library(readr)
library(stargazer)
#Importando la data
data<- read_csv("C:/Users/ejhar/Downloads/ejemplo_regresion.csv")
#Modelo estimado
modelo_lineal<- lm(Y~X1+X2, data = data)
stargazer(modelo_lineal, title = "modelo estimado", type = "text")
##
## modelo estimado
## ===============================================
## Dependent variable:
## ---------------------------
## Y
## -----------------------------------------------
## X1 0.237***
## (0.056)
##
## X2 -0.0002***
## (0.00003)
##
## Constant 1.564***
## (0.079)
##
## -----------------------------------------------
## Observations 25
## R2 0.865
## Adjusted R2 0.853
## Residual Std. Error 0.053 (df = 22)
## F Statistic 70.661*** (df = 2; 22)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
u_i<-modelo_lineal$residuals
data_frame_white<-as.data.frame(cbind(u_i, data))
regresion_auxiliar <- lm(I(u_i^2)~X1+X2+I(X1^2)+I(X2^2)+X1*X2, data = data_frame_white)
sumario<- summary(regresion_auxiliar)
n <- nrow(data_frame_white)
R_2<- sumario$r.squared
LM_W<- n*R_2
gl <- 2+2+1
p_value<- 1- pchisq(q = LM_W, df = gl)
VC<- qchisq(p = 0.95, df = gl)
salida_white<- c(LM_W,VC, p_value)
names(salida_white)<-c("LMw", "Valor critico", "p value")
stargazer(salida_white, title = "Resultados de la prueba de white", type = "text", digits = 6)
##
## Resultados de la prueba de white
## ===============================
## LMw Valor critico p value
## -------------------------------
## 3.690182 11.070500 0.594826
## -------------------------------
Como 0.5948 > 0.05 No se rechaza la Ho, por lo tanto hay evidencia de que la varianza de los residuos es homocedastica
library(lmtest)
## Warning: package 'lmtest' was built under R version 3.5.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.5.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
prueba_white<- bptest(modelo_lineal, ~I(X1^2)+I(X2^2)+X1*X2,data = data)
print(prueba_white)
##
## studentized Breusch-Pagan test
##
## data: modelo_lineal
## BP = 3.6902, df = 5, p-value = 0.5948
Como 0.5948 > 0.05 No se rechaza la Ho, por lo tanto hay evidencia de que la varianza de los residuos es homocedastica
Autocorrelación de primer orden ## 2.1 - Prueba de Duirbin - Watson (libreria “lmtest”)
dwtest(modelo_lineal,alternative = "two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_lineal
## DW = 1.9483, p-value = 0.5649
## alternative hypothesis: true autocorrelation is not 0
Se puede rechazar la presencia de autocorrelación (No se rechaza la H0), ya que el pvalue>0.05
library(car)
durbinWatsonTest(modelo_lineal,simulate = TRUE,reps = 1000)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.04366918 1.948305 0.574
## Alternative hypothesis: rho != 0
Se puede rechazar la presencia de autocorrelación (No se rechaza la H0), ya que el pvalue>0.05
#Presentación de datos
library(dplyr)
library(tidyr)
library(kableExtra)
cbind(u_i,data) %>%
as.data.frame() %>%
mutate(Lag_1=dplyr::lag(u_i,1),
Lag_2=dplyr::lag(u_i,2)) %>%
replace_na(list(Lag_1=0,Lag_2=0))->data_prueba_BG
kable(head(data_prueba_BG,6))
| u_i | X1 | X2 | Y | Lag_1 | Lag_2 |
|---|---|---|---|---|---|
| 0.0734697 | 3.92 | 7298 | 0.75 | 0.0000000 | 0.0000000 |
| -0.0033412 | 3.61 | 6855 | 0.71 | 0.0734697 | 0.0000000 |
| -0.0391023 | 3.32 | 6636 | 0.66 | -0.0033412 | 0.0734697 |
| -0.0621832 | 3.07 | 6506 | 0.61 | -0.0391023 | -0.0033412 |
| 0.0162403 | 3.06 | 6450 | 0.70 | -0.0621832 | -0.0391023 |
| 0.0124247 | 3.11 | 6402 | 0.72 | 0.0162403 | -0.0621832 |
#Calculando la regresión auxiliar y el estadístico LMBP
regresion_auxiliar_BG<-lm(u_i~X1+X2+Lag_1+Lag_2,data = data_prueba_BG)
sumario_BG<-summary(regresion_auxiliar_BG)
R_2_BG<-sumario_BG$r.squared
n<-nrow(data_prueba_BG)
LM_BG<-n*R_2_BG
gl=2
p_value<-1-pchisq(q = LM_BG,df = gl)
VC<-qchisq(p = 0.95,df = gl)
salida_bg<-c(LM_BG,VC,p_value)
names(salida_bg)<-c("LMbg","Valor Crítico","p value")
stargazer(salida_bg,title = "Resultados de la prueba de Breusch Godfrey",type = "text",digits = 6)
##
## Resultados de la prueba de Breusch Godfrey
## ===============================
## LMbg Valor Crítico p value
## -------------------------------
## 3.305189 5.991465 0.191552
## -------------------------------
Como pvalue>0.05 No se rechaza la Ho, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de orden “2”.
bgtest(modelo_lineal,order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_lineal
## LM test = 3.3052, df = 2, p-value = 0.1916
Como pvalue>0.05 No se rechaza la Ho, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de orden “2”
bgtest(modelo_lineal,order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_lineal
## LM test = 0.051063, df = 1, p-value = 0.8212
Como pvalue>0.05 No se rechaza la Ho, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de 1° orden.