Using the spatial visualization techniques, explore this data set on Pennsylvania hospitals (http://www.arcgis.com/home/item.html?id=eccee5dfe01e4c4283c9be0cfc596882). Create a series of 5 maps that highlight spatial differences in hospital service coverage for the state of PA.
To help you in getting the data imported into R, I have included the code below:
To import the data I use the foreign package, if you do not have it than be sure to install it prior to testing the code.
library(ggmap)
## Warning: package 'ggmap' was built under R version 3.5.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.5.2
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
library(leaflet)
library(ggplot2)
library(foreign)
HospitalsPA <- read.dbf("/Users/katie/R Data/ANLY 512 - Data Viz/pennsylv/pennsylv.dbf") # change this to connect to your version
View(HospitalsPA)
The dataset contains a number of variables about each hospital, many of them are clear and straight forward.
names(HospitalsPA)
## [1] "acc_trauma" "air_amb" "als" "arc_street" "arc_zone"
## [6] "bas_ls" "bassinets" "bb_id" "bc_beds" "bc_sus_bed"
## [11] "beds_sus" "birthing_r" "bone_marro" "burn_car" "burn_care"
## [16] "card_beds" "card_surge" "card_sus_b" "cardiac" "cardiac_ca"
## [21] "cardio_reh" "chemo" "city" "clin_lab" "clin_psych"
## [26] "county" "countyname" "ct_scan" "cty_key" "cystoscopi"
## [31] "deliv_rms" "dental" "detox_alc_" "diag_radio" "diag_xray"
## [36] "doh_hosp" "doh_phone" "emer_dept" "endoscopie" "fac_id"
## [41] "facility" "flu_old" "fred_con_1" "fred_conta" "fred_email"
## [46] "fred_fax" "fred_hosp" "fred_pager" "fred_phone" "gamma_knif"
## [51] "gen_outpat" "gene_counc" "heart_tran" "helipad" "hemodial_c"
## [56] "hemodial_m" "hosp_id" "hospice" "hyper_cham" "icu"
## [61] "icu_beds" "icu_sus_be" "inpat_flu_" "inpat_pneu" "kidney_tra"
## [66] "labor_rms" "lic_beds" "lic_dent" "lic_dos" "lic_mds"
## [71] "lic_pod" "linear_acc" "lithotrips" "liver_tran" "loc_method"
## [76] "ltc" "mcd" "mcd_key" "mcd_name" "medical"
## [81] "mob_ccu" "mob_icu" "mri" "ms1" "neo2_beds"
## [86] "neo2_sus_b" "neo3_beds" "neo3_sus_b" "neuro_surg" "neurology"
## [91] "obs_gyn" "occ_ther" "optometry" "organ_bank" "ped_trauma"
## [96] "pediatric" "pet" "pharmacy" "phys_med" "phys_ther"
## [101] "podiatry" "providerid" "psych" "psych_inpa" "reg_trauma"
## [106] "resp_ther" "so_flu_65u" "social_wor" "speech_pat" "street"
## [111] "surgical" "surgical_s" "thera_radi" "typ_org" "typ_serv"
## [116] "ultrasound" "x" "y" "zip"
Now create 5 maps, including descriptions, that highlight the spatial distribution of hosptical services in the state of PA. Upload these maps as a document to rpubs.com and submit that link the Moodle assignment.
#1. Hospitals in Chester County
HospitalsPA1<-subset(HospitalsPA, county == "Chester")
qmplot(x, y, data = HospitalsPA1, color = I('Red'), size = I(2), darken = .2, extent = "panel", main = "Hospitals in Chester County", xlab = "Longitude", ylab = "Latitude")
## Using zoom = 11...
## Source : http://tile.stamen.com/terrain/11/592/774.png
## Source : http://tile.stamen.com/terrain/11/593/774.png
## Source : http://tile.stamen.com/terrain/11/594/774.png
## Source : http://tile.stamen.com/terrain/11/592/775.png
## Source : http://tile.stamen.com/terrain/11/593/775.png
## Source : http://tile.stamen.com/terrain/11/594/775.png
## Source : http://tile.stamen.com/terrain/11/592/776.png
## Source : http://tile.stamen.com/terrain/11/593/776.png
## Source : http://tile.stamen.com/terrain/11/594/776.png
#2. Hospitals with X-Ray service in Chester County
register_google(key = "AIzaSyCepLjMb-v9bGHccTC2IgYHvO9DKeqrygU")
ChesterCounty <- geocode("chester, pennsylvania", source = "google")
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=chester,+pennsylvania&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
centerChesterCounty<-as.numeric(ChesterCounty)
ggmap(get_googlemap(center = centerChesterCounty, zoom=10, maptype = "terrain", color = 'color')) +
stat_density2d(aes(x, y, color = diag_xray), data = HospitalsPA1, bins = 5, main = "Hospitals in PA with Dental Services")
## Source : https://maps.googleapis.com/maps/api/staticmap?center=39.849557,-75.355746&zoom=10&size=640x640&scale=2&maptype=terrain&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
## Warning: Ignoring unknown parameters: main
## Warning: Removed 2 rows containing non-finite values (stat_density2d).
#Requires enabling static map API
#?get_googlemap
#3. Hospitals in Philaphia w/Helipad
Phila <- subset(HospitalsPA, city=="Philadelphia")
ggmap(get_map(location = "Philadephia", zoom = "auto", maptype = "satellite")) + geom_point(aes(x,y, color = helipad), data = Phila)
## Source : https://maps.googleapis.com/maps/api/staticmap?center=Philadephia&zoom=10&size=640x640&scale=2&maptype=satellite&language=en-EN&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Philadephia&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
#geom_point(aes(x, y, colour = liver_tran, size = lic_dent), data = dat)
#4. Hospitals in Philaphia w/Helipad and Liver Transplant
PhilaHelipad <-subset(Phila, helipad == "Y")
View(PhilaHelipad)
ggmap(get_map(location = "Philadephia", zoom = "auto", maptype = "roadmap")) + geom_point(aes(x,y, color = liver_tran), data = PhilaHelipad)
## Source : https://maps.googleapis.com/maps/api/staticmap?center=Philadephia&zoom=10&size=640x640&scale=2&maptype=roadmap&language=en-EN&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Philadephia&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
#5. Hospitals in Philaphia w/Helipad and card beds
ggmap(get_map(location = "Philadephia", zoom = "auto", maptype = "roadmap")) + geom_point(aes(x,y, color = helipad, size = card_beds), data = HospitalsPA)
## Source : https://maps.googleapis.com/maps/api/staticmap?center=Philadephia&zoom=10&size=640x640&scale=2&maptype=roadmap&language=en-EN&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=Philadephia&key=xxx-v9bGHccTC2IgYHvO9DKeqrygU
## Warning: Removed 259 rows containing missing values (geom_point).