Using the spatial visualization techniques, explore this data set on Pennsylvania hospitals (http://www.arcgis.com/home/item.html?id=eccee5dfe01e4c4283c9be0cfc596882). Create a series of 5 maps that highlight spatial differences in hospital service coverage for the state of PA.
To help you in getting the data imported into R
, I have included the code below:
To import the data I use the foreign
package, if you do not have it than be sure to install it prior to testing the code.
library(foreign)
library(leaflet)
## Warning: package 'leaflet' was built under R version 3.5.3
library(data.table)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggmap)
## Warning: package 'ggmap' was built under R version 3.5.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.5.3
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
library(plyr)
## Warning: package 'plyr' was built under R version 3.5.3
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
dat <- read.dbf("C:/Users/Priya/Downloads/pennsylv/pennsylv.dbf")
The dataset contains a number of variables about each hospital, many of them are clear and straight forward.
names(dat)
## [1] "acc_trauma" "air_amb" "als" "arc_street" "arc_zone"
## [6] "bas_ls" "bassinets" "bb_id" "bc_beds" "bc_sus_bed"
## [11] "beds_sus" "birthing_r" "bone_marro" "burn_car" "burn_care"
## [16] "card_beds" "card_surge" "card_sus_b" "cardiac" "cardiac_ca"
## [21] "cardio_reh" "chemo" "city" "clin_lab" "clin_psych"
## [26] "county" "countyname" "ct_scan" "cty_key" "cystoscopi"
## [31] "deliv_rms" "dental" "detox_alc_" "diag_radio" "diag_xray"
## [36] "doh_hosp" "doh_phone" "emer_dept" "endoscopie" "fac_id"
## [41] "facility" "flu_old" "fred_con_1" "fred_conta" "fred_email"
## [46] "fred_fax" "fred_hosp" "fred_pager" "fred_phone" "gamma_knif"
## [51] "gen_outpat" "gene_counc" "heart_tran" "helipad" "hemodial_c"
## [56] "hemodial_m" "hosp_id" "hospice" "hyper_cham" "icu"
## [61] "icu_beds" "icu_sus_be" "inpat_flu_" "inpat_pneu" "kidney_tra"
## [66] "labor_rms" "lic_beds" "lic_dent" "lic_dos" "lic_mds"
## [71] "lic_pod" "linear_acc" "lithotrips" "liver_tran" "loc_method"
## [76] "ltc" "mcd" "mcd_key" "mcd_name" "medical"
## [81] "mob_ccu" "mob_icu" "mri" "ms1" "neo2_beds"
## [86] "neo2_sus_b" "neo3_beds" "neo3_sus_b" "neuro_surg" "neurology"
## [91] "obs_gyn" "occ_ther" "optometry" "organ_bank" "ped_trauma"
## [96] "pediatric" "pet" "pharmacy" "phys_med" "phys_ther"
## [101] "podiatry" "providerid" "psych" "psych_inpa" "reg_trauma"
## [106] "resp_ther" "so_flu_65u" "social_wor" "speech_pat" "street"
## [111] "surgical" "surgical_s" "thera_radi" "typ_org" "typ_serv"
## [116] "ultrasound" "x" "y" "zip"
Now create 5 maps, including descriptions, that highlight the spatial distribution of hosptical services in the state of PA. Upload these maps as a document to rpubs.com and submit that link the Moodle assignment.
qmplot(x,y,data=dat,colour=I('blue'),size=I(3),darken=.3, main = "All Hospitals in Pennsylvania", xlab = "Longitude", ylab = "Latitude")
## Using zoom = 8...
## Source : http://tile.stamen.com/terrain/8/70/94.png
## Source : http://tile.stamen.com/terrain/8/71/94.png
## Source : http://tile.stamen.com/terrain/8/72/94.png
## Source : http://tile.stamen.com/terrain/8/73/94.png
## Source : http://tile.stamen.com/terrain/8/74/94.png
## Source : http://tile.stamen.com/terrain/8/70/95.png
## Source : http://tile.stamen.com/terrain/8/71/95.png
## Source : http://tile.stamen.com/terrain/8/72/95.png
## Source : http://tile.stamen.com/terrain/8/73/95.png
## Source : http://tile.stamen.com/terrain/8/74/95.png
## Source : http://tile.stamen.com/terrain/8/70/96.png
## Source : http://tile.stamen.com/terrain/8/71/96.png
## Source : http://tile.stamen.com/terrain/8/72/96.png
## Source : http://tile.stamen.com/terrain/8/73/96.png
## Source : http://tile.stamen.com/terrain/8/74/96.png
## Source : http://tile.stamen.com/terrain/8/70/97.png
## Source : http://tile.stamen.com/terrain/8/71/97.png
## Source : http://tile.stamen.com/terrain/8/72/97.png
## Source : http://tile.stamen.com/terrain/8/73/97.png
## Source : http://tile.stamen.com/terrain/8/74/97.png
# From Map 1, we can see that the major cities of Pittsburgh & Philadelphia has a higher concentration of hospitals in Pennsylvania.
icu = subset(dat, icu == "Y")
icuPHLMO = subset(icu, county == "Philadelphia" | county =="Montgomery")
qmplot(x,y, data = icuPHLMO, colour = I('red'),size = I(3) , main = "Comparison Between Philadelphia & Montgomery Hospitals with ICU", xlab = "Longitude", ylab = "Latitude")
## Using zoom = 12...
## Source : http://tile.stamen.com/terrain/12/1190/1548.png
## Source : http://tile.stamen.com/terrain/12/1191/1548.png
## Source : http://tile.stamen.com/terrain/12/1192/1548.png
## Source : http://tile.stamen.com/terrain/12/1193/1548.png
## Source : http://tile.stamen.com/terrain/12/1194/1548.png
## Source : http://tile.stamen.com/terrain/12/1190/1549.png
## Source : http://tile.stamen.com/terrain/12/1191/1549.png
## Source : http://tile.stamen.com/terrain/12/1192/1549.png
## Source : http://tile.stamen.com/terrain/12/1193/1549.png
## Source : http://tile.stamen.com/terrain/12/1194/1549.png
## Source : http://tile.stamen.com/terrain/12/1190/1550.png
## Source : http://tile.stamen.com/terrain/12/1191/1550.png
## Source : http://tile.stamen.com/terrain/12/1192/1550.png
## Source : http://tile.stamen.com/terrain/12/1193/1550.png
## Source : http://tile.stamen.com/terrain/12/1194/1550.png
## Source : http://tile.stamen.com/terrain/12/1190/1551.png
## Source : http://tile.stamen.com/terrain/12/1191/1551.png
## Source : http://tile.stamen.com/terrain/12/1192/1551.png
## Source : http://tile.stamen.com/terrain/12/1193/1551.png
## Source : http://tile.stamen.com/terrain/12/1194/1551.png
# Philadelphia county has higher number of ICU hospitals than Montgomery county.
organbank = subset(dat, organ_bank=="Y")
organbankPI = subset(organbank, city == "Pittsburgh")
qmplot(x,y, data = organbankPI, colour = I('blue'), size = I(3), main = "Philadelphia Hospitals with Organ Bank", xlab = "Longitude", ylab = "Latitude")
## Using zoom = 13...
## Source : http://tile.stamen.com/terrain/13/2274/3083.png
## Source : http://tile.stamen.com/terrain/13/2275/3083.png
## Source : http://tile.stamen.com/terrain/13/2276/3083.png
## Source : http://tile.stamen.com/terrain/13/2274/3084.png
## Source : http://tile.stamen.com/terrain/13/2275/3084.png
## Source : http://tile.stamen.com/terrain/13/2276/3084.png
## Source : http://tile.stamen.com/terrain/13/2274/3085.png
## Source : http://tile.stamen.com/terrain/13/2275/3085.png
## Source : http://tile.stamen.com/terrain/13/2276/3085.png
## Source : http://tile.stamen.com/terrain/13/2274/3086.png
## Source : http://tile.stamen.com/terrain/13/2275/3086.png
## Source : http://tile.stamen.com/terrain/13/2276/3086.png
## Source : http://tile.stamen.com/terrain/13/2274/3087.png
## Source : http://tile.stamen.com/terrain/13/2275/3087.png
## Source : http://tile.stamen.com/terrain/13/2276/3087.png
## Source : http://tile.stamen.com/terrain/13/2274/3088.png
## Source : http://tile.stamen.com/terrain/13/2275/3088.png
## Source : http://tile.stamen.com/terrain/13/2276/3088.png
# There are 4 hospitals with an organ bank facility in Pittsburgh.
organbank = subset(dat, organ_bank=="Y")
organbankPI = subset(organbank, city == "Philadelphia")
qmplot(x,y, data = organbankPI, colour = I('blue'), size = I(3), main = "Philadelphia Hospitals with Organ Bank", xlab = "Longitude", ylab = "Latitude")
## Using zoom = 15...
## Source : http://tile.stamen.com/terrain/15/9537/12408.png
## Source : http://tile.stamen.com/terrain/15/9538/12408.png
## Source : http://tile.stamen.com/terrain/15/9539/12408.png
## Source : http://tile.stamen.com/terrain/15/9540/12408.png
## Source : http://tile.stamen.com/terrain/15/9541/12408.png
## Source : http://tile.stamen.com/terrain/15/9542/12408.png
## Source : http://tile.stamen.com/terrain/15/9543/12408.png
## Source : http://tile.stamen.com/terrain/15/9537/12409.png
## Source : http://tile.stamen.com/terrain/15/9538/12409.png
## Source : http://tile.stamen.com/terrain/15/9539/12409.png
## Source : http://tile.stamen.com/terrain/15/9540/12409.png
## Source : http://tile.stamen.com/terrain/15/9541/12409.png
## Source : http://tile.stamen.com/terrain/15/9542/12409.png
## Source : http://tile.stamen.com/terrain/15/9543/12409.png
## Source : http://tile.stamen.com/terrain/15/9537/12410.png
## Source : http://tile.stamen.com/terrain/15/9538/12410.png
## Source : http://tile.stamen.com/terrain/15/9539/12410.png
## Source : http://tile.stamen.com/terrain/15/9540/12410.png
## Source : http://tile.stamen.com/terrain/15/9541/12410.png
## Source : http://tile.stamen.com/terrain/15/9542/12410.png
## Source : http://tile.stamen.com/terrain/15/9543/12410.png
# Currently there are 4 hospitals in Philadelphia with an organ bank facility.
helipad = subset(dat, helipad == "Y")
qmplot(x,y,data=helipad,colour=I('white'),size=I(1), main = "Helipad Density In PA", xlab = "Longitude", ylab = "Latitude") +
stat_density2d(aes(x = x, y = y, fill=..level..), data=helipad,geom="polygon", alpha=0.2) +
scale_fill_gradient(low = "green", high = "red")
## Using zoom = 8...
# The map shows that the helipads are mostly concentrated around two regions in PA which happen to be also the biggest cities in the state(Pittsburgh and Philadelphia).