Brief introduction

This website contains analytical procedures and their outcomes used in writing the article “Dark triad and estimated probability of sexual coercion”. Previous studies have shown that people can estimate Dark triad traits of a person based on various information sources (thin slices), while another line of studies revealed that Dark triad traits are related to sexual harrassment and rape. The aim of this study was to observe if these two lines of studies converge, that is if people actually use information on the Dark triad traits of another person to estimate the probability of that person to attempt to rape them. More detailed information on the methodological approach can be found in the mentioned article, while the main function of this file is to provide detailed information regarding the analytical approach.

Sample used in the analyses

The following analyses were conducted on 1107 participant (803 of which were women).

Variables used in the analyses

Dirty dozen questionnaire was used to measure participants’ perception of DT of target profile. The questionnaire measures narcissism, Machiavellianism and psychopathy with 12 items (four per each factor), each on a scale from 1 to 7 with higher values indicating higher expression of the trait.

Probability of rape attempt was also measured on a seven-point scale ranging from extremely low (1) to extremely high (7).

Analyses

Activation of libraries and data

lapply(c("readxl", "lavaan", "lavaan.survey", "semTools", "Hmisc", "psych"), library, character.only = T)
rr <- read_excel("Renato i Renata PAID.xlsx")

Basic recoding and data cleaning

rr$Profile_gender <- as.factor(rr$Profile_gender) #turning string variable into factor
rr$mach <- rr$m1 + rr$m2 + rr$m3 + rr$m4
rr$nar <- rr$n1 + rr$n2 + rr$n3 + rr$n4
rr$psi <- rr$p1 + rr$p2 + rr$p3 + rr$p4
rr1 <- rr[complete.cases(rr), ] #removing cases with missing data on estimated rape probability
rr1$grp <- ifelse(rr1$Profile_gender == "Renato", 1, 2)
rrxx <- subset(rr1, grp == 1) #subset with female participants
rrxy <- subset(rr1, grp == 2) #subset with male participants

Descriptives and correlations

describeBy(rrxx$rape, group = rrxx$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 171 1.92 1.12      2    1.73 1.48   1   7     6 1.61     3.26 0.09
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 170 2.48 1.4      2     2.3 1.48   1   7     6 0.96     0.35 0.11
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 136 2.42 1.36      2    2.26 1.48   1   7     6 0.89      0.2 0.12
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 167 1.92 1.18      2     1.7 1.48   1   7     6 1.82     3.95 0.09
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 159  3.3 1.61      3    3.23 1.48   1   7     6  0.3    -0.87 0.13
describeBy(rrxy$rape, group = rrxy$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars  n mean  sd median trimmed mad min max range skew kurtosis   se
## X1    1 59 1.73 1.2      1    1.49   0   1   7     6 2.16     5.23 0.16
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 61 2.21 1.61      2    1.92 1.48   1   7     6 1.32     0.91 0.21
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 60 2.28 1.47      2    2.06 1.48   1   6     5 0.95    -0.26 0.19
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars  n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 63 2.02 1.53      1    1.71   0   1   7     6  1.6     1.85 0.19
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 61 2.82 1.89      2    2.57 1.48   1   7     6 0.82    -0.52 0.24
describeBy(rrxx$mach, group = rrxx$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 171 7.29 4.45      5    6.44 1.48   4  28    24 1.96     4.72 0.34
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 170 21.24 5.71   22.5    21.9 5.19   4  28    24 -0.97     0.42 0.44
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 136 9.68 5.22      8    9.06 4.45   4  25    21 0.88    -0.11 0.45
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 167 9.52 5.55      8     8.8 5.93   4  26    22 0.87    -0.26 0.43
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 159 23.6 4.72     25   24.42 2.97   5  28    23 -1.69     3.07 0.37
describeBy(rrxy$mach, group = rrxy$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 59  8.9 5.88      7       8 4.45   4  26    22 1.17     0.39 0.77
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 61 20.34 5.96     22   20.98 4.45   5  28    23 -0.91    -0.11 0.76
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 60 11.38 5.34     10    11.1 5.93   4  22    18 0.45    -1.02 0.69
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 63 11.25 6.68     10   10.43 5.93   4  28    24 0.93    -0.03 0.84
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 61 22.39 5.71     24   23.35 4.45   4  28    24 -1.4     1.56 0.73
describeBy(rrxx$nar, group = rrxx$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 171 9.88 4.95      9     9.4 5.93   4  28    24 0.75     0.07 0.38
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 170 15.01 5.91     14   14.99 5.93   4  28    24 0.09    -0.75 0.45
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 136 11.76 5.55     10   11.21 4.45   4  28    24 0.91      0.5 0.48
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars   n  mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 167 19.71 5.5     20   20.16 4.45   4  28    24 -0.73     0.14 0.43
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 159 23.81 4.62     25    24.7 2.97   8  28    20 -1.8      3.1 0.37
describeBy(rrxy$nar, group = rrxy$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 59 10.54 5.83      8    9.88 5.93   4  27    23 0.95     0.24 0.76
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 61 15.61 4.24     15   15.53 4.45   8  25    17 0.17    -1.04 0.54
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 60 13.53 6.12     12   13.21 5.93   4  28    24 0.47    -0.67 0.79
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 63 20.33 5.66     21   20.82 5.93   4  28    24 -0.77     0.25 0.71
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 61 23.49 4.99     25   24.37 4.45   4  28    24 -1.79     3.68 0.64
describeBy(rrxx$psi, group = rrxx$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 171 12.48 4.19     12   12.39 2.97   4  27    23 0.32     0.29 0.32
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars   n  mean sd median trimmed  mad min max range skew kurtosis   se
## X1    1 170 15.54  5     16   15.65 4.45   4  26    22 -0.2    -0.32 0.38
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 136 17.35 4.81     18   17.48 5.19   4  28    24 -0.21     -0.4 0.41
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 167 12.73 4.68     12   12.53 4.45   4  26    22 0.37    -0.27 0.36
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 159 19.9 5.01     20   20.16 4.45   4  28    24 -0.56     0.17 0.4
describeBy(rrxy$psi, group = rrxy$Triad, digits = 2)
## 
##  Descriptive statistics by group 
## group: npm
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 59 12.17 4.67     13   12.14 5.93   4  23    19 0.07    -0.87 0.61
## ------------------------------------------------------------------------------------------ 
## group: npM
##    vars  n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 61 15.7 4.5     16   15.73 5.93   6  24    18 -0.04    -1.03 0.58
## ------------------------------------------------------------------------------------------ 
## group: nPm
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 60 16.67 4.34     16   16.75 4.45   6  25    19 -0.14     -0.3 0.56
## ------------------------------------------------------------------------------------------ 
## group: Npm
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 63 13.63 4.84     13   13.35 4.45   4  28    24 0.58    -0.03 0.61
## ------------------------------------------------------------------------------------------ 
## group: NPM
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 61 19.25 5.33     19   19.33 5.93   4  28    24 -0.25    -0.17 0.68
rcorr(as.matrix(rrxx[,c("nar", "mach", "psi", "rape")]))
##       nar mach  psi rape
## nar  1.00 0.55 0.42 0.29
## mach 0.55 1.00 0.52 0.41
## psi  0.42 0.52 1.00 0.35
## rape 0.29 0.41 0.35 1.00
## 
## n= 803 
## 
## 
## P
##      nar mach psi rape
## nar       0    0   0  
## mach  0        0   0  
## psi   0   0        0  
## rape  0   0    0
rcorr(as.matrix(rrxy[,c("nar", "mach", "psi", "rape")]))
##       nar mach  psi rape
## nar  1.00 0.55 0.43 0.20
## mach 0.55 1.00 0.56 0.32
## psi  0.43 0.56 1.00 0.25
## rape 0.20 0.32 0.25 1.00
## 
## n= 304 
## 
## 
## P
##      nar   mach  psi   rape 
## nar        0e+00 0e+00 4e-04
## mach 0e+00       0e+00 0e+00
## psi  0e+00 0e+00       0e+00
## rape 4e-04 0e+00 0e+00

CFAs on the DT

svy.df <- svydesign(ids =~ 1, strata =~ Triad, nest = T, data = rr1) #correction due to unequal (but similar) number of participants per Triad combination
## Warning in svydesign.default(ids = ~1, strata = ~Triad, nest = T, data = rr1): No weights or probabilities supplied,
## assuming equal probability
model <- '
psih =~ p1 + p2 + p3 + p4
nar =~ n1+ n2 + n3 +n4
mach =~ m1+ m2 + m3 + m4'

rrcfa <- cfa(model, data = rr1, estimator = "MLM")
prepcfa <- lavaan.survey(rrcfa, svy.df, estimator = "MLM")
fitmeasures(prepcfa)
##                          npar                          fmin                         chisq                            df 
##                        39.000                         0.517                      1144.726                        51.000 
##                        pvalue                  chisq.scaled                     df.scaled                 pvalue.scaled 
##                         0.000                       942.137                        51.000                         0.000 
##          chisq.scaling.factor                baseline.chisq                   baseline.df               baseline.pvalue 
##                         1.215                     10635.457                        66.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                     12296.373                        66.000                         0.000                         0.865 
##                           cfi                           tli                          nnfi                           rfi 
##                         0.897                         0.866                         0.866                         0.861 
##                           nfi                          pnfi                           ifi                           rni 
##                         0.892                         0.690                         0.897                         0.897 
##                    cfi.scaled                    tli.scaled                    cfi.robust                    tli.robust 
##                         0.927                         0.906                         0.898                         0.868 
##                   nnfi.scaled                   nnfi.robust                    rfi.scaled                    nfi.scaled 
##                         0.906                         0.868                         0.901                         0.923 
##                    ifi.scaled                    rni.scaled                    rni.robust                          logl 
##                         0.927                         0.927                         0.898                    -23539.834 
##             unrestricted.logl                           aic                           bic                        ntotal 
##                    -22967.470                     47157.667                     47353.034                      1107.000 
##                          bic2                         rmsea                rmsea.ci.lower                rmsea.ci.upper 
##                     47229.160                         0.139                         0.132                         0.146 
##                  rmsea.pvalue                  rmsea.scaled         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.000                         0.126                         0.119                         0.132 
##           rmsea.pvalue.scaled                  rmsea.robust         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                         0.000                         0.138                         0.131                         0.146 
##           rmsea.pvalue.robust                           rmr                    rmr_nomean                          srmr 
##                            NA                         0.479                         0.515                         0.114 
##                  srmr_bentler           srmr_bentler_nomean                          crmr                   crmr_nomean 
##                         0.114                         0.122                         0.122                         0.133 
##                    srmr_mplus             srmr_mplus_nomean                         cn_05                         cn_01 
##                         0.114                         0.122                        67.406                        75.836 
##                           gfi                          agfi                          pgfi                           mfi 
##                         0.938                         0.890                         0.531                         0.610 
##                          ecvi 
##                         1.105
modindices(prepcfa)
##      lhs op rhs      mi    epc sepc.lv sepc.all sepc.nox
## 46  psih =~  n1  12.587 -0.198  -0.140   -0.064   -0.064
## 47  psih =~  n2  77.320 -0.500  -0.354   -0.161   -0.161
## 48  psih =~  n3 128.976  0.858   0.608    0.296    0.296
## 49  psih =~  n4 207.823  1.171   0.829    0.432    0.432
## 50  psih =~  m1   0.262 -0.036  -0.025   -0.011   -0.011
## 51  psih =~  m2   1.499  0.080   0.057    0.027    0.027
## 52  psih =~  m3  44.905 -0.535  -0.378   -0.156   -0.156
## 53  psih =~  m4  29.807  0.362   0.256    0.119    0.119
## 54   nar =~  p1   2.819 -0.052  -0.107   -0.056   -0.056
## 55   nar =~  p2  12.195 -0.098  -0.201   -0.103   -0.103
## 56   nar =~  p3   4.725 -0.053  -0.108   -0.064   -0.064
## 57   nar =~  p4  37.795  0.151   0.309    0.181    0.181
## 58   nar =~  m1   0.341  0.010   0.021    0.009    0.009
## 59   nar =~  m2   8.831 -0.049  -0.100   -0.047   -0.047
## 60   nar =~  m3   0.012 -0.002  -0.005   -0.002   -0.002
## 61   nar =~  m4   6.257  0.042   0.086    0.040    0.040
## 62  mach =~  p1   4.891 -0.086  -0.178   -0.093   -0.093
## 63  mach =~  p2  46.815  0.256   0.528    0.270    0.270
## 64  mach =~  p3  36.818 -0.196  -0.404   -0.239   -0.239
## 65  mach =~  p4   0.072  0.009   0.018    0.011    0.011
## 66  mach =~  n1  39.564 -0.111  -0.230   -0.105   -0.105
## 67  mach =~  n2 113.717 -0.192  -0.396   -0.180   -0.180
## 68  mach =~  n3 269.483  0.392   0.807    0.393    0.393
## 69  mach =~  n4 345.064  0.476   0.981    0.511    0.511
## 70    p1 ~~  p2  11.748  0.291   0.291    0.124    0.124
## 71    p1 ~~  p3   0.043 -0.015  -0.015   -0.008   -0.008
## 72    p1 ~~  p4   1.044 -0.075  -0.075   -0.039   -0.039
## 73    p1 ~~  n1   0.039 -0.010  -0.010   -0.008   -0.008
## 74    p1 ~~  n2   0.451  0.036   0.036    0.026    0.026
## 75    p1 ~~  n3   1.000 -0.076  -0.076   -0.032   -0.032
## 76    p1 ~~  n4   2.069 -0.117  -0.117   -0.045   -0.045
## 77    p1 ~~  m1   1.953 -0.076  -0.076   -0.049   -0.049
## 78    p1 ~~  m2   1.986 -0.072  -0.072   -0.050   -0.050
## 79    p1 ~~  m3   0.331 -0.036  -0.036   -0.020   -0.020
## 80    p1 ~~  m4   5.127  0.117   0.117    0.080    0.080
## 81    p2 ~~  p3   0.672  0.066   0.066    0.043    0.043
## 82    p2 ~~  p4  51.813 -0.609  -0.609   -0.418   -0.418
## 83    p2 ~~  n1   6.154 -0.108  -0.108   -0.113   -0.113
## 84    p2 ~~  n2   7.609 -0.124  -0.124   -0.118   -0.118
## 85    p2 ~~  n3   5.101  0.142   0.142    0.079    0.079
## 86    p2 ~~  n4  17.498  0.284   0.284    0.144    0.144
## 87    p2 ~~  m1   1.062  0.047   0.047    0.040    0.040
## 88    p2 ~~  m2   1.894  0.058   0.058    0.054    0.054
## 89    p2 ~~  m3   0.058 -0.013  -0.013   -0.009   -0.009
## 90    p2 ~~  m4   3.405  0.080   0.080    0.072    0.072
## 91    p3 ~~  p4  27.300  0.381   0.381    0.304    0.304
## 92    p3 ~~  n1   2.374  0.058   0.058    0.070    0.070
## 93    p3 ~~  n2   2.787 -0.065  -0.065   -0.071   -0.071
## 94    p3 ~~  n3   0.113 -0.018  -0.018   -0.012   -0.012
## 95    p3 ~~  n4   0.182 -0.025  -0.025   -0.015   -0.015
## 96    p3 ~~  m1   2.000 -0.055  -0.055   -0.055   -0.055
## 97    p3 ~~  m2   0.127 -0.013  -0.013   -0.014   -0.014
## 98    p3 ~~  m3  29.958 -0.246  -0.246   -0.207   -0.207
## 99    p3 ~~  m4  15.646  0.147   0.147    0.155    0.155
## 100   p4 ~~  n1   1.819  0.050   0.050    0.063    0.063
## 101   p4 ~~  n2   0.909  0.037   0.037    0.042    0.042
## 102   p4 ~~  n3   0.093  0.016   0.016    0.011    0.011
## 103   p4 ~~  n4   1.291  0.066   0.066    0.040    0.040
## 104   p4 ~~  m1   0.037  0.008   0.008    0.008    0.008
## 105   p4 ~~  m2   2.851  0.061   0.061    0.068    0.068
## 106   p4 ~~  m3   2.654 -0.073  -0.073   -0.063   -0.063
## 107   p4 ~~  m4   1.227 -0.041  -0.041   -0.045   -0.045
## 108   n1 ~~  n2 830.928  3.376   3.376    5.905    5.905
## 109   n1 ~~  n3 101.644 -0.637  -0.637   -0.651   -0.651
## 110   n1 ~~  n4  53.166 -0.389  -0.389   -0.363   -0.363
## 111   n1 ~~  m1   0.010  0.003   0.003    0.005    0.005
## 112   n1 ~~  m2   5.522 -0.065  -0.065   -0.110   -0.110
## 113   n1 ~~  m3   0.711 -0.029  -0.029   -0.038   -0.038
## 114   n1 ~~  m4   0.018 -0.004  -0.004   -0.006   -0.006
## 115   n2 ~~  n3  29.662 -0.344  -0.344   -0.321   -0.321
## 116   n2 ~~  n4  74.204 -0.465  -0.465   -0.395   -0.395
## 117   n2 ~~  m1   0.347 -0.018  -0.018   -0.026   -0.026
## 118   n2 ~~  m2   2.578 -0.046  -0.046   -0.070   -0.070
## 119   n2 ~~  m3   0.018 -0.005  -0.005   -0.006   -0.006
## 120   n2 ~~  m4   4.367 -0.060  -0.060   -0.092   -0.092
## 121   n3 ~~  n4 275.510  1.075   1.075    0.534    0.534
## 122   n3 ~~  m1   4.273  0.089   0.089    0.074    0.074
## 123   n3 ~~  m2   1.884  0.055   0.055    0.049    0.049
## 124   n3 ~~  m3   6.336  0.124   0.124    0.087    0.087
## 125   n3 ~~  m4   5.496  0.095   0.095    0.084    0.084
## 126   n4 ~~  m1   0.421 -0.030  -0.030   -0.023   -0.023
## 127   n4 ~~  m2  16.222  0.173   0.173    0.142    0.142
## 128   n4 ~~  m3   0.402  0.034   0.034    0.022    0.022
## 129   n4 ~~  m4  20.838  0.200   0.200    0.161    0.161
## 130   m1 ~~  m2  14.478  0.145   0.145    0.200    0.200
## 131   m1 ~~  m3   0.254 -0.022  -0.022   -0.024   -0.024
## 132   m1 ~~  m4  10.381 -0.124  -0.124   -0.169   -0.169
## 133   m2 ~~  m3   0.349 -0.024  -0.024   -0.028   -0.028
## 134   m2 ~~  m4   9.649 -0.113  -0.113   -0.166   -0.166
## 135   m3 ~~  m4  13.319  0.152   0.152    0.174    0.174
modx <- '
psih =~ p1 + p2 + p3 + p4
nar =~ n1 + n2 + n3 + n4
mach =~ m1 + m2 + m3 + m4
n1~~n2'

rrcfax <- cfa(modx, data = rr1, estimator = "MLM")
finalcfa <- lavaan.survey(rrcfax, svy.df, estimator = "MLM")
fitmeasures(finalcfa)
##                          npar                          fmin                         chisq                            df 
##                        40.000                         0.208                       459.991                        50.000 
##                        pvalue                  chisq.scaled                     df.scaled                 pvalue.scaled 
##                         0.000                       366.348                        50.000                         0.000 
##          chisq.scaling.factor                baseline.chisq                   baseline.df               baseline.pvalue 
##                         1.256                     10635.457                        66.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                     12296.373                        66.000                         0.000                         0.865 
##                           cfi                           tli                          nnfi                           rfi 
##                         0.961                         0.949                         0.949                         0.943 
##                           nfi                          pnfi                           ifi                           rni 
##                         0.957                         0.725                         0.961                         0.961 
##                    cfi.scaled                    tli.scaled                    cfi.robust                    tli.robust 
##                         0.974                         0.966                         0.962                         0.950 
##                   nnfi.scaled                   nnfi.robust                    rfi.scaled                    nfi.scaled 
##                         0.966                         0.950                         0.961                         0.970 
##                    ifi.scaled                    rni.scaled                    rni.robust                          logl 
##                         0.974                         0.974                         0.962                    -23197.466 
##             unrestricted.logl                           aic                           bic                        ntotal 
##                    -22967.470                     46474.932                     46675.308                      1107.000 
##                          bic2                         rmsea                rmsea.ci.lower                rmsea.ci.upper 
##                     46548.258                         0.086                         0.079                         0.093 
##                  rmsea.pvalue                  rmsea.scaled         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.000                         0.076                         0.069                         0.082 
##           rmsea.pvalue.scaled                  rmsea.robust         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                         0.000                         0.085                         0.077                         0.093 
##           rmsea.pvalue.robust                           rmr                    rmr_nomean                          srmr 
##                            NA                         0.250                         0.268                         0.057 
##                  srmr_bentler           srmr_bentler_nomean                          crmr                   crmr_nomean 
##                         0.057                         0.061                         0.061                         0.066 
##                    srmr_mplus             srmr_mplus_nomean                         cn_05                         cn_01 
##                         0.057                         0.061                       163.455                       184.270 
##                           gfi                          agfi                          pgfi                           mfi 
##                         0.974                         0.954                         0.541                         0.831 
##                          ecvi 
##                         0.488

Measurement invariance

conf <- sem(modx, data = rr1, estimator = "MLM", group = "grp")
weak <-  sem(modx, data = rr1, estimator = "MLM", group = "grp", group.equal = "loadings")
strong <- sem(modx, data = rr1, estimator = "MLM", group = "grp", group.equal = c("loadings", "intercepts"))
regressions <- sem(modx, data = rr1, estimator = "MLM", group = "grp", group.equal = c("loadings", "intercepts", "regressions"))
biglavaan <- lavaan.survey(conf, svy.df, estimator = "MLM")
biglavaan2 <- lavaan.survey(weak, svy.df, estimator = "MLM")
biglavaan3 <- lavaan.survey(strong, svy.df, estimator = "MLM")
biglavaan4 <- lavaan.survey(regressions, svy.df, estimator = "MLM")
fitMeasures(biglavaan, c("chisq", "df", "pvalue", "cfi.robust", "rmsea.robust", "srmr"))
##        chisq           df       pvalue   cfi.robust rmsea.robust         srmr 
##      518.901      100.000        0.000        0.963        0.084        0.059
fitMeasures(biglavaan2, c("chisq", "df", "pvalue", "cfi.robust", "rmsea.robust", "srmr"))
##        chisq           df       pvalue   cfi.robust rmsea.robust         srmr 
##      527.883      109.000        0.000        0.963        0.081        0.061
fitMeasures(biglavaan3, c("chisq", "df", "pvalue", "cfi.robust", "rmsea.robust", "srmr"))
##        chisq           df       pvalue   cfi.robust rmsea.robust         srmr 
##      542.837      118.000        0.000        0.962        0.078        0.061
fitMeasures(biglavaan4, c("chisq", "df", "pvalue", "cfi.robust", "rmsea.robust", "srmr"))
##        chisq           df       pvalue   cfi.robust rmsea.robust         srmr 
##      542.837      118.000        0.000        0.962        0.078        0.061

Final model

modelf <- '
psih =~ p1 + p2 + p3 + p4
nar =~ n1 + n2 + n3 + n4
mach =~ m1 + m2 + m3 + m4
rape ~ psih + nar + mach
n1~~n2'

rrsem <- sem(modelf, data = rr1, estimator = "MLM")
finalavaan <- lavaan.survey(rrsem, svy.df, estimator = "MLM")
fitmeasures(finalavaan) #adjusted
##                          npar                          fmin                         chisq                            df 
##                        45.000                         0.231                       510.950                        59.000 
##                        pvalue                  chisq.scaled                     df.scaled                 pvalue.scaled 
##                         0.000                       415.193                        59.000                         0.000 
##          chisq.scaling.factor                baseline.chisq                   baseline.df               baseline.pvalue 
##                         1.231                     10902.413                        78.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                     12122.267                        78.000                         0.000                         0.899 
##                           cfi                           tli                          nnfi                           rfi 
##                         0.958                         0.945                         0.945                         0.938 
##                           nfi                          pnfi                           ifi                           rni 
##                         0.953                         0.721                         0.958                         0.958 
##                    cfi.scaled                    tli.scaled                    cfi.robust                    tli.robust 
##                         0.970                         0.961                         0.960                         0.947 
##                   nnfi.scaled                   nnfi.robust                    rfi.scaled                    nfi.scaled 
##                         0.961                         0.947                         0.955                         0.966 
##                    ifi.scaled                    rni.scaled                    rni.robust                          logl 
##                         0.970                         0.970                         0.960                    -25092.470 
##             unrestricted.logl                           aic                           bic                        ntotal 
##                    -24836.994                     50274.939                     50500.363                      1107.000 
##                          bic2                         rmsea                rmsea.ci.lower                rmsea.ci.upper 
##                     50357.431                         0.083                         0.077                         0.090 
##                  rmsea.pvalue                  rmsea.scaled         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.000                         0.074                         0.068                         0.080 
##           rmsea.pvalue.scaled                  rmsea.robust         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                         0.000                         0.082                         0.075                         0.089 
##           rmsea.pvalue.robust                           rmr                    rmr_nomean                          srmr 
##                            NA                         0.235                         0.252                         0.054 
##                  srmr_bentler           srmr_bentler_nomean                          crmr                   crmr_nomean 
##                         0.054                         0.058                         0.058                         0.062 
##                    srmr_mplus             srmr_mplus_nomean                         cn_05                         cn_01 
##                         0.054                         0.058                       169.840                       189.849 
##                           gfi                          agfi                          pgfi                           mfi 
##                         0.973                         0.953                         0.552                         0.815 
##                          ecvi 
##                         0.543
fitmeasures(rrsem) #not adjusted
##                          npar                          fmin                         chisq                            df 
##                        32.000                         0.231                       510.950                        59.000 
##                        pvalue                  chisq.scaled                     df.scaled                 pvalue.scaled 
##                         0.000                       414.273                        59.000                         0.000 
##          chisq.scaling.factor                baseline.chisq                   baseline.df               baseline.pvalue 
##                         1.233                     10902.413                        78.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                     10981.775                        78.000                         0.000                         0.993 
##                           cfi                           tli                          nnfi                           rfi 
##                         0.958                         0.945                         0.945                         0.938 
##                           nfi                          pnfi                           ifi                           rni 
##                         0.953                         0.721                         0.958                         0.958 
##                    cfi.scaled                    tli.scaled                    cfi.robust                    tli.robust 
##                         0.967                         0.957                         0.960                         0.946 
##                   nnfi.scaled                   nnfi.robust                    rfi.scaled                    nfi.scaled 
##                         0.957                         0.946                         0.950                         0.962 
##                    ifi.scaled                    rni.scaled                    rni.robust                          logl 
##                         0.967                         0.967                         0.960                    -25092.470 
##             unrestricted.logl                           aic                           bic                        ntotal 
##                    -24836.994                     50248.939                     50409.240                      1107.000 
##                          bic2                         rmsea                rmsea.ci.lower                rmsea.ci.upper 
##                     50307.600                         0.083                         0.077                         0.090 
##                  rmsea.pvalue                  rmsea.scaled         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.000                         0.074                         0.068                         0.080 
##           rmsea.pvalue.scaled                  rmsea.robust         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                         0.000                         0.082                         0.075                         0.089 
##           rmsea.pvalue.robust                           rmr                    rmr_nomean                          srmr 
##                            NA                         0.252                         0.252                         0.058 
##                  srmr_bentler           srmr_bentler_nomean                          crmr                   crmr_nomean 
##                         0.058                         0.058                         0.062                         0.062 
##                    srmr_mplus             srmr_mplus_nomean                         cn_05                         cn_01 
##                         0.058                         0.058                       169.840                       189.849 
##                           gfi                          agfi                          pgfi                           mfi 
##                         0.933                         0.897                         0.605                         0.815 
##                          ecvi 
##                         0.519
parameterestimates(finalavaan, standardized = T) #adjusted
##     lhs op  rhs    est    se      z pvalue ci.lower ci.upper std.lv std.all std.nox
## 1  psih =~   p1  1.000 0.000     NA     NA    1.000    1.000  0.695   0.366   0.366
## 2  psih =~   p2  2.069 0.184 11.241  0.000    1.708    2.429  1.438   0.734   0.734
## 3  psih =~   p3  1.800 0.163 11.062  0.000    1.481    2.119  1.251   0.742   0.742
## 4  psih =~   p4  1.885 0.172 10.982  0.000    1.549    2.222  1.310   0.766   0.766
## 5   nar =~   n1  1.000 0.000     NA     NA    1.000    1.000  1.550   0.712   0.712
## 6   nar =~   n2  0.993 0.021 48.091  0.000    0.953    1.034  1.539   0.699   0.699
## 7   nar =~   n3  1.193 0.039 30.673  0.000    1.117    1.270  1.849   0.900   0.900
## 8   nar =~   n4  1.012 0.036 28.385  0.000    0.943    1.082  1.569   0.817   0.817
## 9  mach =~   m1  1.000 0.000     NA     NA    1.000    1.000  2.058   0.918   0.918
## 10 mach =~   m2  0.948 0.016 60.447  0.000    0.917    0.979  1.951   0.922   0.922
## 11 mach =~   m3  1.066 0.016 64.882  0.000    1.034    1.099  2.194   0.902   0.902
## 12 mach =~   m4  0.962 0.016 61.251  0.000    0.931    0.993  1.980   0.923   0.923
## 13 rape  ~ psih  0.536 0.114  4.686  0.000    0.312    0.760  0.373   0.252   0.252
## 14 rape  ~  nar -0.043 0.048 -0.914  0.361   -0.137    0.050 -0.067  -0.046  -0.046
## 15 rape  ~ mach  0.191 0.038  5.057  0.000    0.117    0.265  0.393   0.266   0.266
## 16   n1 ~~   n2  1.911 0.125 15.322  0.000    1.666    2.155  1.911   0.793   0.793
## 17   p1 ~~   p1  3.132 0.109 28.756  0.000    2.918    3.345  3.132   0.866   0.866
## 18   p2 ~~   p2  1.764 0.118 14.983  0.000    1.534    1.995  1.764   0.461   0.461
## 19   p3 ~~   p3  1.280 0.091 14.005  0.000    1.101    1.459  1.280   0.450   0.450
## 20   p4 ~~   p4  1.210 0.092 13.174  0.000    1.030    1.391  1.210   0.413   0.413
## 21   n1 ~~   n1  2.339 0.131 17.806  0.000    2.081    2.596  2.339   0.493   0.493
## 22   n2 ~~   n2  2.486 0.135 18.364  0.000    2.220    2.751  2.486   0.512   0.512
## 23   n3 ~~   n3  0.802 0.086  9.305  0.000    0.633    0.971  0.802   0.190   0.190
## 24   n4 ~~   n4  1.227 0.081 15.120  0.000    1.068    1.386  1.227   0.333   0.333
## 25   m1 ~~   m1  0.789 0.067 11.840  0.000    0.659    0.920  0.789   0.157   0.157
## 26   m2 ~~   m2  0.671 0.064 10.529  0.000    0.546    0.796  0.671   0.150   0.150
## 27   m3 ~~   m3  1.099 0.089 12.408  0.000    0.926    1.273  1.099   0.186   0.186
## 28   m4 ~~   m4  0.684 0.069  9.903  0.000    0.548    0.819  0.684   0.149   0.149
## 29 rape ~~ rape  1.764 0.089 19.725  0.000    1.588    1.939  1.764   0.808   0.808
## 30 psih ~~ psih  0.483 0.086  5.642  0.000    0.315    0.651  1.000   1.000   1.000
## 31  nar ~~  nar  2.402 0.149 16.125  0.000    2.110    2.694  1.000   1.000   1.000
## 32 mach ~~ mach  4.235 0.127 33.358  0.000    3.986    4.484  1.000   1.000   1.000
## 33 psih ~~  nar  0.633 0.068  9.355  0.000    0.501    0.766  0.588   0.588   0.588
## 34 psih ~~ mach  0.922 0.091 10.193  0.000    0.745    1.100  0.645   0.645   0.645
## 35  nar ~~ mach  2.224 0.097 22.853  0.000    2.033    2.414  0.697   0.697   0.697
## 36   p1 ~1       4.384 0.056 78.245  0.000    4.274    4.494  4.384   2.306   2.306
## 37   p2 ~1       3.918 0.052 75.833  0.000    3.817    4.019  3.918   2.001   2.001
## 38   p3 ~1       3.472 0.046 75.378  0.000    3.382    3.563  3.472   2.059   2.059
## 39   p4 ~1       3.704 0.047 78.931  0.000    3.612    3.796  3.704   2.165   2.165
## 40   n1 ~1       4.121 0.048 85.488  0.000    4.027    4.216  4.121   1.893   1.893
## 41   n2 ~1       4.233 0.047 89.206  0.000    4.140    4.326  4.233   1.921   1.921
## 42   n3 ~1       4.223 0.051 83.332  0.000    4.124    4.322  4.223   2.055   2.055
## 43   n4 ~1       3.698 0.049 75.855  0.000    3.603    3.794  3.698   1.926   1.926
## 44   m1 ~1       3.763 0.048 78.977  0.000    3.670    3.857  3.763   1.679   1.679
## 45   m2 ~1       3.358 0.045 73.830  0.000    3.269    3.447  3.358   1.587   1.587
## 46   m3 ~1       3.753 0.048 78.920  0.000    3.660    3.847  3.753   1.543   1.543
## 47   m4 ~1       3.614 0.046 78.994  0.000    3.525    3.704  3.614   1.684   1.684
## 48 rape ~1       2.348 0.042 55.545  0.000    2.265    2.431  2.348   1.589   1.589
## 49 psih ~1       0.000 0.000     NA     NA    0.000    0.000  0.000   0.000   0.000
## 50  nar ~1       0.000 0.000     NA     NA    0.000    0.000  0.000   0.000   0.000
## 51 mach ~1       0.000 0.000     NA     NA    0.000    0.000  0.000   0.000   0.000
parameterestimates(rrsem, standardized = T) #not adjusted
##     lhs op  rhs    est    se      z pvalue ci.lower ci.upper std.lv std.all std.nox
## 1  psih =~   p1  1.000 0.000     NA     NA    1.000    1.000  0.695   0.366   0.366
## 2  psih =~   p2  2.069 0.184 11.242   0.00    1.708    2.429  1.438   0.734   0.734
## 3  psih =~   p3  1.800 0.163 11.063   0.00    1.481    2.119  1.251   0.742   0.742
## 4  psih =~   p4  1.885 0.172 10.968   0.00    1.548    2.222  1.310   0.766   0.766
## 5   nar =~   n1  1.000 0.000     NA     NA    1.000    1.000  1.550   0.712   0.712
## 6   nar =~   n2  0.993 0.021 48.158   0.00    0.953    1.034  1.539   0.699   0.699
## 7   nar =~   n3  1.193 0.040 29.554   0.00    1.114    1.273  1.849   0.900   0.900
## 8   nar =~   n4  1.012 0.036 27.950   0.00    0.941    1.083  1.569   0.817   0.817
## 9  mach =~   m1  1.000 0.000     NA     NA    1.000    1.000  2.058   0.918   0.918
## 10 mach =~   m2  0.948 0.016 60.526   0.00    0.918    0.979  1.951   0.922   0.922
## 11 mach =~   m3  1.066 0.016 64.775   0.00    1.034    1.099  2.194   0.902   0.902
## 12 mach =~   m4  0.962 0.016 61.333   0.00    0.931    0.993  1.980   0.923   0.923
## 13 rape  ~ psih  0.536 0.114  4.693   0.00    0.312    0.760  0.373   0.252   0.252
## 14 rape  ~  nar -0.043 0.047 -0.916   0.36   -0.136    0.050 -0.067  -0.046  -0.046
## 15 rape  ~ mach  0.191 0.038  5.057   0.00    0.117    0.265  0.393   0.266   0.266
## 16   n1 ~~   n2  1.911 0.133 14.333   0.00    1.650    2.172  1.911   0.793   0.793
## 17   p1 ~~   p1  3.132 0.109 28.730   0.00    2.918    3.346  3.132   0.866   0.866
## 18   p2 ~~   p2  1.764 0.118 14.957   0.00    1.533    1.996  1.764   0.461   0.461
## 19   p3 ~~   p3  1.280 0.091 14.004   0.00    1.101    1.459  1.280   0.450   0.450
## 20   p4 ~~   p4  1.210 0.092 13.169   0.00    1.030    1.391  1.210   0.413   0.413
## 21   n1 ~~   n1  2.339 0.139 16.826   0.00    2.066    2.611  2.339   0.493   0.493
## 22   n2 ~~   n2  2.486 0.146 17.038   0.00    2.200    2.772  2.486   0.512   0.512
## 23   n3 ~~   n3  0.802 0.086  9.325   0.00    0.633    0.970  0.802   0.190   0.190
## 24   n4 ~~   n4  1.227 0.082 14.944   0.00    1.066    1.387  1.227   0.333   0.333
## 25   m1 ~~   m1  0.789 0.067 11.819   0.00    0.659    0.920  0.789   0.157   0.157
## 26   m2 ~~   m2  0.671 0.065 10.396   0.00    0.545    0.798  0.671   0.150   0.150
## 27   m3 ~~   m3  1.099 0.090 12.284   0.00    0.924    1.275  1.099   0.186   0.186
## 28   m4 ~~   m4  0.684 0.069  9.873   0.00    0.548    0.820  0.684   0.149   0.149
## 29 rape ~~ rape  1.764 0.090 19.506   0.00    1.586    1.941  1.764   0.808   0.808
## 30 psih ~~ psih  0.483 0.086  5.637   0.00    0.315    0.651  1.000   1.000   1.000
## 31  nar ~~  nar  2.402 0.160 15.005   0.00    2.088    2.715  1.000   1.000   1.000
## 32 mach ~~ mach  4.235 0.132 32.176   0.00    3.977    4.493  1.000   1.000   1.000
## 33 psih ~~  nar  0.633 0.070  9.062   0.00    0.496    0.770  0.588   0.588   0.588
## 34 psih ~~ mach  0.922 0.092 10.017   0.00    0.742    1.103  0.645   0.645   0.645
## 35  nar ~~ mach  2.224 0.114 19.515   0.00    2.000    2.447  0.697   0.697   0.697

Additional check - inadequate effort responding

In order to check if exclusion of those who could not discriminate between the Dark Triad traits (or did not put enough effort into it) would change the results, an additional model was computed.

rrxxier <- subset(rrxx, Triad == "npm" & nar < 16 & mach < 16 & psi < 16|Triad == "npm" & nar > 16 & mach > 16 & psi > 16|Triad == "Npm" & nar > 16 & mach < nar & psi < nar|Triad == "npM" & mach > 16 & mach > nar & mach > psi|Triad == "nPm" & psi > 16 & psi > mach & psi > nar)
rrxyier <- subset(rrxy, Triad == "npm" & nar < 16 & mach < 16 & psi < 16|Triad == "npm" & nar > 16 & mach > 16 & psi > 16|Triad == "Npm" & nar > 16 & mach < nar & psi < nar|Triad == "npM" & mach > 16 & mach > nar & mach > psi|Triad == "nPm" & psi > 16 & psi > mach & psi > nar)

checkdata <- rbind(rrxxier,rrxyier)

modelf <- '
psih =~ p1 + p2 + p3 + p4
nar =~ n1 + n2 + n3 + n4
mach =~ m1 + m2 + m3 + m4
rape ~ psih + nar + mach
n1~~n2'

svy.df2 <- svydesign(ids =~ 1, strata =~ Triad, nest = T, data = checkdata)
## Warning in svydesign.default(ids = ~1, strata = ~Triad, nest = T, data = checkdata): No weights or probabilities
## supplied, assuming equal probability
rrsemx <- sem(modelf, data = checkdata, estimator = "MLM")
finalavaanx <- lavaan.survey(rrsemx, svy.df2, estimator = "MLM")
parameterestimates(finalavaanx, standardized = T) #adjusted
##     lhs op  rhs    est    se      z pvalue ci.lower ci.upper std.lv std.all std.nox
## 1  psih =~   p1  1.000 0.000     NA     NA    1.000    1.000  0.703   0.374   0.374
## 2  psih =~   p2  2.041 0.261  7.811  0.000    1.529    2.553  1.434   0.746   0.746
## 3  psih =~   p3  1.592 0.207  7.690  0.000    1.186    1.998  1.119   0.692   0.692
## 4  psih =~   p4  1.601 0.213  7.509  0.000    1.183    2.019  1.125   0.680   0.680
## 5   nar =~   n1  1.000 0.000     NA     NA    1.000    1.000  1.286   0.593   0.593
## 6   nar =~   n2  1.009 0.034 29.555  0.000    0.942    1.076  1.297   0.589   0.589
## 7   nar =~   n3  1.550 0.108 14.326  0.000    1.338    1.762  1.992   0.987   0.987
## 8   nar =~   n4  0.908 0.065 13.927  0.000    0.780    1.036  1.167   0.638   0.638
## 9  mach =~   m1  1.000 0.000     NA     NA    1.000    1.000  2.068   0.936   0.936
## 10 mach =~   m2  0.914 0.022 41.271  0.000    0.870    0.957  1.890   0.927   0.927
## 11 mach =~   m3  1.065 0.023 46.543  0.000    1.020    1.109  2.202   0.908   0.908
## 12 mach =~   m4  0.914 0.022 40.783  0.000    0.870    0.958  1.890   0.909   0.909
## 13 rape  ~ psih  0.390 0.119  3.264  0.001    0.156    0.624  0.274   0.200   0.200
## 14 rape  ~  nar -0.072 0.056 -1.278  0.201   -0.182    0.038 -0.092  -0.067  -0.067
## 15 rape  ~ mach  0.166 0.042  3.992  0.000    0.084    0.247  0.343   0.251   0.251
## 16   n1 ~~   n2  2.650 0.193 13.710  0.000    2.271    3.029  2.650   0.852   0.852
## 17   p1 ~~   p1  3.030 0.148 20.441  0.000    2.740    3.321  3.030   0.860   0.860
## 18   p2 ~~   p2  1.636 0.175  9.356  0.000    1.293    1.979  1.636   0.443   0.443
## 19   p3 ~~   p3  1.358 0.138  9.823  0.000    1.087    1.629  1.358   0.520   0.520
## 20   p4 ~~   p4  1.472 0.133 11.082  0.000    1.212    1.732  1.472   0.538   0.538
## 21   n1 ~~   n1  3.049 0.195 15.628  0.000    2.667    3.432  3.049   0.649   0.649
## 22   n2 ~~   n2  3.173 0.204 15.581  0.000    2.774    3.573  3.173   0.653   0.653
## 23   n3 ~~   n3  0.108 0.193  0.560  0.575   -0.270    0.487  0.108   0.027   0.027
## 24   n4 ~~   n4  1.986 0.132 15.105  0.000    1.729    2.244  1.986   0.593   0.593
## 25   m1 ~~   m1  0.607 0.079  7.698  0.000    0.452    0.761  0.607   0.124   0.124
## 26   m2 ~~   m2  0.582 0.082  7.053  0.000    0.420    0.743  0.582   0.140   0.140
## 27   m3 ~~   m3  1.037 0.127  8.139  0.000    0.787    1.287  1.037   0.176   0.176
## 28   m4 ~~   m4  0.746 0.108  6.880  0.000    0.534    0.959  0.746   0.173   0.173
## 29 rape ~~ rape  1.624 0.136 11.947  0.000    1.358    1.891  1.624   0.866   0.866
## 30 psih ~~ psih  0.494 0.121  4.084  0.000    0.257    0.731  1.000   1.000   1.000
## 31  nar ~~  nar  1.653 0.201  8.228  0.000    1.259    2.046  1.000   1.000   1.000
## 32 mach ~~ mach  4.277 0.159 26.940  0.000    3.966    4.589  1.000   1.000   1.000
## 33 psih ~~  nar  0.282 0.056  5.008  0.000    0.172    0.393  0.313   0.313   0.313
## 34 psih ~~ mach  0.727 0.107  6.822  0.000    0.518    0.936  0.501   0.501   0.501
## 35  nar ~~ mach  1.230 0.115 10.689  0.000    1.004    1.455  0.462   0.462   0.462
## 36   p1 ~1       4.344 0.074 58.897  0.000    4.199    4.488  4.344   2.314   2.314
## 37   p2 ~1       3.603 0.064 56.390  0.000    3.478    3.728  3.603   1.875   1.875
## 38   p3 ~1       3.153 0.059 53.709  0.000    3.038    3.269  3.153   1.952   1.952
## 39   p4 ~1       3.383 0.061 55.503  0.000    3.263    3.502  3.383   2.045   2.045
## 40   n1 ~1       3.721 0.054 69.026  0.000    3.616    3.827  3.721   1.716   1.716
## 41   n2 ~1       3.825 0.054 71.491  0.000    3.721    3.930  3.825   1.736   1.736
## 42   n3 ~1       3.871 0.065 59.207  0.000    3.743    3.999  3.871   1.917   1.917
## 43   n4 ~1       3.328 0.065 51.147  0.000    3.201    3.456  3.328   1.819   1.819
## 44   m1 ~1       3.268 0.056 58.165  0.000    3.158    3.378  3.268   1.479   1.479
## 45   m2 ~1       2.887 0.051 56.126  0.000    2.786    2.988  2.887   1.417   1.417
## 46   m3 ~1       3.219 0.055 58.229  0.000    3.110    3.327  3.219   1.327   1.327
## 47   m4 ~1       3.125 0.055 56.396  0.000    3.017    3.234  3.125   1.504   1.504
## 48 rape ~1       2.152 0.056 38.390  0.000    2.042    2.262  2.152   1.571   1.571
## 49 psih ~1       0.000 0.000     NA     NA    0.000    0.000  0.000   0.000   0.000
## 50  nar ~1       0.000 0.000     NA     NA    0.000    0.000  0.000   0.000   0.000
## 51 mach ~1       0.000 0.000     NA     NA    0.000    0.000  0.000   0.000   0.000
parameterestimates(rrsemx, standardized = T) #not adjusted
##     lhs op  rhs    est    se      z pvalue ci.lower ci.upper std.lv std.all std.nox
## 1  psih =~   p1  1.000 0.000     NA     NA    1.000    1.000  0.703   0.374   0.374
## 2  psih =~   p2  2.041 0.262  7.798  0.000    1.528    2.554  1.434   0.746   0.746
## 3  psih =~   p3  1.592 0.208  7.672  0.000    1.185    1.999  1.119   0.692   0.692
## 4  psih =~   p4  1.601 0.215  7.439  0.000    1.179    2.023  1.125   0.680   0.680
## 5   nar =~   n1  1.000 0.000     NA     NA    1.000    1.000  1.286   0.593   0.593
## 6   nar =~   n2  1.009 0.034 29.549  0.000    0.942    1.076  1.297   0.589   0.589
## 7   nar =~   n3  1.550 0.117 13.295  0.000    1.321    1.778  1.992   0.987   0.987
## 8   nar =~   n4  0.908 0.066 13.670  0.000    0.778    1.038  1.167   0.638   0.638
## 9  mach =~   m1  1.000 0.000     NA     NA    1.000    1.000  2.068   0.936   0.936
## 10 mach =~   m2  0.914 0.022 41.297  0.000    0.870    0.957  1.890   0.927   0.927
## 11 mach =~   m3  1.065 0.023 46.306  0.000    1.020    1.110  2.202   0.908   0.908
## 12 mach =~   m4  0.914 0.022 40.882  0.000    0.870    0.958  1.890   0.909   0.909
## 13 rape  ~ psih  0.390 0.119  3.277  0.001    0.157    0.623  0.274   0.200   0.200
## 14 rape  ~  nar -0.072 0.056 -1.282  0.200   -0.181    0.038 -0.092  -0.067  -0.067
## 15 rape  ~ mach  0.166 0.041  4.003  0.000    0.085    0.247  0.343   0.251   0.251
## 16   n1 ~~   n2  2.650 0.211 12.572  0.000    2.237    3.064  2.650   0.852   0.852
## 17   p1 ~~   p1  3.030 0.149 20.368  0.000    2.738    3.322  3.030   0.860   0.860
## 18   p2 ~~   p2  1.636 0.175  9.348  0.000    1.293    1.979  1.636   0.443   0.443
## 19   p3 ~~   p3  1.358 0.138  9.855  0.000    1.088    1.628  1.358   0.520   0.520
## 20   p4 ~~   p4  1.472 0.134 10.982  0.000    1.209    1.735  1.472   0.538   0.538
## 21   n1 ~~   n1  3.049 0.209 14.611  0.000    2.640    3.458  3.049   0.649   0.649
## 22   n2 ~~   n2  3.173 0.223 14.246  0.000    2.737    3.610  3.173   0.653   0.653
## 23   n3 ~~   n3  0.108 0.199  0.544  0.587   -0.282    0.498  0.108   0.027   0.027
## 24   n4 ~~   n4  1.986 0.139 14.278  0.000    1.714    2.259  1.986   0.593   0.593
## 25   m1 ~~   m1  0.607 0.079  7.689  0.000    0.452    0.761  0.607   0.124   0.124
## 26   m2 ~~   m2  0.582 0.084  6.951  0.000    0.418    0.746  0.582   0.140   0.140
## 27   m3 ~~   m3  1.037 0.129  8.050  0.000    0.785    1.290  1.037   0.176   0.176
## 28   m4 ~~   m4  0.746 0.110  6.800  0.000    0.531    0.962  0.746   0.173   0.173
## 29 rape ~~ rape  1.624 0.137 11.878  0.000    1.356    1.892  1.624   0.866   0.866
## 30 psih ~~ psih  0.494 0.122  4.038  0.000    0.254    0.733  1.000   1.000   1.000
## 31  nar ~~  nar  1.653 0.215  7.670  0.000    1.230    2.075  1.000   1.000   1.000
## 32 mach ~~ mach  4.277 0.194 22.088  0.000    3.898    4.657  1.000   1.000   1.000
## 33 psih ~~  nar  0.282 0.059  4.765  0.000    0.166    0.399  0.313   0.313   0.313
## 34 psih ~~ mach  0.727 0.108  6.737  0.000    0.516    0.939  0.501   0.501   0.501
## 35  nar ~~ mach  1.230 0.125  9.862  0.000    0.985    1.474  0.462   0.462   0.462

The model reveals only a negligible change in parameters, pointing out the robustness of outcomes.