Updated: 2019 June 18
test <- read_csv("./data/sample_sensor_data/data007.csv")
test <- test %>%
clean_names()
test %>%
datatable()
test <- test %>%
mutate(ts = mdy_hm(timestamp)) %>% # parse timestamp from charcter string
select(-starts_with("x")) # cull the blank columns
temp.plotc <- test %>%
ggplot() +
geom_line(aes(x= ts, y = rtc_temp_c_surface)) +
geom_point(aes(x= ts, y = rtc_temp_c_surface), color = "red") +
labs(x = "Timestamp", y = "Temperature (C)")
plotly::ggplotly(temp.plotc)
volt <- test %>%
# filter(voltage<4.59) %>%
ggplot() +
geom_line(aes(x= ts, y = voltage)) +
geom_point(aes(x= ts, y = voltage)) +
labs(x = "Timestamp", y = "Voltage")
plotly::ggplotly(volt)
test <- test %>%
mutate(pressure_dif = pressure_1_adjusted -
pressure_2_atmospheric) # calc the diff
# tidy the data
test.tidy <- test %>%
gather(key = var, value = val, -c(timestamp, ts, serial_number, voltage, rtc_temp_c_surface, pressure_dif))
pressure.plot <- test.tidy %>%
ggplot() +
geom_line(aes(x = ts, y = val, color = var)) +
labs(x = "Timestamp", y = "Pressure")
plotly::ggplotly(pressure.plot)
pdif.plot <- test.tidy %>%
ggplot() +
geom_line(aes(x = ts, y = pressure_dif)) +
labs(x = "Timestamp", y = "Pressure", title = "Pressure difference between 'pressure_1_adjusted' and 'pressure_2_atmospheric'")
plotly::ggplotly(pdif.plot)