*N_Inquires+modelofinal$coefficients[5]*Price + modelofinal$coefficients[6]*(Distance_travelled*N_Inquires)
sigma<-modelofinal$scale
res<-(log(tempos)-(xb))/sigma # residuos padronizados
resid<-exp(res) # exponencial dos residuos padronizados
ekm<- survfit(Surv(resid,cens)~1)
resid<-ekm$time
sln<-pnorm(-log(resid))

# Sobrevivências dos resíduos e??? i estimadas pelo método de Kaplan-Meier e
# pelo modelo log-normal padrão (gráfico á esquerda) e respectivas curvas 
# de sobrevivência estimadas (gráfico á direita).

par(mfrow=c(1,2))
plot(ekm$surv,sln, xlab="S(ei*): Kaplan-Meier",ylab="S(ei*): Log-normal padrão",pch=16,col=4)
plot(ekm,conf.int=F,mark.time=F,xlab="Residuos (ei*)",ylab="Sobrevivencia estimada",pch=16, col=2)
lines(resid,sln,lty=2)
legend(1.3,0.8,lty=c(1,2),c("Kaplan-Meier","Log-normal padrão"),cex=0.5,bty="n",col=c(2,1))

##Gráficos de resíduos

help("predict")
## starting httpd help server ... done
sr<-modelofinal
linFit<-predict(sr, type="lp")
sderr <-(log(tempos)-linFit)/sr$scale
plot(sderr, main="vetor de parâmetros", xlab="indice")

res.ldcase=resid(modelofinal, type="ldcase")
res.ldresp=resid(modelofinal, type="ldresp")
res.ldshape=resid(modelofinal, type="ldshape")
par(mfrow=c(1,3))

plot(res.ldcase, main="vetor de parâmetros", xlab="indice")
plot(res.ldresp, main="valores Preditos", xlab="indice")
plot(res.ldshape, main="parâmetros de forma", xlab="indice")

A sobrevivências dos resíduos é estimadas pelo método de Kaplan-Meier e

pelo modelo log-normal padrão (gráfico á esquerda) e respectivas curvas

de sobrevivência estimadas (gráfico á direita).`

ei<- -log(1-pnorm(res)) # residuos de Cox-Snell
ekm1<-survfit(Surv(ei,cens)~1); ekm1
## Call: survfit(formula = Surv(ei, cens) ~ 1)
## 
##        n   events   median  0.95LCL  0.95UCL 
## 2660.000  339.000    0.544    0.476       NA
t<-ekm1$time
st<-ekm1$surv
sexp<-exp(-t)
par(mfrow=c(1,2))
plot(st,sexp,xlab="S(ei): Kaplan-Meier",ylab="S(ei): Exponencial padrão",pch=16,col=4)
plot(ekm1,conf.int=F,mark.time=F, xlab="Residuos de Cox-Snell", ylab="Sobrevivencia estimada",col=2)
lines(t,sexp,lty=4)
legend(1.0,0.8,lty=c(1,4),c("Kaplan-Meier","Exponencial padrão"),cex=0.5,bty="n",col=c(2,1))

####os resíduos de Cox-Snell deveriam seguir a distribuição exponencial padrão ####para que o modelo de regressão log-normal possa ser considerado adequado ####A partir dos gráficos apresentados a seguir pode-se observar, que a análise ####desses resíduos encontram-se bem ajustados.

CoxSnellResidual <- function (standRes, weight=1, dist){
  standRes <- standRes[rep(seq_len(length(standRes)), weight)]
  if (dist=="lognormal") {csr <- -log(1-pnorm(standRes))}
  else if (dist=="weibull") {csr <- -log(exp(-exp(standRes)))}
}
cxsn <- CoxSnellResidual(standRes=sderr, dist="lognormal")

MartingaleResidual <- function (CoxSnellResid, Status, weight=1) {
  delta <- Status[rep(seq_len(length(Status)), weight)]
  martingale <- delta-CoxSnellResid
  data.frame(Martingale=martingale, Status=delta)
}

mgale <- MartingaleResidual(CoxSnellResid=cxsn, Status=cens)
max(mgale$Martingale)
## [1] 1
sum(mgale$Martingale)
## [1] 10.16064
plotMartingale <- function (covariate, martingaleResidual,
                            nameCovariate="covariate", weight=1) {
  cov <- covariate[rep(seq_len(length(covariate)), weight)]
  plot(cov, martingaleResidual$Martingale, pch=martingaleResidual$Status,
       xlab=nameCovariate, ylab="Martingale Residual")
  abline(h=0, lty=2, col="gray40")
  lines(lowess(cov, martingaleResidual$Martingale, iter=0), col="blue")
  legend("bottomleft", pch=c(1,0), legend=c("event","censored"))
}

plotMartingale(covariate=Price, nameCovariate="Preço", martingaleResidual=mgale)

plotMartingale(covariate=N_Inquires, nameCovariate="Conversas", martingaleResidual=mgale)

plotMartingale(covariate=N_Photos, nameCovariate="Fotos", martingaleResidual=mgale)

plotMartingale(covariate=Distance_travelled, nameCovariate="Distância", martingaleResidual=mgale)

Métodos Semi-Parametricos de cox

fit <- coxph(Surv(Publish_period,is_sold) ~ idadist +idafotos+idainqui+idapreco+Color+Country_Sold, data = dados, method="breslow")
## Warning in fitter(X, Y, strats, offset, init, control,
## weights = weights, : Loglik converged before variable
## 5,6,8,9,10,11,12,14,15,16,17,18,20,26,27,30,32,37,38,40,41,42,43,44 ;
## coefficient may be infinite.
summary(fit)
## Call:
## coxph(formula = Surv(Publish_period, is_sold) ~ idadist + idafotos + 
##     idainqui + idapreco + Color + Country_Sold, data = dados, 
##     method = "breslow")
## 
##   n= 2658, number of events= 339 
##    (2 observations deleted due to missingness)
## 
##                                            coef  exp(coef)   se(coef)
## idadist2                             -6.773e-01  5.080e-01  1.184e-01
## idafotos2                            -7.112e-01  4.911e-01  1.180e-01
## idainqui2                            -1.789e+00  1.671e-01  1.397e-01
## idapreco2                            -1.803e+00  1.647e-01  2.148e-01
## ColorBlack                            1.544e+01  5.083e+06  4.989e+03
## ColorBlue                             1.569e+01  6.529e+06  4.989e+03
## ColorBrown                            1.750e+00  5.757e+00  4.180e+04
## ColorGray                             1.562e+01  6.088e+06  4.989e+03
## ColorGreen                            1.533e+01  4.554e+06  4.989e+03
## ColorMaroon                           1.648e+01  1.439e+07  4.989e+03
## ColorPearl                            1.559e+01  5.874e+06  4.989e+03
## ColorPink                             1.459e+01  2.164e+06  4.989e+03
## ColorPurple                          -9.624e-01  3.820e-01  1.311e+04
## ColorRed                              1.530e+01  4.431e+06  4.989e+03
## ColorSilver                           1.572e+01  6.721e+06  4.989e+03
## ColorWhite                            1.565e+01  6.289e+06  4.989e+03
## ColorYellow                           1.433e+01  1.681e+06  4.989e+03
## Country_SoldAruba                    -1.618e+01  9.417e-08  1.984e+03
## Country_SoldBahamas                  -4.634e-01  6.291e-01  1.132e+00
## Country_SoldBotswana                 -1.574e+01  1.464e-07  2.655e+03
## Country_SoldBrunei                   -3.670e-01  6.928e-01  8.871e-01
## Country_SoldBurundi                   1.297e+00  3.659e+00  1.130e+00
## Country_SoldCambodia                 -5.152e-01  5.974e-01  5.270e-01
## Country_SoldCayman Islands            7.195e-01  2.053e+00  1.144e+00
## Country_SoldChile                    -3.337e-02  9.672e-01  6.038e-01
## Country_SoldCommonwealth Of Dominica -1.690e+01  4.585e-08  1.077e+04
## Country_SoldD.R.Congo                -1.632e+01  8.147e-08  2.638e+03
## Country_SoldGuatemala                -2.740e-01  7.604e-01  8.716e-01
## Country_SoldIndonesia                 2.950e-01  1.343e+00  6.154e-01
## Country_SoldKazakhstan               -1.761e+01  2.246e-08  4.150e+04
## Country_SoldLaos                     -1.141e+00  3.196e-01  5.110e-01
## Country_SoldLiberia                  -1.550e+01  1.849e-07  6.288e+03
## Country_SoldMalawi                   -5.716e-02  9.444e-01  6.801e-01
## Country_SoldMalaysia                 -7.151e-01  4.891e-01  5.943e-01
## Country_SoldMicronesia               -1.230e+00  2.924e-01  8.741e-01
## Country_SoldMyanmar                   4.555e-02  1.047e+00  8.931e-01
## Country_SoldNew Zealand              -1.517e+01  2.585e-07  9.941e+03
## Country_SoldNigeria                  -1.513e+01  2.694e-07  9.057e+03
## Country_SoldPhilippine               -3.022e-01  7.392e-01  5.155e-01
## Country_SoldRussian Federation       -1.590e+01  1.248e-07  6.435e+03
## Country_SoldSamoa                    -1.473e+01  4.011e-07  3.676e+03
## Country_SoldSt.Maarten               -1.690e+01  4.558e-08  6.970e+03
## Country_SoldThailand                 -1.663e+01  5.968e-08  4.312e+03
## Country_SoldTurks And Caicos Islands -1.617e+01  9.468e-08  2.852e+03
## Country_SoldUganda                    8.406e-01  2.318e+00  1.124e+00
## Country_SoldVietnam                  -4.241e-01  6.543e-01  5.270e-01
##                                            z Pr(>|z|)    
## idadist2                              -5.722 1.05e-08 ***
## idafotos2                             -6.029 1.65e-09 ***
## idainqui2                            -12.808  < 2e-16 ***
## idapreco2                             -8.398  < 2e-16 ***
## ColorBlack                             0.003   0.9975    
## ColorBlue                              0.003   0.9975    
## ColorBrown                             0.000   1.0000    
## ColorGray                              0.003   0.9975    
## ColorGreen                             0.003   0.9975    
## ColorMaroon                            0.003   0.9974    
## ColorPearl                             0.003   0.9975    
## ColorPink                              0.003   0.9977    
## ColorPurple                            0.000   0.9999    
## ColorRed                               0.003   0.9976    
## ColorSilver                            0.003   0.9975    
## ColorWhite                             0.003   0.9975    
## ColorYellow                            0.003   0.9977    
## Country_SoldAruba                     -0.008   0.9935    
## Country_SoldBahamas                   -0.409   0.6822    
## Country_SoldBotswana                  -0.006   0.9953    
## Country_SoldBrunei                    -0.414   0.6791    
## Country_SoldBurundi                    1.148   0.2511    
## Country_SoldCambodia                  -0.978   0.3282    
## Country_SoldCayman Islands             0.629   0.5294    
## Country_SoldChile                     -0.055   0.9559    
## Country_SoldCommonwealth Of Dominica  -0.002   0.9987    
## Country_SoldD.R.Congo                 -0.006   0.9951    
## Country_SoldGuatemala                 -0.314   0.7533    
## Country_SoldIndonesia                  0.479   0.6316    
## Country_SoldKazakhstan                 0.000   0.9997    
## Country_SoldLaos                      -2.233   0.0256 *  
## Country_SoldLiberia                   -0.002   0.9980    
## Country_SoldMalawi                    -0.084   0.9330    
## Country_SoldMalaysia                  -1.203   0.2289    
## Country_SoldMicronesia                -1.407   0.1595    
## Country_SoldMyanmar                    0.051   0.9593    
## Country_SoldNew Zealand               -0.002   0.9988    
## Country_SoldNigeria                   -0.002   0.9987    
## Country_SoldPhilippine                -0.586   0.5577    
## Country_SoldRussian Federation        -0.002   0.9980    
## Country_SoldSamoa                     -0.004   0.9968    
## Country_SoldSt.Maarten                -0.002   0.9981    
## Country_SoldThailand                  -0.004   0.9969    
## Country_SoldTurks And Caicos Islands  -0.006   0.9955    
## Country_SoldUganda                     0.748   0.4544    
## Country_SoldVietnam                   -0.805   0.4209    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                      exp(coef) exp(-coef) lower .95
## idadist2                             5.080e-01  1.969e+00   0.40280
## idafotos2                            4.911e-01  2.036e+00   0.38969
## idainqui2                            1.671e-01  5.984e+00   0.12708
## idapreco2                            1.647e-01  6.070e+00   0.10814
## ColorBlack                           5.083e+06  1.967e-07   0.00000
## ColorBlue                            6.529e+06  1.532e-07   0.00000
## ColorBrown                           5.757e+00  1.737e-01   0.00000
## ColorGray                            6.088e+06  1.643e-07   0.00000
## ColorGreen                           4.554e+06  2.196e-07   0.00000
## ColorMaroon                          1.439e+07  6.949e-08   0.00000
## ColorPearl                           5.874e+06  1.702e-07   0.00000
## ColorPink                            2.164e+06  4.621e-07   0.00000
## ColorPurple                          3.820e-01  2.618e+00   0.00000
## ColorRed                             4.431e+06  2.257e-07   0.00000
## ColorSilver                          6.721e+06  1.488e-07   0.00000
## ColorWhite                           6.289e+06  1.590e-07   0.00000
## ColorYellow                          1.681e+06  5.948e-07   0.00000
## Country_SoldAruba                    9.417e-08  1.062e+07   0.00000
## Country_SoldBahamas                  6.291e-01  1.589e+00   0.06846
## Country_SoldBotswana                 1.464e-07  6.832e+06   0.00000
## Country_SoldBrunei                   6.928e-01  1.443e+00   0.12177
## Country_SoldBurundi                  3.659e+00  2.733e-01   0.39936
## Country_SoldCambodia                 5.974e-01  1.674e+00   0.21265
## Country_SoldCayman Islands           2.053e+00  4.870e-01   0.21811
## Country_SoldChile                    9.672e-01  1.034e+00   0.29620
## Country_SoldCommonwealth Of Dominica 4.585e-08  2.181e+07   0.00000
## Country_SoldD.R.Congo                8.147e-08  1.227e+07   0.00000
## Country_SoldGuatemala                7.604e-01  1.315e+00   0.13777
## Country_SoldIndonesia                1.343e+00  7.445e-01   0.40209
## Country_SoldKazakhstan               2.246e-08  4.452e+07   0.00000
## Country_SoldLaos                     3.196e-01  3.129e+00   0.11739
## Country_SoldLiberia                  1.849e-07  5.408e+06   0.00000
## Country_SoldMalawi                   9.444e-01  1.059e+00   0.24905
## Country_SoldMalaysia                 4.891e-01  2.044e+00   0.15260
## Country_SoldMicronesia               2.924e-01  3.420e+00   0.05271
## Country_SoldMyanmar                  1.047e+00  9.555e-01   0.18178
## Country_SoldNew Zealand              2.585e-07  3.868e+06   0.00000
## Country_SoldNigeria                  2.693e-07  3.713e+06   0.00000
## Country_SoldPhilippine               7.392e-01  1.353e+00   0.26910
## Country_SoldRussian Federation       1.248e-07  8.010e+06   0.00000
## Country_SoldSamoa                    4.011e-07  2.493e+06   0.00000
## Country_SoldSt.Maarten               4.558e-08  2.194e+07   0.00000
## Country_SoldThailand                 5.968e-08  1.676e+07   0.00000
## Country_SoldTurks And Caicos Islands 9.468e-08  1.056e+07   0.00000
## Country_SoldUganda                   2.318e+00  4.315e-01   0.25627
## Country_SoldVietnam                  6.543e-01  1.528e+00   0.23294
##                                      upper .95
## idadist2                                0.6406
## idafotos2                               0.6188
## idainqui2                               0.2197
## idapreco2                               0.2509
## ColorBlack                                 Inf
## ColorBlue                                  Inf
## ColorBrown                                 Inf
## ColorGray                                  Inf
## ColorGreen                                 Inf
## ColorMaroon                                Inf
## ColorPearl                                 Inf
## ColorPink                                  Inf
## ColorPurple                                Inf
## ColorRed                                   Inf
## ColorSilver                                Inf
## ColorWhite                                 Inf
## ColorYellow                                Inf
## Country_SoldAruba                          Inf
## Country_SoldBahamas                     5.7819
## Country_SoldBotswana                       Inf
## Country_SoldBrunei                      3.9420
## Country_SoldBurundi                    33.5223
## Country_SoldCambodia                    1.6780
## Country_SoldCayman Islands             19.3319
## Country_SoldChile                       3.1581
## Country_SoldCommonwealth Of Dominica       Inf
## Country_SoldD.R.Congo                      Inf
## Country_SoldGuatemala                   4.1966
## Country_SoldIndonesia                   4.4869
## Country_SoldKazakhstan                     Inf
## Country_SoldLaos                        0.8699
## Country_SoldLiberia                        Inf
## Country_SoldMalawi                      3.5815
## Country_SoldMalaysia                    1.5678
## Country_SoldMicronesia                  1.6219
## Country_SoldMyanmar                     6.0258
## Country_SoldNew Zealand                    Inf
## Country_SoldNigeria                        Inf
## Country_SoldPhilippine                  2.0303
## Country_SoldRussian Federation             Inf
## Country_SoldSamoa                          Inf
## Country_SoldSt.Maarten                     Inf
## Country_SoldThailand                       Inf
## Country_SoldTurks And Caicos Islands       Inf
## Country_SoldUganda                     20.9614
## Country_SoldVietnam                     1.8381
## 
## Concordance= 0.799  (se = 0.012 )
## Likelihood ratio test= 396.4  on 46 df,   p=<2e-16
## Wald test            = 351.6  on 46 df,   p=<2e-16
## Score (logrank) test = 428.6  on 46 df,   p=<2e-16
fit$loglik
## [1] -2501.510 -2303.283
#nem a variável cor nem a país vendido foi siguinificativa.
fit2<- coxph(Surv(Publish_period,is_sold) ~ idadist +idafotos+idainqui+idapreco, data = dados, method="breslow")
summary(fit2)
## Call:
## coxph(formula = Surv(Publish_period, is_sold) ~ idadist + idafotos + 
##     idainqui + idapreco, data = dados, method = "breslow")
## 
##   n= 2658, number of events= 339 
##    (2 observations deleted due to missingness)
## 
##              coef exp(coef) se(coef)       z Pr(>|z|)    
## idadist2  -0.6056    0.5457   0.1138  -5.323 1.02e-07 ***
## idafotos2 -0.7922    0.4528   0.1149  -6.897 5.32e-12 ***
## idainqui2 -1.7458    0.1745   0.1333 -13.099  < 2e-16 ***
## idapreco2 -1.6964    0.1833   0.1905  -8.904  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## idadist2     0.5457      1.832    0.4366    0.6821
## idafotos2    0.4528      2.208    0.3616    0.5672
## idainqui2    0.1745      5.730    0.1344    0.2266
## idapreco2    0.1833      5.454    0.1262    0.2663
## 
## Concordance= 0.759  (se = 0.012 )
## Likelihood ratio test= 299.8  on 4 df,   p=<2e-16
## Wald test            = 277.6  on 4 df,   p=<2e-16
## Score (logrank) test = 310.1  on 4 df,   p=<2e-16
fit2$loglik
## [1] -2501.510 -2351.592
#as quartro variáveis foram siguinificativas

fit4<- coxph(Surv(Publish_period,is_sold) ~ idadist +idafotos+idainqui+idapreco+ (idapreco*idadist)+(idainqui*idadist), data = dados, method="breslow")
summary(fit4)
## Call:
## coxph(formula = Surv(Publish_period, is_sold) ~ idadist + idafotos + 
##     idainqui + idapreco + (idapreco * idadist) + (idainqui * 
##     idadist), data = dados, method = "breslow")
## 
##   n= 2658, number of events= 339 
##    (2 observations deleted due to missingness)
## 
##                        coef exp(coef) se(coef)      z Pr(>|z|)    
## idadist2           -0.54371   0.58059  0.37933 -1.433   0.1518    
## idafotos2          -0.78762   0.45493  0.11485 -6.858 7.00e-12 ***
## idainqui2          -1.54395   0.21354  0.16447 -9.387  < 2e-16 ***
## idapreco2          -1.76077   0.17191  0.30508 -5.772 7.85e-09 ***
## idadist2:idapreco2  0.06312   1.06515  0.38502  0.164   0.8698    
## idadist2:idainqui2 -0.53377   0.58639  0.27602 -1.934   0.0531 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## idadist2              0.5806     1.7224   0.27605    1.2211
## idafotos2             0.4549     2.1982   0.36323    0.5698
## idainqui2             0.2135     4.6831   0.15469    0.2948
## idapreco2             0.1719     5.8169   0.09454    0.3126
## idadist2:idapreco2    1.0652     0.9388   0.50082    2.2654
## idadist2:idainqui2    0.5864     1.7054   0.34138    1.0072
## 
## Concordance= 0.763  (se = 0.011 )
## Likelihood ratio test= 303.9  on 6 df,   p=<2e-16
## Wald test            = 274  on 6 df,   p=<2e-16
## Score (logrank) test = 320.7  on 6 df,   p=<2e-16
fit4$loglik
## [1] -2501.510 -2349.533
#as interações não  foram siguinificativas

melhor modelo de cox

modelocox<- fit2
summary(modelocox)
## Call:
## coxph(formula = Surv(Publish_period, is_sold) ~ idadist + idafotos + 
##     idainqui + idapreco, data = dados, method = "breslow")
## 
##   n= 2658, number of events= 339 
##    (2 observations deleted due to missingness)
## 
##              coef exp(coef) se(coef)       z Pr(>|z|)    
## idadist2  -0.6056    0.5457   0.1138  -5.323 1.02e-07 ***
## idafotos2 -0.7922    0.4528   0.1149  -6.897 5.32e-12 ***
## idainqui2 -1.7458    0.1745   0.1333 -13.099  < 2e-16 ***
## idapreco2 -1.6964    0.1833   0.1905  -8.904  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## idadist2     0.5457      1.832    0.4366    0.6821
## idafotos2    0.4528      2.208    0.3616    0.5672
## idainqui2    0.1745      5.730    0.1344    0.2266
## idapreco2    0.1833      5.454    0.1262    0.2663
## 
## Concordance= 0.759  (se = 0.012 )
## Likelihood ratio test= 299.8  on 4 df,   p=<2e-16
## Wald test            = 277.6  on 4 df,   p=<2e-16
## Score (logrank) test = 310.1  on 4 df,   p=<2e-16
zph <- cox.zph(fit2)
zph
##               rho chisq        p
## idadist2  -0.0632  1.38 2.41e-01
## idafotos2 -0.1801 11.86 5.73e-04
## idainqui2  0.2119 13.95 1.87e-04
## idapreco2 -0.0957  3.13 7.67e-02
## GLOBAL         NA 38.88 7.37e-08

O nenhuma das variáveis rejeita a hipotese nula de proporcionalidade.

resíduos escalonados de Schoenfeld

residuals(fit2,type="schoenfeld")
##      idadist2  idafotos2  idainqui2   idapreco2
## 0  -0.3892666 -0.3527470 -0.1886202  0.12528840
## 0   0.6107334  0.6472530 -0.1886202 -0.87471160
## 0   0.6107334 -0.3527470 -0.1886202  0.12528840
## 0  -0.3892666 -0.3527470 -0.1886202  0.12528840
## 0  -0.3892666  0.6472530 -0.1886202  0.12528840
## 0  -0.3892666  0.6472530 -0.1886202  0.12528840
## 0  -0.3892666  0.6472530 -0.1886202  0.12528840
## 0   0.6107334 -0.3527470 -0.1886202  0.12528840
## 0   0.6107334  0.6472530 -0.1886202  0.12528840
## 0   0.6107334  0.6472530 -0.1886202  0.12528840
## 1  -0.3965849 -0.3534115 -0.1891188  0.12051452
## 1  -0.3965849 -0.3534115 -0.1891188  0.12051452
## 1   0.6034151 -0.3534115 -0.1891188  0.12051452
## 1  -0.3965849  0.6465885 -0.1891188  0.12051452
## 1  -0.3965849 -0.3534115 -0.1891188  0.12051452
## 1   0.6034151 -0.3534115 -0.1891188  0.12051452
## 1   0.6034151 -0.3534115 -0.1891188  0.12051452
## 1  -0.3965849  0.6465885 -0.1891188  0.12051452
## 1   0.6034151 -0.3534115 -0.1891188  0.12051452
## 1   0.6034151  0.6465885 -0.1891188  0.12051452
## 1  -0.3965849 -0.3534115 -0.1891188  0.12051452
## 1  -0.3965849  0.6465885 -0.1891188  0.12051452
## 1   0.6034151  0.6465885 -0.1891188  0.12051452
## 1  -0.3965849 -0.3534115 -0.1891188  0.12051452
## 1   0.6034151 -0.3534115 -0.1891188  0.12051452
## 2  -0.3912785 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785  0.6440158 -0.1934033  0.11991936
## 2   0.6087215 -0.3559842 -0.1934033  0.11991936
## 2   0.6087215 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785 -0.3559842 -0.1934033  0.11991936
## 2   0.6087215 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785  0.6440158 -0.1934033  0.11991936
## 2  -0.3912785  0.6440158 -0.1934033  0.11991936
## 2   0.6087215  0.6440158 -0.1934033  0.11991936
## 2   0.6087215  0.6440158 -0.1934033  0.11991936
## 2   0.6087215  0.6440158 -0.1934033  0.11991936
## 2   0.6087215  0.6440158 -0.1934033  0.11991936
## 2   0.6087215  0.6440158 -0.1934033  0.11991936
## 2  -0.3912785 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785 -0.3559842 -0.1934033  0.11991936
## 2  -0.3912785  0.6440158 -0.1934033  0.11991936
## 2  -0.3912785  0.6440158 -0.1934033  0.11991936
## 2  -0.3912785  0.6440158 -0.1934033  0.11991936
## 3  -0.3931935 -0.3564374  0.8059835  0.12298227
## 3   0.6068065 -0.3564374 -0.1940165 -0.87701773
## 3  -0.3931935 -0.3564374 -0.1940165  0.12298227
## 3  -0.3931935 -0.3564374 -0.1940165  0.12298227
## 3  -0.3931935 -0.3564374 -0.1940165 -0.87701773
## 3  -0.3931935 -0.3564374  0.8059835 -0.87701773
## 3  -0.3931935 -0.3564374 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626  0.8059835 -0.87701773
## 3  -0.3931935 -0.3564374  0.8059835  0.12298227
## 3  -0.3931935  0.6435626  0.8059835  0.12298227
## 3  -0.3931935 -0.3564374 -0.1940165  0.12298227
## 3   0.6068065 -0.3564374 -0.1940165 -0.87701773
## 3   0.6068065  0.6435626 -0.1940165 -0.87701773
## 3   0.6068065 -0.3564374 -0.1940165  0.12298227
## 3  -0.3931935 -0.3564374 -0.1940165  0.12298227
## 3   0.6068065 -0.3564374  0.8059835  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065 -0.3564374 -0.1940165 -0.87701773
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065 -0.3564374 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626  0.8059835  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 3  -0.3931935 -0.3564374 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3  -0.3931935  0.6435626 -0.1940165  0.12298227
## 3   0.6068065  0.6435626 -0.1940165  0.12298227
## 4  -0.3847553 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4  -0.3847553  0.6352208 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447  0.6352208 -0.2010549  0.10295977
## 4  -0.3847553 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4  -0.3847553 -0.3647792 -0.2010549  0.10295977
## 4  -0.3847553  0.6352208 -0.2010549  0.10295977
## 4  -0.3847553  0.6352208  0.7989451  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4  -0.3847553  0.6352208 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4  -0.3847553 -0.3647792 -0.2010549  0.10295977
## 4   0.6152447 -0.3647792 -0.2010549  0.10295977
## 4  -0.3847553  0.6352208 -0.2010549  0.10295977
## 4  -0.3847553 -0.3647792 -0.2010549  0.10295977
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5   0.6170461  0.6347002 -0.2043357  0.10275778
## 5  -0.3829539 -0.3652998  0.7956643 -0.89724222
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5   0.6170461  0.6347002 -0.2043357 -0.89724222
## 5  -0.3829539  0.6347002  0.7956643  0.10275778
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5   0.6170461 -0.3652998 -0.2043357  0.10275778
## 5  -0.3829539  0.6347002 -0.2043357  0.10275778
## 5   0.6170461 -0.3652998 -0.2043357  0.10275778
## 5  -0.3829539  0.6347002 -0.2043357  0.10275778
## 5  -0.3829539  0.6347002 -0.2043357  0.10275778
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5  -0.3829539  0.6347002  0.7956643  0.10275778
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5  -0.3829539  0.6347002 -0.2043357  0.10275778
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5  -0.3829539 -0.3652998 -0.2043357  0.10275778
## 5   0.6170461  0.6347002 -0.2043357  0.10275778
## 5   0.6170461 -0.3652998 -0.2043357  0.10275778
## 5   0.6170461  0.6347002 -0.2043357  0.10275778
## 6  -0.3805964 -0.3672717 -0.2124410 -0.90022734
## 6  -0.3805964 -0.3672717  0.7875590 -0.90022734
## 6   0.6194036 -0.3672717  0.7875590 -0.90022734
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6   0.6194036 -0.3672717  0.7875590  0.09977266
## 6   0.6194036  0.6327283  0.7875590  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717  0.7875590  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717  0.7875590  0.09977266
## 6   0.6194036 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6   0.6194036 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964  0.6327283  0.7875590  0.09977266
## 6   0.6194036 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717  0.7875590  0.09977266
## 6  -0.3805964 -0.3672717  0.7875590  0.09977266
## 6  -0.3805964  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6   0.6194036  0.6327283  0.7875590 -0.90022734
## 6   0.6194036 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6   0.6194036  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6   0.6194036  0.6327283 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717 -0.2124410  0.09977266
## 6  -0.3805964 -0.3672717  0.7875590  0.09977266
## 6   0.6194036  0.6327283 -0.2124410 -0.90022734
## 6   0.6194036  0.6327283 -0.2124410  0.09977266
## 7   0.6083233 -0.3713763  0.7807188  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763  0.7807188  0.09075752
## 7   0.6083233 -0.3713763  0.7807188 -0.90924248
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763  0.7807188  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763  0.7807188  0.09075752
## 7   0.6083233 -0.3713763  0.7807188 -0.90924248
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763  0.7807188  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237  0.7807188  0.09075752
## 7  -0.3916767 -0.3713763  0.7807188  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233  0.6286237  0.7807188 -0.90924248
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763  0.7807188  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237  0.7807188  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812 -0.90924248
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7   0.6083233  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7   0.6083233 -0.3713763 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 7  -0.3916767  0.6286237 -0.2192812  0.09075752
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8   0.6043532 -0.3913006  0.7676484 -0.90736926
## 8  -0.3956468 -0.3913006  0.7676484  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994  0.7676484  0.09263074
## 8  -0.3956468 -0.3913006  0.7676484  0.09263074
## 8   0.6043532 -0.3913006 -0.2323516 -0.90736926
## 8   0.6043532 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994  0.7676484  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8   0.6043532 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8   0.6043532  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468  0.6086994 -0.2323516  0.09263074
## 8  -0.3956468 -0.3913006 -0.2323516  0.09263074
## 9   0.6046999 -0.4059295  0.7619610  0.09008937
## 9  -0.3953001 -0.4059295 -0.2380390  0.09008937
## 9   0.6046999  0.5940705  0.7619610 -0.90991063
## 9  -0.3953001  0.5940705 -0.2380390  0.09008937
## 9  -0.3953001  0.5940705 -0.2380390  0.09008937
## 9   0.6046999  0.5940705 -0.2380390  0.09008937
## 9  -0.3953001 -0.4059295 -0.2380390  0.09008937
## 9   0.6046999 -0.4059295 -0.2380390  0.09008937
## 9  -0.3953001  0.5940705  0.7619610  0.09008937
## 9  -0.3953001  0.5940705 -0.2380390  0.09008937
## 9  -0.3953001 -0.4059295 -0.2380390  0.09008937
## 9  -0.3953001 -0.4059295 -0.2380390  0.09008937
## 9   0.6046999 -0.4059295 -0.2380390  0.09008937
## 9  -0.3953001 -0.4059295 -0.2380390  0.09008937
## 9  -0.3953001  0.5940705  0.7619610  0.09008937
## 9  -0.3953001 -0.4059295 -0.2380390  0.09008937
## 10  0.6026547 -0.4186584 -0.2496019  0.08920441
## 10  0.6026547 -0.4186584 -0.2496019  0.08920441
## 10  0.6026547 -0.4186584 -0.2496019  0.08920441
## 10 -0.3973453  0.5813416 -0.2496019  0.08920441
## 10 -0.3973453 -0.4186584  0.7503981  0.08920441
## 10 -0.3973453  0.5813416  0.7503981  0.08920441
## 10 -0.3973453  0.5813416 -0.2496019  0.08920441
## 10 -0.3973453  0.5813416  0.7503981  0.08920441
## 10 -0.3973453 -0.4186584 -0.2496019  0.08920441
## 10 -0.3973453 -0.4186584 -0.2496019  0.08920441
## 10 -0.3973453  0.5813416 -0.2496019  0.08920441
## 10  0.6026547  0.5813416 -0.2496019  0.08920441
## 10  0.6026547  0.5813416 -0.2496019  0.08920441
## 11  0.5972990 -0.4199907 -0.2616726  0.09836059
## 11 -0.4027010 -0.4199907  0.7383274  0.09836059
## 11 -0.4027010 -0.4199907 -0.2616726  0.09836059
## 11 -0.4027010 -0.4199907 -0.2616726  0.09836059
## 11  0.5972990 -0.4199907 -0.2616726  0.09836059
## 11 -0.4027010  0.5800093  0.7383274  0.09836059
## 11 -0.4027010 -0.4199907 -0.2616726  0.09836059
## 11 -0.4027010 -0.4199907  0.7383274  0.09836059
## 12 -0.4038876 -0.4212811 -0.2714164  0.10088318
## 12  0.5961124 -0.4212811 -0.2714164 -0.89911682
## 12 -0.4038876 -0.4212811 -0.2714164  0.10088318
## 12  0.5961124  0.5787189 -0.2714164  0.10088318
## 12 -0.4038876 -0.4212811  0.7285836  0.10088318
## 12  0.5961124 -0.4212811 -0.2714164  0.10088318
## 12 -0.4038876 -0.4212811 -0.2714164  0.10088318
## 12 -0.4038876 -0.4212811 -0.2714164  0.10088318
## 12 -0.4038876 -0.4212811 -0.2714164  0.10088318
## 12 -0.4038876  0.5787189 -0.2714164  0.10088318
## 12  0.5961124  0.5787189 -0.2714164  0.10088318
## 13 -0.3999807  0.5610661 -0.2774269  0.09507803
## 13 -0.3999807 -0.4389339  0.7225731  0.09507803
## 13 -0.3999807 -0.4389339 -0.2774269  0.09507803
## 13  0.6000193 -0.4389339 -0.2774269  0.09507803
## 13 -0.3999807  0.5610661 -0.2774269  0.09507803
## 13  0.6000193  0.5610661  0.7225731  0.09507803
## 14 -0.4048289 -0.4399738  0.7166681  0.09746007
## 14 -0.4048289 -0.4399738  0.7166681  0.09746007
## 14 -0.4048289 -0.4399738  0.7166681  0.09746007
## 14  0.5951711 -0.4399738 -0.2833319  0.09746007
## 14  0.5951711 -0.4399738  0.7166681 -0.90253993
## 14  0.5951711 -0.4399738  0.7166681  0.09746007
## 14 -0.4048289 -0.4399738 -0.2833319 -0.90253993
## 14 -0.4048289 -0.4399738 -0.2833319  0.09746007
## 14  0.5951711 -0.4399738  0.7166681  0.09746007
## 14  0.5951711 -0.4399738 -0.2833319  0.09746007
## 14 -0.4048289  0.5600262 -0.2833319  0.09746007
## 14 -0.4048289  0.5600262 -0.2833319  0.09746007
## 14 -0.4048289  0.5600262 -0.2833319  0.09746007
## 15  0.5881643 -0.4431387 -0.3038056  0.06759631
## 15 -0.4118357 -0.4431387  0.6961944  0.06759631
## 16 -0.4083638 -0.4452688  0.6966977  0.06906963
## 16 -0.4083638 -0.4452688  0.6966977 -0.93093037
## 16  0.5916362 -0.4452688  0.6966977  0.06906963
## 16  0.5916362 -0.4452688 -0.3033023  0.06906963
## 17  0.5910844 -0.4467351 -0.2972368  0.06935768
## 17  0.5910844  0.5532649  0.7027632 -0.93064232
## 18  0.5941598 -0.4444671  0.6875028  0.07279190
## 18  0.5941598 -0.4444671  0.6875028  0.07279190
## 18  0.5941598 -0.4444671 -0.3124972  0.07279190
## 18 -0.4058402 -0.4444671  0.6875028  0.07279190
## 18 -0.4058402 -0.4444671  0.6875028  0.07279190
## 20 -0.4142306 -0.4571741  0.6735318  0.08737412
## 21 -0.4028323  0.5567544  0.6663411  0.09528395
## 21 -0.4028323 -0.4432456  0.6663411  0.09528395
## 21  0.5971677 -0.4432456 -0.3336589 -0.90471605
## 21 -0.4028323 -0.4432456  0.6663411 -0.90471605
## 21  0.5971677 -0.4432456 -0.3336589  0.09528395
## 22 -0.3715030 -0.4580711  0.6481843 -0.93072749
## 22 -0.3715030 -0.4580711  0.6481843 -0.93072749
## 24 -0.3934712 -0.4719849  0.6206549 -0.93748426
## 25  0.6211665 -0.4770270  0.6112426 -0.95255739
## 25 -0.3788335  0.5229730 -0.3887574  0.04744261
## 28  0.6555565 -0.4402508  0.5705433  0.02865658
## 29  0.6262968 -0.4069310  0.5186593  0.03436777
## 38  0.5487997 -0.2953528  0.1347705 -0.85998901
cox.zph(fit2)
##               rho chisq        p
## idadist2  -0.0632  1.38 2.41e-01
## idafotos2 -0.1801 11.86 5.73e-04
## idainqui2  0.2119 13.95 1.87e-04
## idapreco2 -0.0957  3.13 7.67e-02
## GLOBAL         NA 38.88 7.37e-08
plot(cox.zph(fit2))

mresid <- resid(fit2); 
plot(mresid)