Main educators
The top 3 job titiles for main educators are social workers, dieticians, and nurses.
Main educators are defined as self-selected “direct” educator AND who educated at least 1 English/Spanish Speaking patient.
Participating Dialysis Centers
In a national quality improvement initiative, dialysis centers from ESRD Networks throughout the United States were invited to participate in a one day Explore Transplant (ET) educational training. Only dialysis centers that participated in the ET trainings are considered for this study. The inclusion criterion for dialysis centers is to have sent a staff representative to one of 78 ET trainings over a four year period between 3/20/2011 and 3/18/2015. Representatives from 1989 unique dialysis centers attended trainings, though centers were excluded due to only providing acute dialysis (19 centers), serving only pediatric patients (17 centers), refusal to participate in the study (23 centers), and not responding to a survey given during the trainings (38 centers). Further, X centers did not initiate dialysis with at least 1 new patient during wait-listing and transplant rate follow-up periods (see below). This resulted in a sample of X unique dialysis centers.
Patient Selection
Patients from participating dialysis center will be selected to calculate transplant wait-listing and transplantation rates in two cohorts: a pre-ET cohort and a post-ET cohort. For the pre-ET cohort, incident dialysis patients who initialized dialysis treatment between 21 and 12 months prior to their center’s ET training will be sampled. For the post-ET cohort, incident dialysis patients who initialized dialysis between 3 months before the ET training date and 6 months after will be sampled. Patients in the post-ET cohort who started dialysis during this time are most likely to have been exposed ET from their dialysis staff, while patients sampled for the pre-ET cohort would not have any exposure to ET.
Calculation of Wait-listing and Transplant Rates Annualized 12 month wait-listing and transplant rates for each dialysis center will be calculated for before and after the ET trainings. Each rate will be defined as the number of patients who have the event of interest (wait-list or receive a transplant) divided by the total days patients are at risk during the follow-up period, then multiplied by 365.25. Patients will be censored at death. To calculate the pre-ET 12-month annualized rates, incident dialysis patients between 21 and 12 months prior to the ET training will be followed for 12 months. The follow-up for the last patients included in this cohort would end at the ET training date. For the post-ET 12 month rates, incident dialysis patients between 3 months prior to the ET training date and 6 months after the training date will be followed for 12 months. The follow-up for the last patients in this cohort will end 18 months after the ET date. This gives an equal sample period (9 months) and equal follow-up period (12 months) for both the pre- and post-ET rates. The figure below shows the sampling and follow-up of patients for the wait-listing and transplant rates.
HRSA 4&5 Combined Analysis Plan
Aims – Paper 1
1. Characteristics of dialysis center providers educating about transplant including level of preparedness (slides exist) [is this its own paper?]
2. Did trainings increase dialysis providers’ knowledge about deceased and living donor transplantation?
3. Did trainings motivate dialysis providers to use Explore Transplant with their own Spanish- and English-speaking patients in the next six months?
## No duplicate combinations found of: provider
The top 3 job titiles for main educators are social workers, dieticians, and nurses.
Main educators are defined as self-selected “direct” educator AND who educated at least 1 English/Spanish Speaking patient.
Main educators are mostly Black women, ~ 45 yrs old, mostly social workers or nurses.
| Overall | |
|---|---|
| n | 1765 |
| age (mean (SD)) | 45.60 (11.43) |
| gender2 = Female (%) | 1231 (69.9) |
| race8 (%) | |
| White | 1201 (68.6) |
| African American or Black | 236 (13.5) |
| Hispanic or Latino | 113 ( 6.4) |
| American Indian or Alaskan Native | 19 ( 1.1) |
| Asian | 149 ( 8.5) |
| Native Hawaiian or other Pacifc Islander | 3 ( 0.2) |
| Multiracial | 19 ( 1.1) |
| Other | 12 ( 0.7) |
| jobs (%) | |
| Medical Director/Physician | 142 ( 8.1) |
| Nurse Manager/Facility Administrator | 273 (15.5) |
| Nurse (RN/LPN/MSN/APN) | 81 ( 4.6) |
| Dietician | 1021 (57.9) |
| Social Worker (MSW) | 168 ( 9.5) |
| Dialysis Technician | 77 ( 4.4) |
| totknowpre (mean (SD)) | 5.34 (2.07) |
| op_priord = Yes (%) | 1606 (91.8) |
| op_knowd = Yes (%) | 1046 (60.0) |
| op_abilityd = Yes (%) | 976 (56.4) |
| op_txmatd = Yes (%) | 810 (46.5) |
| n | mean | sd | IQR | p00 | p50 | p100 |
|---|---|---|---|---|---|---|
| 1762 | 5.3 | 2.1 | 3 | 0 | 5 | 12 |
91.8% main educators consider patient education an important priority for them
## Warning: Grouping rowwise data frame strips rowwise nature
But only 60% educators feel sufficiently knowledgable about transplant to answer most of patients’ questions
## Warning: Grouping rowwise data frame strips rowwise nature
Only 56.4% educators are confident in their ability as a transplant educator
## Warning: Grouping rowwise data frame strips rowwise nature
Only 46.5% educators have excellent transplant education materials available at their dialysis center for patients.
## Warning: Grouping rowwise data frame strips rowwise nature
Paired t-test results suggest providers’ knowledges after ET class are significantly increased by 5.6 points on average than knowledge before ET class, p < 0.001 (Paired t test).
## Warning: Removed 68 rows containing non-finite values (stat_boxplot).
| nat_pro2$postedu5 | n | percent |
|---|---|---|
| Precontemplation | 188 | 0.09 |
| Contemplation | 627 | 0.31 |
| Preparation | 927 | 0.46 |
| Action | 99 | 0.05 |
| Maintenance | 42 | 0.02 |
| NA | 120 | 0.06 |
| Total | 2003 | 1.00 |
Generally speaking, after ET training, providers are more likely to “consider patient edu as a priority”,“feel knowledgable”, “confident in their ability to educate”, “have excellent materials available”.
1 = agree, 0 = disagree
##
## Cell Contents
## |-------------------------|
## | Count |
## | Chi-square contribution |
## | Row Percent |
## | Column Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 1888
##
## | nat_pro2$op_priorpstd
## nat_pro2$op_priord | 0 | 1 | Row Total |
## -------------------|-----------|-----------|-----------|
## No | 25 | 146 | 171 |
## | 70.444 | 2.312 | |
## | 14.620% | 85.380% | 9.057% |
## | 41.667% | 7.987% | |
## | 1.324% | 7.733% | |
## -------------------|-----------|-----------|-----------|
## Yes | 35 | 1682 | 1717 |
## | 7.016 | 0.230 | |
## | 2.038% | 97.962% | 90.943% |
## | 58.333% | 92.013% | |
## | 1.854% | 89.089% | |
## -------------------|-----------|-----------|-----------|
## Column Total | 60 | 1828 | 1888 |
## | 3.178% | 96.822% | |
## -------------------|-----------|-----------|-----------|
##
##
## McNemar's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 68 d.f. = 1 p = 1.6e-16
##
## McNemar's Chi-squared test with continuity correction
## ------------------------------------------------------------
## Chi^2 = 67 d.f. = 1 p = 2.9e-16
##
##
## Minimum expected frequency: 5.4
##
## Cell Contents
## |-------------------------|
## | Count |
## | Chi-square contribution |
## | Row Percent |
## | Column Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 1871
##
## | nat_pro2$op_knowpstd
## nat_pro2$op_knowd | 0 | 1 | Row Total |
## ------------------|-----------|-----------|-----------|
## No | 100 | 703 | 803 |
## | 15.280 | 1.409 | |
## | 12.453% | 87.547% | 42.918% |
## | 63.291% | 41.039% | |
## | 5.345% | 37.573% | |
## ------------------|-----------|-----------|-----------|
## Yes | 58 | 1010 | 1068 |
## | 11.489 | 1.060 | |
## | 5.431% | 94.569% | 57.082% |
## | 36.709% | 58.961% | |
## | 3.100% | 53.982% | |
## ------------------|-----------|-----------|-----------|
## Column Total | 158 | 1713 | 1871 |
## | 8.445% | 91.555% | |
## ------------------|-----------|-----------|-----------|
##
##
## McNemar's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 547 d.f. = 1 p = 6.6e-121
##
## McNemar's Chi-squared test with continuity correction
## ------------------------------------------------------------
## Chi^2 = 545 d.f. = 1 p = 1.5e-120
##
##
## Minimum expected frequency: 68
##
## Cell Contents
## |-------------------------|
## | Count |
## | Chi-square contribution |
## | Row Percent |
## | Column Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 1856
##
## | nat_pro2$op_abilitypstd
## nat_pro2$op_abilityd | 0 | 1 | Row Total |
## ---------------------|-----------|-----------|-----------|
## No | 138 | 741 | 879 |
## | 27.596 | 3.092 | |
## | 15.700% | 84.300% | 47.360% |
## | 73.797% | 44.398% | |
## | 7.435% | 39.925% | |
## ---------------------|-----------|-----------|-----------|
## Yes | 49 | 928 | 977 |
## | 24.828 | 2.782 | |
## | 5.015% | 94.985% | 52.640% |
## | 26.203% | 55.602% | |
## | 2.640% | 50.000% | |
## ---------------------|-----------|-----------|-----------|
## Column Total | 187 | 1669 | 1856 |
## | 10.075% | 89.925% | |
## ---------------------|-----------|-----------|-----------|
##
##
## McNemar's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 606 d.f. = 1 p = 7.7e-134
##
## McNemar's Chi-squared test with continuity correction
## ------------------------------------------------------------
## Chi^2 = 604 d.f. = 1 p = 1.8e-133
##
##
## Minimum expected frequency: 89
##
## Cell Contents
## |-------------------------|
## | Count |
## | Chi-square contribution |
## | Row Percent |
## | Column Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 1851
##
## | nat_pro2$op_txmatpstd
## nat_pro2$op_txmatd | 0 | 1 | Row Total |
## -------------------|-----------|-----------|-----------|
## No | 286 | 734 | 1020 |
## | 26.156 | 6.847 | |
## | 28.039% | 71.961% | 55.105% |
## | 74.479% | 50.034% | |
## | 15.451% | 39.654% | |
## -------------------|-----------|-----------|-----------|
## Yes | 98 | 733 | 831 |
## | 32.105 | 8.404 | |
## | 11.793% | 88.207% | 44.895% |
## | 25.521% | 49.966% | |
## | 5.294% | 39.600% | |
## -------------------|-----------|-----------|-----------|
## Column Total | 384 | 1467 | 1851 |
## | 20.746% | 79.254% | |
## -------------------|-----------|-----------|-----------|
##
##
## McNemar's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 486 d.f. = 1 p = 9.7e-108
##
## McNemar's Chi-squared test with continuity correction
## ------------------------------------------------------------
## Chi^2 = 485 d.f. = 1 p = 2.1e-107
##
##
## Minimum expected frequency: 172
The zero inflated model with offset of “potential events” showed no significance of treatment on number (counts) of patients listed 12 month post ET. DiD (interaction between treatment and time) was also non-significant.
##
## Call:
## zeroinfl(formula = list12m ~ ET + time2 + did, data = df2, offset = log(DIAL2LIST_12M))
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.583 -0.781 -0.396 0.513 16.803
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.0768 0.0304 -265.69 <2e-16 ***
## ET 0.0634 0.0410 1.55 0.122
## time2 -0.0855 0.0458 -1.87 0.062 .
## did -0.0284 0.0619 -0.46 0.647
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.5618 0.1384 -11.28 <2e-16 ***
## ET -0.0670 0.1924 -0.35 0.727
## time2 0.3869 0.1820 2.13 0.034 *
## did 0.0593 0.2537 0.23 0.815
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 17
## Log-likelihood: -7.67e+03 on 8 Df
## [1] 1.2
## [1] 2.9
##
## Call:
## zeroinfl(formula = list12m ~ ET + time2 + did, data = df2, offset = log(DIAL2LIST_12M),
## dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.145 -0.709 -0.370 0.426 16.282
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.2455 0.0349 -236.53 <2e-16 ***
## ET 0.0628 0.0475 1.32 0.19
## time2 -0.1027 0.0625 -1.64 0.10
## did -0.0608 0.0826 -0.74 0.46
## Log(theta) 0.5774 0.0691 8.35 <2e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -12.07 70.54 -0.17 0.86
## ET -3.81 354.10 -0.01 0.99
## time2 9.09 70.55 0.13 0.90
## did 3.30 354.10 0.01 0.99
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 1.781
## Number of iterations in BFGS optimization: 39
## Log-likelihood: -7.44e+03 on 9 Df
DiD (interaction between treatment and time) was non-significant.
##
## Call:
## zeroinfl(formula = list12m ~ ed5 + time2 + did, data = df2, offset = log(DIAL2LIST_12M))
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.682 -0.778 -0.404 0.484 10.317
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.0400 0.0435 -184.64 <2e-16 ***
## ed5 0.0468 0.0561 0.83 0.405
## time2 -0.1403 0.0657 -2.13 0.033 *
## did 0.0458 0.0850 0.54 0.590
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.424 0.183 -7.79 6.7e-15 ***
## ed5 -0.404 0.269 -1.50 0.13
## time2 0.238 0.260 0.91 0.36
## did 0.397 0.359 1.11 0.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 16
## Log-likelihood: -4.02e+03 on 8 Df
## [1] 1.2
## [1] 2.9
##
## Call:
## zeroinfl(formula = list12m ~ ed5 + time2 + did, data = df2, offset = log(DIAL2LIST_12M),
## dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.194 -0.713 -0.369 0.415 10.114
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.2358 0.0685 -120.29 < 2e-16 ***
## ed5 0.0978 0.0803 1.22 0.223
## time2 -0.1574 0.0943 -1.67 0.095 .
## did 0.0209 0.1209 0.17 0.863
## Log(theta) 0.6754 0.1151 5.87 4.5e-09 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.48 11.70 -0.47 0.64
## ed5 -5.66 42.21 -0.13 0.89
## time2 2.14 11.43 0.19 0.85
## did 6.23 42.20 0.15 0.88
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 1.965
## Number of iterations in BFGS optimization: 53
## Log-likelihood: -3.92e+03 on 9 Df
Treatment was not a significant predictor ofnumber (counts) of patients listed 18 month post ET. DiD (interaction between treatment and time) was also non-significant. Only “time” was significant in both the count and zero inflated model.
##
## Call:
## zeroinfl(formula = list18m ~ ET + time2 + did, data = df2, offset = log(DIAL2LIST_18M))
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.955 -0.811 -0.347 0.581 16.806
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.1061 0.0249 -325.06 <2e-16 ***
## ET 0.0461 0.0340 1.35 0.176
## time2 -0.0904 0.0383 -2.36 0.018 *
## did 0.0155 0.0520 0.30 0.765
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.2189 0.1742 -12.74 < 2e-16 ***
## ET -0.0453 0.2470 -0.18 0.85
## time2 0.9282 0.2055 4.52 6.3e-06 ***
## did 0.0878 0.2892 0.30 0.76
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 18
## Log-likelihood: -8.62e+03 on 8 Df
## [1] 1.5
## [1] 3.9
##
## Call:
## zeroinfl(formula = list18m ~ ET + time2 + did, data = df2, offset = log(DIAL2LIST_18M),
## dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.338 -0.738 -0.320 0.481 16.267
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.190588 0.029918 -273.77 <2e-16 ***
## ET 0.040582 0.040869 0.99 0.321
## time2 -0.103011 0.051673 -1.99 0.046 *
## did 0.000731 0.069270 0.01 0.992
## Log(theta) 0.911103 0.066804 13.64 <2e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -12.82 72.06 -0.18 0.86
## ET -3.18 286.81 -0.01 0.99
## time2 10.63 72.06 0.15 0.88
## did 3.17 286.81 0.01 0.99
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 2.487
## Number of iterations in BFGS optimization: 39
## Log-likelihood: -8.36e+03 on 9 Df
DiD (interaction between treatment and time) was also non-significant.
##
## Call:
## zeroinfl(formula = list18m ~ ed5 + time2 + did, data = df2, offset = log(DIAL2LIST_18M))
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -2.016 -0.815 -0.344 0.547 9.308
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.1289 0.0367 -221.33 <2e-16 ***
## ed5 0.1181 0.0473 2.50 0.013 *
## time2 -0.0362 0.0547 -0.66 0.509
## did -0.0646 0.0714 -0.90 0.366
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.229 0.268 -8.33 <2e-16 ***
## ed5 -0.105 0.359 -0.29 0.770
## time2 0.967 0.312 3.10 0.002 **
## did 0.122 0.416 0.29 0.769
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 17
## Log-likelihood: -4.52e+03 on 8 Df
## [1] 1.5
## [1] 3.9
##
## Call:
## zeroinfl(formula = list18m ~ ed5 + time2 + did, data = df2, offset = log(DIAL2LIST_18M),
## dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.388 -0.748 -0.323 0.467 9.073
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.2179 0.0417 -197.24 <2e-16 ***
## ed5 0.1203 0.0553 2.17 0.03 *
## time2 -0.0665 0.0717 -0.93 0.35
## did -0.0448 0.0934 -0.48 0.63
## Log(theta) 0.9918 0.0950 10.44 <2e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -12.99 104.37 -0.12 0.90
## ed5 -3.13 463.59 -0.01 0.99
## time2 10.77 104.37 0.10 0.92
## did 3.34 463.59 0.01 0.99
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 2.696
## Number of iterations in BFGS optimization: 39
## Log-likelihood: -4.4e+03 on 9 Df
DiD (interaction between treatment and time) was non-significant.
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.107 0.0361 2.96 0.00306
## 2 ET -0.000643 0.0497 -0.0129 0.990
## 3 time2 0.0104 0.0511 0.204 0.838
## 4 did 0.0464 0.0703 0.659 0.510
## [1] 0.12
## [1] 1.6
## [1] 0.15
DiD (interaction between treatment and time) was non-significant.
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.100 0.0685 1.46 0.144
## 2 ed5 0.0115 0.0933 0.123 0.902
## 3 time2 0.135 0.0969 1.39 0.164
## 4 did -0.145 0.132 -1.10 0.273
## [1] 0.12
## [1] 1.6
## [1] 0.15
DiD (interaction between treatment and time) was non-significant.
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.104 0.0685 1.52 0.129
## 2 ed5 0.0131 0.0932 0.141 0.888
## 3 time2 0.136 0.0969 1.41 0.160
## 4 did -0.148 0.132 -1.12 0.263
## [1] 0.13
## [1] 1.6
## [1] 0.15