Abstract
This is an undergrad student level instruction for class use. Example using pder::FinanceGrowth dataset.This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
License: CC BY-SA 4.0
Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria com Panel Data: Exemplo utilizando pder::FinanceGrowth dataset. Campo Grande-MS,Brasil: RStudio/Rpubs, 2019. Disponível em http://rpubs.com/amrofi/Econometrics_panel_FinanceGrowth.
O estudo envolve uma relação entre a qualidade do sistema financeiro e o crescimento econômico. Para este fim, estimar e analisar um modelo em que o crescimento econômico é uma função de um número de variáveis de controle e de características exógenas do sistema financeiro, em um painel de 74 países com 7 observações de períodos de 5 anos de 1960 a 1995. Os dados estão disponíveis no pacote CRAN ‘pder’ de Croissant e Millo [data(FinanceGrowth)]. Referência: LEVINE, R.; LOAYZA, N.; BECK, T. (2000) “Financial intermediation and growth: causality and causes”, Journal of Monetary Economics, 46, 31-77.
Portanto, os passos para desenvolvimento são:
1. acessar pacote
2. baixar dados
3. processar variáveis
4. rodar modelo
5. interpretar saída.
Os dados, conforme enunciado, estão em pder::FinanceGrowth
. Portanto, o pacote pder
deve estar previamente instalado.
library(pder)
data(FinanceGrowth)
# A dataframe containing : country - country name period - period growth -
# growth rate * 100 privo - log private credit / GDP lly - log liquid
# liabilities / GDP btot - log bank credit/total credit lgdp - log initial gdp
# per capita (PPP) sec - mean years of secondary schooling gov - log government
# spending / GDP lbmp - log(1 black market premium) lpi - log(1 + inflation
# rate) trade - log (imports + exports)/GDP
# Descriptive statistics
library(knitr)
kable(summary(FinanceGrowth), caption = "Estatísticas descritivas")
country | period | growth | privo | lly | btot | lgdp | sec | gov | lbmp | lpi | trade | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:546 | 1961-65:78 | Min. :-10.0209 | Min. :0.00338 | Min. :0.04676 | Min. :0.1227 | Min. :4.677 | Min. :0.000 | Min. :0.04064 | Min. :-0.05503 | Min. :-0.03103 | Min. :0.09287 | |
Class :character | 1966-70:78 | 1st Qu.: 0.1729 | 1st Qu.:0.14997 | 1st Qu.:0.21791 | 1st Qu.:0.6567 | 1st Qu.:6.361 | 1st Qu.:0.370 | 1st Qu.:0.10446 | 1st Qu.: 0.00000 | 1st Qu.: 0.04050 | 1st Qu.:0.35988 | |
Mode :character | 1971-75:78 | Median : 1.9362 | Median :0.25714 | Median :0.35819 | Median :0.8238 | Median :7.233 | Median :0.850 | Median :0.13593 | Median : 0.05781 | Median : 0.08034 | Median :0.50676 | |
NA | 1976-80:78 | Mean : 1.7717 | Mean :0.36699 | Mean :0.42464 | Mean :0.7673 | Mean :7.394 | Mean :1.122 | Mean :0.14816 | Mean : 0.20450 | Mean : 0.12595 | Mean :0.59962 | |
NA | 1981-85:78 | 3rd Qu.: 3.5465 | 3rd Qu.:0.48985 | 3rd Qu.:0.56463 | 3rd Qu.:0.9408 | 3rd Qu.:8.599 | 3rd Qu.:1.620 | 3rd Qu.:0.18008 | 3rd Qu.: 0.19525 | 3rd Qu.: 0.12861 | 3rd Qu.:0.71749 | |
NA | 1986-90:78 | Max. : 11.1064 | Max. :2.05951 | Max. :1.91440 | Max. :1.0000 | Max. :9.910 | Max. :5.150 | Max. :0.44972 | Max. : 4.70869 | Max. : 1.49214 | Max. :3.14521 | |
NA | 1991-95:78 | NA’s :20 | NA’s :35 | NA’s :35 | NA’s :15 | NA’s :21 | NA’s :15 | NA’s :23 | NA’s :26 | NA’s :38 | NA’s :19 |
Retirando NAs, o painel ficará desbalanceado conforme se verá na função pdim
:
library(plm)
data <- na.omit(FinanceGrowth)
panel <- pdata.frame(data, index = c("country", "period"))
summary(panel)
country period growth privo
Australia: 7 1961-65:41 Min. :-10.02092 Min. :0.01563
Austria : 7 1966-70:51 1st Qu.: 0.08481 1st Qu.:0.16055
Belgium : 7 1971-75:60 Median : 1.90715 Median :0.27619
Bolivia : 7 1976-80:70 Mean : 1.63614 Mean :0.39304
Brazil : 7 1981-85:76 3rd Qu.: 3.39214 3rd Qu.:0.54692
Canada : 7 1986-90:77 Max. : 11.10643 Max. :2.05951
(Other) :403 1991-95:70
lly btot lgdp sec
Min. :0.06724 Min. :0.1227 Min. :5.091 Min. :0.04
1st Qu.:0.22731 1st Qu.:0.6633 1st Qu.:6.562 1st Qu.:0.50
Median :0.38223 Median :0.8206 Median :7.496 Median :1.04
Mean :0.43189 Mean :0.7688 Mean :7.587 Mean :1.26
3rd Qu.:0.57441 3rd Qu.:0.9405 3rd Qu.:8.865 3rd Qu.:1.79
Max. :1.91440 Max. :0.9998 Max. :9.910 Max. :5.15
gov lbmp lpi trade
Min. :0.04064 Min. :-0.05503 Min. :-0.03103 Min. :0.09287
1st Qu.:0.10561 1st Qu.: 0.00000 1st Qu.: 0.04582 1st Qu.:0.35104
Median :0.13687 Median : 0.04631 Median : 0.08497 Median :0.50081
Mean :0.14775 Mean : 0.20115 Mean : 0.12842 Mean :0.54597
3rd Qu.:0.17997 3rd Qu.: 0.18611 3rd Qu.: 0.13532 3rd Qu.:0.67721
Max. :0.38016 Max. : 4.70869 Max. : 1.49156 Max. :2.11124
pdim(panel) # Unbalanced Panel: n = 77, T = 2-7, N = 445
Unbalanced Panel: n = 77, T = 2-7, N = 445
É possível ver a variação de Y (growth
) no tempo e entre cross-sections:
coplot(growth ~ country | period, type = "b", data = panel) # Points and lines
# Bars at top indicates corresponding graph (i.e. countries) from left to right
# starting on the bottom row (Muenchen/Hilbe:355)
O gráfico de dispersão permite visualizar um pouco mais sobre o painel:
library(gplots)
plotmeans(growth ~ country, main = "Heterogeineity across units", data = panel)
plotmeans(growth ~ period, main = "Heterogeineity across periods", data = panel)
# plotmeansdraw a 95% confidence interval around the means
A partir desta organização da base de dados em painel, procedem-se as estimativas.
O primeiro estimador é do modelo “empilhado”, ou “Pooled estimator”, obtido com Mínimos Quadrados Ordinários (MQO) na base de dados sem preocupar com a indicação entre cross-section e tempos. Este método não considera a heterogeneidade entre grupos ou tempo.
fm1 <- growth ~ (lgdp) + privo + lly + btot + sec + gov + lbmp + lpi + trade
pooling <- plm(formula = fm1, data = panel, index = c("country", "period"), model = "pooling")
source("aicbic_plm.R")
pooling$AIC <- aicbic_plm(pooling, "AIC")
pooling$BIC <- aicbic_plm(pooling, "BIC")
suppressMessages(library(stargazer))
stargazer(pooling, title = "Título: Resultado da Regressão Pooled OLS", align = TRUE,
type = "text", style = "all", keep.stat = c("AIC", "BIC", "rsq", "adj.rsq", "n"))
Título: Resultado da Regressão Pooled OLS
===============================================
Dependent variable:
---------------------------
growth
-----------------------------------------------
lgdp 0.158
(0.178)
t = 0.891
p = 0.374
privo -2.579***
(0.832)
t = -3.100
p = 0.003
lly 2.798***
(0.911)
t = 3.070
p = 0.003
btot 2.885***
(0.875)
t = 3.297
p = 0.002
sec 0.163
(0.199)
t = 0.816
p = 0.415
gov -6.175**
(2.610)
t = -2.366
p = 0.019
lbmp -1.350***
(0.346)
t = -3.903
p = 0.0002
lpi -2.567***
(0.876)
t = -2.930
p = 0.004
trade -0.492
(0.456)
t = -1.079
p = 0.281
Constant -0.401
(1.067)
t = -0.376
p = 0.708
-----------------------------------------------
Observations 445
R2 0.199
Adjusted R2 0.182
Akaike Inf. Crit. 2,129.200
Bayesian Inf. Crit. 2,170.100
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
fixed.one <- plm(formula = fm1, data = panel, index = country, effect = c("individual"),
model = "within")
summary(fixed.one)
Oneway (individual) effect Within Model
Call:
plm(formula = fm1, data = panel, effect = c("individual"), model = "within",
index = country)
Unbalanced Panel: n = 77, T = 2-7, N = 445
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-6.7103192 -0.9755816 -0.0087027 1.0327749 6.5644821
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
lgdp -5.25134 0.63715 -8.2419 3.219e-15 ***
privo 0.87795 1.12030 0.7837 0.43375
lly -0.20951 1.40682 -0.1489 0.88169
btot 4.96284 1.15469 4.2980 2.223e-05 ***
sec 0.23991 0.32145 0.7463 0.45596
gov -10.74171 4.40085 -2.4408 0.01514 *
lbmp -0.40720 0.40594 -1.0031 0.31649
lpi -1.99878 0.95303 -2.0973 0.03667 *
trade 1.50681 0.85540 1.7615 0.07900 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 2078.4
Residual Sum of Squares: 1391.5
R-Squared: 0.33049
Adj. R-Squared: 0.17197
F-statistic: 19.69 on 9 and 359 DF, p-value: < 2.22e-16
source("aicbic_plm.R")
(fixed.one$AIC <- aicbic_plm(fixed.one, "AIC"))
AIC
1944.2
(fixed.one$BIC <- aicbic_plm(fixed.one, "BIC"))
BIC
2300.7
Agora alterando para conter efeitos fixos no tempo.
fixed.onet <- plm(formula = fm1, data = panel, index = c(period), effect = c("time"),
model = "within")
summary(fixed.onet)
Oneway (time) effect Within Model
Call:
plm(formula = fm1, data = panel, effect = c("time"), model = "within",
index = c(period))
Unbalanced Panel: n = 77, T = 2-7, N = 445
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-9.412901 -1.242133 -0.075499 1.356096 7.841079
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
lgdp -0.16196 0.17624 -0.9190 0.3586213
privo -1.74034 0.80259 -2.1684 0.0306765 *
lly 3.07330 0.86807 3.5404 0.0004433 ***
btot 2.72195 0.83499 3.2599 0.0012034 **
sec 0.49964 0.19696 2.5368 0.0115413 *
gov -5.42592 2.49933 -2.1709 0.0304827 *
lbmp -1.20438 0.33070 -3.6420 0.0003037 ***
lpi -0.97086 0.87782 -1.1060 0.2693498
trade 0.22299 0.45218 0.4931 0.6221601
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 3269
Residual Sum of Squares: 2656.3
R-Squared: 0.18742
Adj. R-Squared: 0.15901
F-statistic: 10.9942 on 9 and 429 DF, p-value: 1.8299e-15
(fixed.onet$AIC <- aicbic_plm(fixed.onet, "AIC"))
AIC
2091.9
(fixed.onet$BIC <- aicbic_plm(fixed.onet, "BIC"))
BIC
2161.6
fixed.two <- plm(formula = fm1, data = panel, index = c(country, period), effect = c("twoways"),
model = "within")
summary(fixed.two)
Twoways effects Within Model
Call:
plm(formula = fm1, data = panel, effect = c("twoways"), model = "within",
index = c(country, period))
Unbalanced Panel: n = 77, T = 2-7, N = 445
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-6.336882 -0.884402 -0.057674 0.960408 5.947032
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
lgdp -6.268676 0.684356 -9.1600 < 2.2e-16 ***
privo 0.677204 1.091505 0.6204 0.535374
lly -0.425835 1.363303 -0.3124 0.754955
btot 4.553436 1.134513 4.0136 7.307e-05 ***
sec 0.083537 0.368203 0.2269 0.820651
gov -13.032231 4.348358 -2.9970 0.002919 **
lbmp -0.201006 0.398659 -0.5042 0.614431
lpi -3.091743 0.977069 -3.1643 0.001690 **
trade 1.242336 0.850726 1.4603 0.145090
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 1726.9
Residual Sum of Squares: 1275.2
R-Squared: 0.2616
Adj. R-Squared: 0.071248
F-statistic: 13.8956 on 9 and 353 DF, p-value: < 2.22e-16
(fixed.two$AIC <- aicbic_plm(fixed.two, "AIC"))
AIC
1917.3
(fixed.two$BIC <- aicbic_plm(fixed.two, "BIC"))
BIC
2298.5
# Random effects estimator
random <- plm(formula = fm1, data = panel, model = "random")
summary(random)
Oneway (individual) effect Random Effect Model
(Swamy-Arora's transformation)
Call:
plm(formula = fm1, data = panel, model = "random")
Unbalanced Panel: n = 77, T = 2-7, N = 445
Effects:
var std.dev share
idiosyncratic 3.876 1.969 0.693
individual 1.715 1.310 0.307
theta:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2716 0.4769 0.5060 0.4764 0.5060 0.5060
Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.1749 -1.2715 0.1670 0.0229 1.2899 7.5833
Coefficients:
Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.288085 1.569957 0.1835 0.85441
lgdp 0.068311 0.253014 0.2700 0.78717
privo -2.147670 0.989525 -2.1704 0.02998 *
lly 1.312022 1.146587 1.1443 0.25251
btot 4.187461 1.026997 4.0774 4.555e-05 ***
sec -0.147535 0.257581 -0.5728 0.56680
gov -6.663179 3.369314 -1.9776 0.04797 *
lbmp -0.799253 0.376190 -2.1246 0.03362 *
lpi -3.673719 0.924560 -3.9735 7.083e-05 ***
trade -0.719581 0.584949 -1.2302 0.21864
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 2586
Residual Sum of Squares: 2201
R-Squared: 0.14903
Adj. R-Squared: 0.13142
Chisq: 81.3867 on 9 DF, p-value: 8.5668e-14
(random$AIC <- aicbic_plm(random, "AIC"))
AIC
1994.2
(random$BIC <- aicbic_plm(random, "BIC"))
BIC
2035.2
suppressMessages(library(stargazer))
stargazer(fixed.one, fixed.onet, fixed.two, random, title = "Uma comparação entre Fixed Effects e Random Effects models",
align = TRUE, type = "text", style = "all", column.labels = c("EF-ind", "EF-time",
"EFtwo", "EA-ind"), keep.stat = c("AIC", "BIC", "rsq", "adj.rsq", "n"))
Uma comparação entre Fixed Effects e Random Effects models
=================================================================
Dependent variable:
---------------------------------------------
growth
EF-ind EF-time EFtwo EA-ind
(1) (2) (3) (4)
-----------------------------------------------------------------
lgdp -5.251*** -0.162 -6.269*** 0.068
(0.637) (0.176) (0.684) (0.253)
t = -8.242 t = -0.919 t = -9.160 t = 0.270
p = 0.000 p = 0.359 p = 0.000 p = 0.788
privo 0.878 -1.740** 0.677 -2.148**
(1.120) (0.803) (1.092) (0.990)
t = 0.784 t = -2.168 t = 0.620 t = -2.170
p = 0.434 p = 0.031 p = 0.536 p = 0.030
lly -0.210 3.073*** -0.426 1.312
(1.407) (0.868) (1.363) (1.147)
t = -0.149 t = 3.540 t = -0.312 t = 1.144
p = 0.882 p = 0.0005 p = 0.755 p = 0.253
btot 4.963*** 2.722*** 4.553*** 4.187***
(1.155) (0.835) (1.135) (1.027)
t = 4.298 t = 3.260 t = 4.014 t = 4.077
p = 0.00003 p = 0.002 p = 0.0001 p = 0.00005
sec 0.240 0.500** 0.084 -0.148
(0.321) (0.197) (0.368) (0.258)
t = 0.746 t = 2.537 t = 0.227 t = -0.573
p = 0.456 p = 0.012 p = 0.821 p = 0.567
gov -10.742** -5.426** -13.032*** -6.663**
(4.401) (2.499) (4.348) (3.369)
t = -2.441 t = -2.171 t = -2.997 t = -1.978
p = 0.016 p = 0.031 p = 0.003 p = 0.048
lbmp -0.407 -1.204*** -0.201 -0.799**
(0.406) (0.331) (0.399) (0.376)
t = -1.003 t = -3.642 t = -0.504 t = -2.125
p = 0.317 p = 0.0004 p = 0.615 p = 0.034
lpi -1.999** -0.971 -3.092*** -3.674***
(0.953) (0.878) (0.977) (0.925)
t = -2.097 t = -1.106 t = -3.164 t = -3.973
p = 0.037 p = 0.270 p = 0.002 p = 0.0001
trade 1.507* 0.223 1.242 -0.720
(0.855) (0.452) (0.851) (0.585)
t = 1.762 t = 0.493 t = 1.460 t = -1.230
p = 0.079 p = 0.623 p = 0.146 p = 0.219
Constant 0.288
(1.570)
t = 0.183
p = 0.855
-----------------------------------------------------------------
Observations 445 445 445 445
R2 0.330 0.187 0.262 0.149
Adjusted R2 0.172 0.159 0.071 0.131
Akaike Inf. Crit. 1,944.200 2,091.900 1,917.300 1,994.200
Bayesian Inf. Crit. 2,300.700 2,161.600 2,298.500 2,035.200
=================================================================
Note: *p<0.1; **p<0.05; ***p<0.01
Basicamente, pelos resultados acima estamos entre os efeitos fixos individuais e os two-ways. Mas faremos os testes mais robustos.
O plmtest
realiza testes de multiplicador de Lagrange para efeitos individuais ou de tempo, com base nos resultados do modelo empilhado (pooling).
plmtest(pooling, effect = "individual", type = "honda")
Lagrange Multiplier Test - (Honda) for unbalanced panels
data: fm1
normal = 5.6243, p-value = 9.312e-09
alternative hypothesis: significant effects
plmtest(pooling, effect = "time", type = "honda")
Lagrange Multiplier Test - time effects (Honda) for unbalanced panels
data: fm1
normal = 7.9717, p-value = 7.827e-16
alternative hypothesis: significant effects
plmtest(pooling, effect = "twoways", type = "honda")
Lagrange Multiplier Test - two-ways effects (Honda) for unbalanced
panels
data: fm1
normal = 9.6138, p-value < 2.2e-16
alternative hypothesis: significant effects
Em todos os casos os efeitos são significativos.
O pFtest
calcula testes tipo F dos efeitos baseados na comparação entre o modelo pooling com o modelo de efeitos fixos (within). Os argumentos da função são dois objetos tipo plm
(pooling e within). Os efeitos serão obtidos do objeto do modelo ‘within’. Os efeitos foram significativos em todos os casos, preferindo o modelo com efeitos.
pFtest(fixed.one, pooling)
F test for individual effects
data: fm1
F = 5.3944, df1 = 76, df2 = 359, p-value < 2.2e-16
alternative hypothesis: significant effects
pFtest(fixed.onet, pooling)
F test for time effects
data: fm1
F = 8.7295, df1 = 6, df2 = 429, p-value = 5.535e-09
alternative hypothesis: significant effects
pFtest(fixed.two, pooling)
F test for twoways effects
data: fm1
F = 5.7574, df1 = 82, df2 = 353, p-value < 2.2e-16
alternative hypothesis: significant effects
O teste phtest
de Hausman baseia-se na comparação das estimativas de dois modelos de dados em painel conforme Hausman (1978). Uma aplicação tradicional é feita entre os modelos de efeitos fixos e aleatórios. Em todos os casos, rejeita-se H0 e escolhe-se o modelo de efeitos fixos.
phtest(fixed.one, random)
Hausman Test
data: fm1
chisq = 149.04, df = 9, p-value < 2.2e-16
alternative hypothesis: one model is inconsistent
phtest(fixed.onet, random)
Hausman Test
data: fm1
chisq = 151.34, df = 9, p-value < 2.2e-16
alternative hypothesis: one model is inconsistent
phtest(fixed.two, random)
Hausman Test
data: fm1
chisq = 202.46, df = 9, p-value < 2.2e-16
alternative hypothesis: one model is inconsistent
O teste de efeitos não observados ao estilo de Wooldridge(2002, seção 10.4.4), testa a hipótese nula de que \(σ^2_{μ}= 0\), e não existem efeitos não observados nos resíduos. O teste baseia-se nos resíduos do modelo empilhado estimado por Mínimos Quadrados (pooling).
Não rejeitar H0, favorece o uso do modelo pooled OLS. A rejeição de H0 pode se dar por presença de correlação serial de diferentes formas e não deve ser interpretada de modo a se optar pelo modelo de efeitos aleatórios (Wooldridge, 2002). Sabendo que o modelo preferível é de efeitos fixos, o resultado indica possibilidade de correlação serial e necessidade de realizar estimativas robustas.
pwtest(growth ~ (lgdp) + privo + lly + btot + sec + gov + lbmp + lpi + trade, data = panel)
Wooldridge's test for unobserved individual effects
data: formula
z = 2.8218, p-value = 0.004775
alternative hypothesis: unobserved effect
Fizemos também o teste de Baltagi e Li e a hipótese alternativa de erros AR(1) é preferida.
pbsytest(growth ~ (lgdp) + privo + lly + btot + sec + gov + lbmp + lpi + trade, data = panel,
test = "j")
Baltagi and Li AR-RE joint test - unbalanced panel
data: formula
chisq = 55.066, df = 2, p-value = 1.103e-12
alternative hypothesis: AR(1) errors or random effects
Realizando a estimativa robusta de Arellano para o modelo de efeitos fixos individuais. Sabendo que as variáveis são:
country country name
period period
growth growth rate * 100
privo log private credit / GDP
lly log liquid liabilities / GDP
btot log bank credit/total credit
lgdp log initial gdp per capita (PPP)
sec mean years of secondary schooling
gov log government spending / GDP
lbmp log(1 black market premium)
lpi log(1 + inflation rate)
trade log (imports + exports)/GDP
Foram significativas para explicar o crescimento (growth): lgdp, btot, lpi.
# ver plm::vcovHC para detalhes do método e tipo arellano permite uma estrutura
# mais completa e geral para var-cov com heterocedasticidade e correlação
# serial (cross-sectional)
fe_summary <- summary(fixed.one, vcov = function(x) vcovHC(x, method = "arellano",
type = c("HC1")))
(fe_summary)
Oneway (individual) effect Within Model
Note: Coefficient variance-covariance matrix supplied: function(x) vcovHC(x, method = "arellano", type = c("HC1"))
Call:
plm(formula = fm1, data = panel, effect = c("individual"), model = "within",
index = country)
Unbalanced Panel: n = 77, T = 2-7, N = 445
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-6.7103192 -0.9755816 -0.0087027 1.0327749 6.5644821
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
lgdp -5.25134 0.76498 -6.8646 2.941e-11 ***
privo 0.87795 1.00012 0.8778 0.380615
lly -0.20951 1.44497 -0.1450 0.884796
btot 4.96284 1.62582 3.0525 0.002438 **
sec 0.23991 0.35232 0.6810 0.496339
gov -10.74171 6.56983 -1.6350 0.102925
lbmp -0.40720 0.60867 -0.6690 0.503929
lpi -1.99878 0.86673 -2.3061 0.021673 *
trade 1.50681 1.31868 1.1427 0.253940
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 2078.4
Residual Sum of Squares: 1391.5
R-Squared: 0.33049
Adj. R-Squared: 0.17197
F-statistic: 16.8129 on 9 and 76 DF, p-value: 7.4254e-15
efeitos <- fixef(fixed.one)
options(max.print = 1e+06)
summary(efeitos)
Estimate Std. Error t-value Pr(>|t|)
Algeria 37.5174 4.5742 8.2020 4.259e-15 ***
Argentina 42.5987 5.0412 8.4501 7.360e-16 ***
Australia 46.6520 5.2281 8.9233 < 2.2e-16 ***
Austria 45.8197 5.1041 8.9771 < 2.2e-16 ***
Belgium 45.8740 5.3414 8.5885 2.725e-16 ***
Bolivia 34.8437 3.8925 8.9515 < 2.2e-16 ***
Brazil 40.4997 4.4391 9.1234 < 2.2e-16 ***
Cameroon 31.3264 4.1012 7.6383 2.019e-13 ***
Canada 47.6796 5.1997 9.1698 < 2.2e-16 ***
Central African Republic 27.0486 3.6942 7.3220 1.619e-12 ***
Chile 40.0318 4.4480 9.0000 < 2.2e-16 ***
Colombia 35.5554 4.1777 8.5107 4.769e-16 ***
Congo 30.7707 4.3642 7.0507 9.186e-12 ***
Costa Rica 37.5473 4.4346 8.4670 6.524e-16 ***
Cyprus 44.5569 4.6463 9.5898 < 2.2e-16 ***
Denmark 48.5743 5.5123 8.8119 < 2.2e-16 ***
Dominican Republic 34.5941 4.1360 8.3641 1.358e-15 ***
Ecuador 36.4029 4.1641 8.7421 < 2.2e-16 ***
Egypt, Arab Rep. 36.1898 4.0236 8.9944 < 2.2e-16 ***
El Salvador 33.2847 4.2002 7.9246 2.911e-14 ***
Finland 47.1713 5.4928 8.5879 2.736e-16 ***
France 47.1377 5.3689 8.7798 < 2.2e-16 ***
Gambia, The 26.4062 3.7554 7.0316 1.037e-11 ***
Germany 47.3590 5.5186 8.5816 2.863e-16 ***
Ghana 32.0107 3.9139 8.1786 5.017e-15 ***
Greece 44.2766 4.8940 9.0472 < 2.2e-16 ***
Guatemala 33.7844 4.2605 7.9297 2.810e-14 ***
Guyana 31.0705 4.3204 7.1916 3.751e-12 ***
Haiti 29.3291 3.5840 8.1833 4.857e-15 ***
Honduras 31.7788 4.0122 7.9205 2.993e-14 ***
India 29.0349 3.4245 8.4786 6.006e-16 ***
Indonesia 33.0873 3.8280 8.6436 < 2.2e-16 ***
Iran, Islamic Republic of 39.9742 4.9802 8.0267 1.442e-14 ***
Ireland 43.9979 4.9099 8.9611 < 2.2e-16 ***
Israel 47.0619 5.1428 9.1510 < 2.2e-16 ***
Italy 46.1557 5.1132 9.0268 < 2.2e-16 ***
Jamaica 35.4070 4.3610 8.1190 7.607e-15 ***
Japan 46.6569 4.8531 9.6139 < 2.2e-16 ***
Kenya 29.3534 3.6381 8.0683 1.082e-14 ***
Korea, Republic of 41.3932 4.1636 9.9418 < 2.2e-16 ***
Lesotho 29.2532 3.7256 7.8520 4.778e-14 ***
Malawi 25.6069 3.4560 7.4095 9.161e-13 ***
Malaysia 37.1530 4.2387 8.7651 < 2.2e-16 ***
Mauritius 38.4052 4.3773 8.7738 < 2.2e-16 ***
Mexico 39.3663 4.6345 8.4941 5.373e-16 ***
Nepal 27.0537 3.3491 8.0779 1.012e-14 ***
Netherlands 45.2609 5.1424 8.8016 < 2.2e-16 ***
New Zealand 44.7917 5.1067 8.7712 < 2.2e-16 ***
Nicaragua 29.1317 4.2109 6.9181 2.110e-11 ***
Niger 25.1349 3.7418 6.7174 7.266e-11 ***
Norway 48.5633 5.4336 8.9375 < 2.2e-16 ***
Pakistan 29.7006 3.4238 8.6746 < 2.2e-16 ***
Panama 37.9620 4.3886 8.6501 < 2.2e-16 ***
Papua New Guinea 32.7467 4.2787 7.6535 1.824e-13 ***
Paraguay 35.3913 4.2017 8.4232 8.921e-16 ***
Peru 35.7257 4.3510 8.2108 4.004e-15 ***
Philippines 30.9720 3.8085 8.1324 6.927e-15 ***
Portugal 40.9539 4.6093 8.8851 < 2.2e-16 ***
Rwanda 25.2468 3.5020 7.2093 3.350e-12 ***
Senegal 29.3298 3.9487 7.4278 8.126e-13 ***
Sierra Leone 28.6815 3.6134 7.9376 2.663e-14 ***
South Africa 36.5360 4.5338 8.0585 1.157e-14 ***
Spain 43.4592 4.8494 8.9618 < 2.2e-16 ***
Sri Lanka 30.9551 3.4474 8.9794 < 2.2e-16 ***
Sudan 29.8439 3.8568 7.7380 1.034e-13 ***
Sweden 48.3760 5.2877 9.1487 < 2.2e-16 ***
Switzerland 46.1069 5.1450 8.9615 < 2.2e-16 ***
Syria 41.1546 4.5413 9.0623 < 2.2e-16 ***
Thailand 35.8663 3.9381 9.1075 < 2.2e-16 ***
Togo 27.0486 3.7096 7.2915 1.973e-12 ***
Trinidad and Tobago 39.5280 4.8197 8.2014 4.278e-15 ***
United Kingdom 46.4033 5.2647 8.8140 < 2.2e-16 ***
United States 47.7378 5.1998 9.1808 < 2.2e-16 ***
Uruguay 39.7411 4.4818 8.8672 < 2.2e-16 ***
Venezuela 37.9647 4.8409 7.8426 5.095e-14 ***
Zaire 26.2708 3.4432 7.6297 2.139e-13 ***
Zimbabwe 32.2274 4.1501 7.7654 8.596e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1