Run mixed model with age as the random effect

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TOTALBRAIN ~ cenBPsitLsys + cenAge + (cenAge | HNDid)
##    Data: BP
## Control: lmerControl(check.nobs.vs.nRE = "ignore")
## 
## REML criterion at convergence: 8443.4
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -0.0033907 -0.0004224 -0.0000138  0.0003864  0.0039040 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  HNDid    (Intercept) 5.770e+09 7.596e+04      
##           cenAge      8.890e-06 2.982e-03 -1.00
##  Residual             1.548e+02 1.244e+01      
## Number of obs: 485, groups:  HNDid, 257
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   9.734e+05  4.738e+03  4.390e+02 205.432   <2e-16 ***
## cenBPsitLsys -8.885e-06  6.329e-02  9.154e+01   0.000    1.000    
## cenAge       -4.964e-04  2.171e-01  9.154e+01  -0.002    0.998    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cnBPsL
## cenBPstLsys  0.000       
## cenAge      -0.001 -0.134
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Run mixed model with intercept as the random effect

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TOTALBRAIN ~ cenBPsitLsys + cenAge + (1 | HNDid)
##    Data: BP
## Control: lmerControl(check.nobs.vs.nRE = "ignore")
## 
## REML criterion at convergence: 5800.3
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -9.977e-07 -2.502e-07  3.250e-09  2.632e-07  1.820e-06 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  HNDid    (Intercept) 5.794e+09 7.612e+04
##  Residual             1.283e-03 3.582e-02
## Number of obs: 485, groups:  HNDid, 257
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   9.667e+05  4.695e+03  4.820e+02   205.9   <2e-16 ***
## cenBPsitLsys -2.402e-10  1.823e-04  4.820e+02     0.0        1    
## cenAge       -2.480e-09  6.252e-04  4.820e+02     0.0        1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cnBPsL
## cenBPstLsys  0.000       
## cenAge       0.000 -0.134
## convergence code: 0
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?