Aula 5.29

CCA - Análise de Correlação Canônica matrizes de distância de dois conjunto de dados pelo método qui-quadrado, sendo uma com variáveis de Presença/Aunsência de espécies e outra com variáveis fisico-químicas do solo

Objetivo: Desenvolver uma CCA da matriz de distâncias pelo método qui-quadrado de um conjunto de dados de composição de espécies “varespec” para entender qual a relação com o conjunto de dados de variáveis fisico-químicas do solo “varechem”.

Este material está disponível em: http://rpubs.com/leonardoreffatti.

CCA de um conjunto de dados de composição de espécies (Presença/Ausência + Abundância) com varespec através da matriz de distâncias pelo método qui-quadrado. Conjunto de dados fisico-químicos do solo com varechem. Desenvolver a cca através da função cca() do pacote vegan, plotagem da CCA, avaliar como o conjunto de dados de espécies se corresponde com os resultados fisico-químicos através da CCA e CA+envfit.

library(permute)
library(lattice)
library(vegan)
## This is vegan 2.5-2
#Carregando um primeiro conjunto de dados do pacote vegan
data("varespec")
data("varechem")

resultado.cca <- cca(varespec, varechem)

summary(resultado.cca)
## 
## Call:
## cca(X = varespec, Y = varechem) 
## 
## Partitioning of scaled Chi-square:
##               Inertia Proportion
## Total          2.0832      1.000
## Constrained    1.4415      0.692
## Unconstrained  0.6417      0.308
## 
## Eigenvalues, and their contribution to the scaled Chi-square 
## 
## Importance of components:
##                         CCA1   CCA2    CCA3    CCA4    CCA5    CCA6
## Eigenvalue            0.4389 0.2918 0.16285 0.14213 0.11795 0.08903
## Proportion Explained  0.2107 0.1401 0.07817 0.06823 0.05662 0.04274
## Cumulative Proportion 0.2107 0.3507 0.42890 0.49713 0.55375 0.59649
##                          CCA7    CCA8    CCA9    CCA10    CCA11    CCA12
## Eigenvalue            0.07029 0.05836 0.03114 0.013294 0.008364 0.006538
## Proportion Explained  0.03374 0.02801 0.01495 0.006382 0.004015 0.003139
## Cumulative Proportion 0.63023 0.65825 0.67319 0.679576 0.683592 0.686730
##                          CCA13    CCA14     CA1     CA2     CA3     CA4
## Eigenvalue            0.006156 0.004733 0.19776 0.14193 0.10117 0.07079
## Proportion Explained  0.002955 0.002272 0.09493 0.06813 0.04857 0.03398
## Cumulative Proportion 0.689685 0.691958 0.78689 0.85502 0.90359 0.93757
##                           CA5     CA6      CA7      CA8      CA9
## Eigenvalue            0.05330 0.03330 0.018868 0.015104 0.009488
## Proportion Explained  0.02559 0.01598 0.009057 0.007251 0.004554
## Cumulative Proportion 0.96315 0.97914 0.988195 0.995446 1.000000
## 
## Accumulated constrained eigenvalues
## Importance of components:
##                         CCA1   CCA2   CCA3   CCA4    CCA5    CCA6    CCA7
## Eigenvalue            0.4389 0.2918 0.1628 0.1421 0.11795 0.08903 0.07029
## Proportion Explained  0.3045 0.2024 0.1130 0.0986 0.08183 0.06176 0.04877
## Cumulative Proportion 0.3045 0.5069 0.6198 0.7184 0.80027 0.86203 0.91080
##                          CCA8    CCA9    CCA10    CCA11    CCA12    CCA13
## Eigenvalue            0.05836 0.03114 0.013294 0.008364 0.006538 0.006156
## Proportion Explained  0.04049 0.02160 0.009223 0.005803 0.004536 0.004271
## Cumulative Proportion 0.95128 0.97288 0.982107 0.987910 0.992446 0.996716
##                          CCA14
## Eigenvalue            0.004733
## Proportion Explained  0.003284
## Cumulative Proportion 1.000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## 
## 
## Species scores
## 
##               CCA1     CCA2      CCA3      CCA4      CCA5      CCA6
## Callvulg  0.075347 -0.93581  1.677742  0.695507  1.077518 -0.345001
## Empenigr -0.181340  0.07610  0.036462 -0.427727 -0.138153  0.010517
## Rhodtome -1.053549 -0.06026  0.077428 -0.938897 -0.213938 -0.518031
## Vaccmyrt -1.277428  0.30759  0.303704 -0.092088 -0.568820 -0.613023
## Vaccviti -0.152563  0.12054 -0.053031 -0.362279  0.083942  0.008938
## Pinusylv  0.242956  0.26432  0.223265 -0.273806  0.292102 -0.063335
## Descflex -1.443872  0.27019 -0.162082  0.606576 -0.476067  0.382590
## Betupube -0.711004 -0.22681 -0.083007 -2.408417 -0.216212 -1.671857
## Vacculig  0.513817 -1.18831 -0.377748  0.177035 -0.958084  0.311138
## Diphcomp  0.099310 -0.89289 -0.419273 -0.532348 -0.270745  0.622270
## Dicrsp   -0.849964  0.23153 -1.751924  0.260810  1.522412  0.390210
## Dicrfusc -0.499460 -0.41539  0.824743 -0.258156  0.112149  0.638702
## Dicrpoly -0.527090  0.08050 -0.812083 -1.201383  0.768689 -1.025365
## Hylosple -1.828026  0.79385  0.049816  1.358093 -0.916528 -0.223338
## Pleuschr -0.924978  0.33684 -0.009146  0.308091 -0.065518  0.018741
## Polypili  0.144172 -0.45586 -0.515356 -0.281796 -0.052660  0.050659
## Polyjuni -0.606869  0.21021 -0.352109 -0.336004 -0.612858  0.351629
## Polycomm -0.894165  0.32063 -0.234919 -1.076106 -0.408823 -0.776736
## Pohlnuta -0.009508  0.25268 -0.140571 -0.351201  0.424031 -0.096811
## Ptilcili -0.576115 -0.12234 -0.058593 -2.109265 -0.166198 -1.507591
## Barbhatc -0.694092 -0.22970 -0.118360 -2.574980 -0.172821 -2.054320
## Cladarbu  0.211517 -0.71201 -0.026366  0.052216 -0.040564 -0.078262
## Cladrang  0.381030 -0.61678 -0.243893  0.105921 -0.163536  0.032637
## Cladstel  0.906486  0.70213  0.082949  0.067771 -0.016579  0.027407
## Cladunci -0.230671  0.06372 -0.013810 -0.391170  0.910527 -0.146092
## Cladcocc  0.219419 -0.13619  0.128350 -0.077450  0.033754  0.125028
## Cladcorn -0.225404  0.07008 -0.090524 -0.258643 -0.109501  0.170706
## Cladgrac -0.108836 -0.18599 -0.159664 -0.201023  0.241156 -0.021594
## Cladfimb  0.020022 -0.09179  0.192626 -0.262413 -0.035959 -0.034780
## Cladcris -0.137056  0.01609  0.422960 -0.423861  0.138016 -0.129810
## Cladchlo  0.443621  0.55305 -0.278345 -0.576292  0.169030 -0.224882
## Cladbotr -0.680481 -0.19013  0.195105 -1.330144  0.218169 -1.262258
## Cladamau -0.015996 -1.16331 -0.728763 -0.498887 -0.350481  0.714608
## Cladsp    0.686166  0.39137  0.307091  0.279524  0.604150  0.124850
## Cetreric  0.064619 -0.03889 -0.427516  0.118844  0.945590 -0.173838
## Cetrisla  0.159171  0.35076 -0.049161 -0.884501  0.166607 -0.689545
## Flavniva  0.872373 -0.64645 -0.465365  1.961193  0.368671 -2.332045
## Nepharct -0.762768  0.19877 -0.558560 -0.057976 -1.137069  0.744096
## Stersp    0.121697 -1.28229 -0.963619 -0.003712 -0.369284  0.417103
## Peltapht -0.397796  0.16843  0.049634 -0.338986 -0.263955  0.194009
## Icmaeric  0.172805 -1.53313 -0.429975 -0.154452 -0.413750  0.319003
## Cladcerv  0.708032 -0.05882 -0.316283  1.225539  0.004871 -1.044377
## Claddefo -0.301412 -0.02090  0.243431 -0.564576  0.292677 -0.188788
## Cladphyl  1.002262  1.12620  0.016613 -0.101195  0.094379  0.145598
## 
## 
## Site scores (weighted averages of species scores)
## 
##       CCA1     CCA2      CCA3     CCA4     CCA5     CCA6
## 18  0.1785 -1.05988 -0.408835 -0.60721 -0.56492  0.24175
## 15 -0.9702 -0.19714  0.421046  0.30324  0.15171  0.80394
## 24 -1.2798  0.47645 -2.946863  0.39292  3.95433  0.76592
## 27 -1.5009  0.65216  0.085837  0.76207 -1.23251 -0.09756
## 23 -0.5981 -0.18404 -0.135611 -1.16425 -0.30249  0.07033
## 19 -0.1103  0.71431  0.016591 -0.07773 -0.55210 -0.08258
## 22 -1.0921 -0.49026  2.120668 -0.43014  0.26010  1.87287
## 16 -0.7558 -0.78712  1.652152 -0.15892  0.47523  1.73677
## 28 -2.2421  1.15075  0.248921  1.88204 -1.80814 -1.19935
## 13  0.4035 -1.46904  2.240249  1.21956  1.85549 -0.91541
## 14 -0.4563 -0.69333  1.089571 -1.04519  2.70161  0.15628
## 20 -0.5583 -0.25296 -0.336340 -0.36433  0.27453  0.10923
## 25 -1.2922  0.25087 -1.456542 -0.02698  0.96227  2.19508
## 7   0.5576 -2.01700 -0.923568  0.14954 -1.34406  0.19237
## 5   0.6651 -2.24847 -1.631533  0.44110 -1.23074  0.53544
## 6   0.5920 -1.29165 -0.470112 -0.08331 -0.28830 -0.18265
## 3   1.3379  0.39399 -0.212551  0.26020 -0.61477  0.30075
## 4   1.1675 -0.55997 -0.207980  2.14490  0.35776 -3.17436
## 2   1.4091  1.12669  0.011297  0.04175 -0.40173  0.27311
## 9   1.3130  1.69016  0.238808 -0.13429  0.00160  0.04923
## 12  1.0115  1.08413  0.085287 -0.24485 -0.12365  0.18392
## 10  1.4105  1.54744  0.232569 -0.16699 -0.15736  0.16768
## 11  0.4651  0.05411 -0.146473  0.25902 -0.08197 -0.03886
## 21 -0.7191  0.42952  0.009702 -3.83149 -0.83861 -4.06109
## 
## 
## Site constraints (linear combinations of constraining variables)
## 
##        CCA1     CCA2     CCA3     CCA4      CCA5    CCA6
## 18 -0.42308 -1.32466 -0.49215 -0.94489 -0.048464  0.9398
## 15 -0.19026  0.49687  0.45454 -0.52951 -0.076603 -0.7899
## 24 -0.86328  0.25213 -2.76035  0.56993  3.292710  0.2629
## 27 -1.69805  0.48669 -0.56351  1.07358 -0.614147  0.4988
## 23 -0.79557  0.10723  0.25751 -0.90419 -0.287557  0.4387
## 19 -0.67702  1.00130  0.03344 -1.00351 -0.141279 -0.9383
## 22 -0.81881 -0.67147  1.51674 -0.05858  0.566703  2.2159
## 16 -0.14877 -1.16222  1.02373 -0.44751 -0.154699 -0.2515
## 28 -2.07190  1.09778  0.49758  1.88707 -1.394002 -0.6375
## 13  0.16534 -1.35508  2.60193  1.25142  1.760111 -0.5461
## 14 -0.14069  0.20118  0.77762 -0.87922  0.676806 -0.3838
## 20 -0.68566  0.08107 -0.20421 -1.11529  1.112185 -0.7635
## 25 -0.90562  0.29517 -0.55183 -0.07379 -1.131782  0.8128
## 7   1.38453 -1.92877 -0.80045  0.36440 -1.653585 -0.1187
## 5   0.09709 -2.02095 -1.57794  0.03999 -0.441247  0.9902
## 6   0.41866 -0.56908 -0.32436  0.06603 -0.058116  0.3371
## 3   0.95649  0.12458 -0.51056  0.15157 -1.065096 -0.1616
## 4   0.85641 -0.79366 -0.46982  2.32495  0.468453 -2.8417
## 2   1.53650  0.92994  0.09664  0.25941 -0.009995  0.7130
## 9   1.53381  1.60412 -0.01520 -0.11658  0.698700  0.6643
## 12  0.44751  0.23990  0.93887 -0.28191  0.128819  0.3828
## 10  1.11107  1.59354 -0.04164  0.11005 -0.461130  0.2664
## 11  0.59050  0.36592 -0.04552 -0.14145 -0.070919 -0.3881
## 21 -0.68681 -0.23299 -0.17348 -2.78317 -0.205599 -2.1817
## 
## 
## Biplot scores for constraining variables
## 
##              CCA1     CCA2      CCA3     CCA4      CCA5      CCA6
## N        -0.22290 -0.52891  0.006729  0.17735 -0.253216  0.102014
## P        -0.31866  0.57886 -0.162001  0.47947  0.184099 -0.121835
## K        -0.36612  0.30794  0.359824  0.47942  0.325444 -0.196637
## Ca       -0.44764  0.42176 -0.037765  0.09827  0.307969  0.043545
## Mg       -0.43499  0.34051 -0.142169  0.10790  0.497841 -0.005758
## S        -0.02406  0.41570  0.148384  0.44446  0.597063 -0.166296
## Al        0.76978 -0.04747  0.037610  0.39098  0.160905 -0.336554
## Fe        0.64909 -0.08811 -0.042067  0.26297 -0.069806 -0.111345
## Mn       -0.72232  0.22460  0.113052  0.29152 -0.138680  0.180471
## Zn       -0.35810  0.33493 -0.277916  0.34572  0.619191 -0.001195
## Mo        0.20413 -0.10334 -0.157007  0.32424  0.516439 -0.313525
## Baresoil -0.53675 -0.25477  0.136910 -0.52055  0.166621 -0.352409
## Humdepth -0.69673  0.20163  0.271625 -0.13574 -0.003252 -0.051350
## pH        0.49716  0.07509 -0.326341  0.02092 -0.145569 -0.059091
#Os primeiros resultados mostram apenas os valores referentes ao conjunto de dados varespec.
#Na sequencia, "constrained" integra-se os resultados de varechem nos valores apresentados para identificar o quanto a adição da matriz de varechem auxilia na interpretação do conjunto total de resultados da análise de correlação canônica.

plot(resultado.cca)

#Comparação da CCA com CA + Envfit
resultado.ca<-cca(varespec)
resultado.envfit<-envfit(resultado.ca, varechem)
#resultado de permutação de cada variável do varechem
resultado.envfit
## 
## ***VECTORS
## 
##               CA1      CA2     r2 Pr(>r)    
## N         0.47470 -0.88015 0.2196  0.077 .  
## P         0.44827  0.89390 0.3054  0.028 *  
## K         0.73616  0.67680 0.1773  0.157    
## Ca        0.69724  0.71684 0.3064  0.017 *  
## Mg        0.77318  0.63419 0.2466  0.062 .  
## S         0.05137  0.99868 0.0902  0.381    
## Al       -0.97491 -0.22260 0.4995  0.001 ***
## Fe       -0.96390 -0.26627 0.3682  0.009 ** 
## Mn        0.91444  0.40473 0.4750  0.005 ** 
## Zn        0.77039  0.63758 0.1766  0.160    
## Mo       -0.63809 -0.76997 0.0539  0.613    
## Baresoil  0.97947 -0.20161 0.2533  0.065 .  
## Humdepth  0.91602  0.40112 0.4524  0.006 ** 
## pH       -0.99831  0.05818 0.2187  0.088 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
#Comparação de Gráficos CCA com CA + Envfit
par(mfrow=c(1,2))
plot(resultado.cca, main="CCA")
plot(resultado.ca, main="CA + Envfit")
plot(resultado.envfit)

#Existem diferenças na construção estatística dos gráficos, porém em termos conceituais são a mesma coisa.
#Praticamente nada da interpretação dos resultados vai mudar. Na situação com envfit, temos o resultado de significância para cada variável fisico-química.