After our Intro to Stan lecture I think it would be valuable to have you go through a similar exercise. Let’s test a second research question.
Research question: Is sea ice extent declining in the Southern Hemisphere over time? Is the same pattern happening in the Antarctic as in the Arctic? Fit a Stan model to find out!
Make sure you follow the steps we used in class.
What do your Stan model results indicate so far?
library(readr)
seaice <- read_csv("seaice.csv")
## Parsed with column specification:
## cols(
## year = col_integer(),
## extent_north = col_double(),
## extent_south = col_double()
## )
head(seaice)
## # A tibble: 6 x 3
## year extent_north extent_south
## <int> <dbl> <dbl>
## 1 1979 12.3 11.7
## 2 1980 12.3 11.2
## 3 1981 12.1 11.4
## 4 1982 12.4 11.6
## 5 1983 12.3 11.4
## 6 1984 11.9 11.5
colnames(seaice) <- c("year","extent_north","extent_south")
plot(extent_south ~ year, pch = 20, data = seaice)
lm1 <- lm(extent_south ~ year, data = seaice)
lm1
##
## Call:
## lm(formula = extent_south ~ year, data = seaice)
##
## Coefficients:
## (Intercept) year
## -14.19955 0.01295
summary(lm1)
##
## Call:
## lm(formula = extent_south ~ year, data = seaice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23372 -0.18142 0.01587 0.18465 0.88814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.199551 10.925576 -1.300 0.2018
## year 0.012953 0.005468 2.369 0.0232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3843 on 37 degrees of freedom
## Multiple R-squared: 0.1317, Adjusted R-squared: 0.1082
## F-statistic: 5.611 on 1 and 37 DF, p-value: 0.02318
plot(extent_south ~ year, pch = 20, data = seaice)
abline(lm1, col = 2, lty = 2, lw = 3)
x <- I(seaice$year - 1978)
y <- seaice$extent_south
N <- length(seaice$year)
lm1 <- lm(y ~ x)
summary(lm1)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23372 -0.18142 0.01587 0.18465 0.88814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.421555 0.125490 91.015 <2e-16 ***
## x 0.012953 0.005468 2.369 0.0232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3843 on 37 degrees of freedom
## Multiple R-squared: 0.1317, Adjusted R-squared: 0.1082
## F-statistic: 5.611 on 1 and 37 DF, p-value: 0.02318
lm_alpha <- summary(lm1)$coeff[1] # the intercept
lm_beta <- summary(lm1)$coeff[2] # the slope
lm_sigma <- sigma(lm1) # the residual error
library(rstan)
## Warning: package 'rstan' was built under R version 3.5.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.5.3
## Loading required package: StanHeaders
## Warning: package 'StanHeaders' was built under R version 3.5.3
## rstan (Version 2.18.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## For improved execution time, we recommend calling
## Sys.setenv(LOCAL_CPPFLAGS = '-march=native')
## although this causes Stan to throw an error on a few processors.
library(bayesplot)
## Warning: package 'bayesplot' was built under R version 3.5.3
## This is bayesplot version 1.7.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme_default()
## * Does _not_ affect other ggplot2 plots
## * See ?bayesplot_theme_set for details on theme setting
stan_data <- list(N = N, x = x, y = y)
write("// Stan model for simple linear regression
data {
int < lower = 1 > N; // Sample size
vector[N] x; // Predictor
vector[N] y; // Outcome
}
parameters {
real alpha; // Intercept
real beta; // Slope (regression coefficients)
real < lower = 0 > sigma; // Error SD
}
model {
y ~ normal(alpha + x * beta , sigma);
}
generated quantities {
} // The posterior predictive distribution",
"stan_model1.stan")
# Check whether it is a file
stanc("stan_model1.stan")
## $status
## [1] TRUE
##
## $model_cppname
## [1] "model39f8702055b8_stan_model1"
##
## $cppcode
## [1] "// Code generated by Stan version 2.18.1\n\n#include <stan/model/model_header.hpp>\n\nnamespace model39f8702055b8_stan_model1_namespace {\n\nusing std::istream;\nusing std::string;\nusing std::stringstream;\nusing std::vector;\nusing stan::io::dump;\nusing stan::math::lgamma;\nusing stan::model::prob_grad;\nusing namespace stan::math;\n\nstatic int current_statement_begin__;\n\nstan::io::program_reader prog_reader__() {\n stan::io::program_reader reader;\n reader.add_event(0, 0, \"start\", \"model39f8702055b8_stan_model1\");\n reader.add_event(22, 20, \"end\", \"model39f8702055b8_stan_model1\");\n return reader;\n}\n\nclass model39f8702055b8_stan_model1 : public prob_grad {\nprivate:\n int N;\n vector_d x;\n vector_d y;\npublic:\n model39f8702055b8_stan_model1(stan::io::var_context& context__,\n std::ostream* pstream__ = 0)\n : prob_grad(0) {\n ctor_body(context__, 0, pstream__);\n }\n\n model39f8702055b8_stan_model1(stan::io::var_context& context__,\n unsigned int random_seed__,\n std::ostream* pstream__ = 0)\n : prob_grad(0) {\n ctor_body(context__, random_seed__, pstream__);\n }\n\n void ctor_body(stan::io::var_context& context__,\n unsigned int random_seed__,\n std::ostream* pstream__) {\n typedef double local_scalar_t__;\n\n boost::ecuyer1988 base_rng__ =\n stan::services::util::create_rng(random_seed__, 0);\n (void) base_rng__; // suppress unused var warning\n\n current_statement_begin__ = -1;\n\n static const char* function__ = \"model39f8702055b8_stan_model1_namespace::model39f8702055b8_stan_model1\";\n (void) function__; // dummy to suppress unused var warning\n size_t pos__;\n (void) pos__; // dummy to suppress unused var warning\n std::vector<int> vals_i__;\n std::vector<double> vals_r__;\n local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());\n (void) DUMMY_VAR__; // suppress unused var warning\n\n // initialize member variables\n try {\n current_statement_begin__ = 4;\n context__.validate_dims(\"data initialization\", \"N\", \"int\", context__.to_vec());\n N = int(0);\n vals_i__ = context__.vals_i(\"N\");\n pos__ = 0;\n N = vals_i__[pos__++];\n current_statement_begin__ = 5;\n validate_non_negative_index(\"x\", \"N\", N);\n context__.validate_dims(\"data initialization\", \"x\", \"vector_d\", context__.to_vec(N));\n validate_non_negative_index(\"x\", \"N\", N);\n x = vector_d(static_cast<Eigen::VectorXd::Index>(N));\n vals_r__ = context__.vals_r(\"x\");\n pos__ = 0;\n size_t x_i_vec_lim__ = N;\n for (size_t i_vec__ = 0; i_vec__ < x_i_vec_lim__; ++i_vec__) {\n x[i_vec__] = vals_r__[pos__++];\n }\n current_statement_begin__ = 6;\n validate_non_negative_index(\"y\", \"N\", N);\n context__.validate_dims(\"data initialization\", \"y\", \"vector_d\", context__.to_vec(N));\n validate_non_negative_index(\"y\", \"N\", N);\n y = vector_d(static_cast<Eigen::VectorXd::Index>(N));\n vals_r__ = context__.vals_r(\"y\");\n pos__ = 0;\n size_t y_i_vec_lim__ = N;\n for (size_t i_vec__ = 0; i_vec__ < y_i_vec_lim__; ++i_vec__) {\n y[i_vec__] = vals_r__[pos__++];\n }\n\n // validate, data variables\n current_statement_begin__ = 4;\n check_greater_or_equal(function__,\"N\",N,1);\n current_statement_begin__ = 5;\n current_statement_begin__ = 6;\n // initialize data variables\n\n\n // validate transformed data\n\n // validate, set parameter ranges\n num_params_r__ = 0U;\n param_ranges_i__.clear();\n current_statement_begin__ = 10;\n ++num_params_r__;\n current_statement_begin__ = 11;\n ++num_params_r__;\n current_statement_begin__ = 12;\n ++num_params_r__;\n } catch (const std::exception& e) {\n stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());\n // Next line prevents compiler griping about no return\n throw std::runtime_error(\"*** IF YOU SEE THIS, PLEASE REPORT A BUG ***\");\n }\n }\n\n ~model39f8702055b8_stan_model1() { }\n\n\n void transform_inits(const stan::io::var_context& context__,\n std::vector<int>& params_i__,\n std::vector<double>& params_r__,\n std::ostream* pstream__) const {\n stan::io::writer<double> writer__(params_r__,params_i__);\n size_t pos__;\n (void) pos__; // dummy call to supress warning\n std::vector<double> vals_r__;\n std::vector<int> vals_i__;\n\n if (!(context__.contains_r(\"alpha\")))\n throw std::runtime_error(\"variable alpha missing\");\n vals_r__ = context__.vals_r(\"alpha\");\n pos__ = 0U;\n context__.validate_dims(\"initialization\", \"alpha\", \"double\", context__.to_vec());\n double alpha(0);\n alpha = vals_r__[pos__++];\n try {\n writer__.scalar_unconstrain(alpha);\n } catch (const std::exception& e) { \n throw std::runtime_error(std::string(\"Error transforming variable alpha: \") + e.what());\n }\n\n if (!(context__.contains_r(\"beta\")))\n throw std::runtime_error(\"variable beta missing\");\n vals_r__ = context__.vals_r(\"beta\");\n pos__ = 0U;\n context__.validate_dims(\"initialization\", \"beta\", \"double\", context__.to_vec());\n double beta(0);\n beta = vals_r__[pos__++];\n try {\n writer__.scalar_unconstrain(beta);\n } catch (const std::exception& e) { \n throw std::runtime_error(std::string(\"Error transforming variable beta: \") + e.what());\n }\n\n if (!(context__.contains_r(\"sigma\")))\n throw std::runtime_error(\"variable sigma missing\");\n vals_r__ = context__.vals_r(\"sigma\");\n pos__ = 0U;\n context__.validate_dims(\"initialization\", \"sigma\", \"double\", context__.to_vec());\n double sigma(0);\n sigma = vals_r__[pos__++];\n try {\n writer__.scalar_lb_unconstrain(0,sigma);\n } catch (const std::exception& e) { \n throw std::runtime_error(std::string(\"Error transforming variable sigma: \") + e.what());\n }\n\n params_r__ = writer__.data_r();\n params_i__ = writer__.data_i();\n }\n\n void transform_inits(const stan::io::var_context& context,\n Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,\n std::ostream* pstream__) const {\n std::vector<double> params_r_vec;\n std::vector<int> params_i_vec;\n transform_inits(context, params_i_vec, params_r_vec, pstream__);\n params_r.resize(params_r_vec.size());\n for (int i = 0; i < params_r.size(); ++i)\n params_r(i) = params_r_vec[i];\n }\n\n\n template <bool propto__, bool jacobian__, typename T__>\n T__ log_prob(vector<T__>& params_r__,\n vector<int>& params_i__,\n std::ostream* pstream__ = 0) const {\n\n typedef T__ local_scalar_t__;\n\n local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());\n (void) DUMMY_VAR__; // suppress unused var warning\n\n T__ lp__(0.0);\n stan::math::accumulator<T__> lp_accum__;\n\n try {\n // model parameters\n stan::io::reader<local_scalar_t__> in__(params_r__,params_i__);\n\n local_scalar_t__ alpha;\n (void) alpha; // dummy to suppress unused var warning\n if (jacobian__)\n alpha = in__.scalar_constrain(lp__);\n else\n alpha = in__.scalar_constrain();\n\n local_scalar_t__ beta;\n (void) beta; // dummy to suppress unused var warning\n if (jacobian__)\n beta = in__.scalar_constrain(lp__);\n else\n beta = in__.scalar_constrain();\n\n local_scalar_t__ sigma;\n (void) sigma; // dummy to suppress unused var warning\n if (jacobian__)\n sigma = in__.scalar_lb_constrain(0,lp__);\n else\n sigma = in__.scalar_lb_constrain(0);\n\n\n // transformed parameters\n\n\n\n // validate transformed parameters\n\n const char* function__ = \"validate transformed params\";\n (void) function__; // dummy to suppress unused var warning\n\n // model body\n\n current_statement_begin__ = 16;\n lp_accum__.add(normal_log<propto__>(y, add(alpha,multiply(x,beta)), sigma));\n\n } catch (const std::exception& e) {\n stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());\n // Next line prevents compiler griping about no return\n throw std::runtime_error(\"*** IF YOU SEE THIS, PLEASE REPORT A BUG ***\");\n }\n\n lp_accum__.add(lp__);\n return lp_accum__.sum();\n\n } // log_prob()\n\n template <bool propto, bool jacobian, typename T_>\n T_ log_prob(Eigen::Matrix<T_,Eigen::Dynamic,1>& params_r,\n std::ostream* pstream = 0) const {\n std::vector<T_> vec_params_r;\n vec_params_r.reserve(params_r.size());\n for (int i = 0; i < params_r.size(); ++i)\n vec_params_r.push_back(params_r(i));\n std::vector<int> vec_params_i;\n return log_prob<propto,jacobian,T_>(vec_params_r, vec_params_i, pstream);\n }\n\n\n void get_param_names(std::vector<std::string>& names__) const {\n names__.resize(0);\n names__.push_back(\"alpha\");\n names__.push_back(\"beta\");\n names__.push_back(\"sigma\");\n }\n\n\n void get_dims(std::vector<std::vector<size_t> >& dimss__) const {\n dimss__.resize(0);\n std::vector<size_t> dims__;\n dims__.resize(0);\n dimss__.push_back(dims__);\n dims__.resize(0);\n dimss__.push_back(dims__);\n dims__.resize(0);\n dimss__.push_back(dims__);\n }\n\n template <typename RNG>\n void write_array(RNG& base_rng__,\n std::vector<double>& params_r__,\n std::vector<int>& params_i__,\n std::vector<double>& vars__,\n bool include_tparams__ = true,\n bool include_gqs__ = true,\n std::ostream* pstream__ = 0) const {\n typedef double local_scalar_t__;\n\n vars__.resize(0);\n stan::io::reader<local_scalar_t__> in__(params_r__,params_i__);\n static const char* function__ = \"model39f8702055b8_stan_model1_namespace::write_array\";\n (void) function__; // dummy to suppress unused var warning\n // read-transform, write parameters\n double alpha = in__.scalar_constrain();\n double beta = in__.scalar_constrain();\n double sigma = in__.scalar_lb_constrain(0);\n vars__.push_back(alpha);\n vars__.push_back(beta);\n vars__.push_back(sigma);\n\n // declare and define transformed parameters\n double lp__ = 0.0;\n (void) lp__; // dummy to suppress unused var warning\n stan::math::accumulator<double> lp_accum__;\n\n local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());\n (void) DUMMY_VAR__; // suppress unused var warning\n\n try {\n\n\n\n // validate transformed parameters\n\n // write transformed parameters\n if (include_tparams__) {\n }\n if (!include_gqs__) return;\n // declare and define generated quantities\n\n\n\n // validate generated quantities\n\n // write generated quantities\n } catch (const std::exception& e) {\n stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());\n // Next line prevents compiler griping about no return\n throw std::runtime_error(\"*** IF YOU SEE THIS, PLEASE REPORT A BUG ***\");\n }\n }\n\n template <typename RNG>\n void write_array(RNG& base_rng,\n Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,\n Eigen::Matrix<double,Eigen::Dynamic,1>& vars,\n bool include_tparams = true,\n bool include_gqs = true,\n std::ostream* pstream = 0) const {\n std::vector<double> params_r_vec(params_r.size());\n for (int i = 0; i < params_r.size(); ++i)\n params_r_vec[i] = params_r(i);\n std::vector<double> vars_vec;\n std::vector<int> params_i_vec;\n write_array(base_rng,params_r_vec,params_i_vec,vars_vec,include_tparams,include_gqs,pstream);\n vars.resize(vars_vec.size());\n for (int i = 0; i < vars.size(); ++i)\n vars(i) = vars_vec[i];\n }\n\n static std::string model_name() {\n return \"model39f8702055b8_stan_model1\";\n }\n\n\n void constrained_param_names(std::vector<std::string>& param_names__,\n bool include_tparams__ = true,\n bool include_gqs__ = true) const {\n std::stringstream param_name_stream__;\n param_name_stream__.str(std::string());\n param_name_stream__ << \"alpha\";\n param_names__.push_back(param_name_stream__.str());\n param_name_stream__.str(std::string());\n param_name_stream__ << \"beta\";\n param_names__.push_back(param_name_stream__.str());\n param_name_stream__.str(std::string());\n param_name_stream__ << \"sigma\";\n param_names__.push_back(param_name_stream__.str());\n\n if (!include_gqs__ && !include_tparams__) return;\n\n if (include_tparams__) {\n }\n\n\n if (!include_gqs__) return;\n }\n\n\n void unconstrained_param_names(std::vector<std::string>& param_names__,\n bool include_tparams__ = true,\n bool include_gqs__ = true) const {\n std::stringstream param_name_stream__;\n param_name_stream__.str(std::string());\n param_name_stream__ << \"alpha\";\n param_names__.push_back(param_name_stream__.str());\n param_name_stream__.str(std::string());\n param_name_stream__ << \"beta\";\n param_names__.push_back(param_name_stream__.str());\n param_name_stream__.str(std::string());\n param_name_stream__ << \"sigma\";\n param_names__.push_back(param_name_stream__.str());\n\n if (!include_gqs__ && !include_tparams__) return;\n\n if (include_tparams__) {\n }\n\n\n if (!include_gqs__) return;\n }\n\n}; // model\n\n}\n\ntypedef model39f8702055b8_stan_model1_namespace::model39f8702055b8_stan_model1 stan_model;\n\n"
##
## $model_name
## [1] "stan_model1"
##
## $model_code
## [1] "// Stan model for simple linear regression\n\ndata {\n int < lower = 1 > N; // Sample size\n vector[N] x; // Predictor\n vector[N] y; // Outcome\n}\n\nparameters {\n real alpha; // Intercept\n real beta; // Slope (regression coefficients)\n real < lower = 0 > sigma; // Error SD\n}\n\nmodel {\n y ~ normal(alpha + x * beta , sigma);\n}\n\ngenerated quantities {\n} // The posterior predictive distribution"
## attr(,"model_name2")
## [1] "stan_model1"
stan_model1 <- "stan_model1.stan"
fit <- stan(file = stan_model1, data = stan_data, warmup = 500, iter = 1000, chains = 4, cores = 2, thin = 1)
fit
## Inference for Stan model: stan_model1.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## alpha 11.42 0.00 0.13 11.17 11.33 11.42 11.51 11.67 887 1
## beta 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.02 892 1
## sigma 0.40 0.00 0.05 0.32 0.36 0.39 0.43 0.51 982 1
## lp__ 16.28 0.05 1.30 12.88 15.74 16.62 17.21 17.72 657 1
##
## Samples were drawn using NUTS(diag_e) at Thu Jun 13 22:45:06 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
posterior <- extract(fit)
str(posterior)
## List of 4
## $ alpha: num [1:2000(1d)] 11.3 11.3 11.5 11.4 11.6 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ beta : num [1:2000(1d)] 0.02216 0.01887 0.01464 0.0137 0.00736 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ sigma: num [1:2000(1d)] 0.32 0.422 0.373 0.362 0.374 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ lp__ : num [1:2000(1d)] 13.6 16.9 16.9 17.6 17.1 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
plot(y ~ x, pch = 20)
abline(lm1, col = 2, lty = 2, lw = 3)
abline( mean(posterior$alpha), mean(posterior$beta), col = 6, lw = 2)
#We can tell the result is same as the lm output.
plot(y ~ x, pch = 20)
for (i in 1:500) {
abline(posterior$alpha[i], posterior$beta[i], col = "gray", lty = 1)
}
abline(mean(posterior$alpha), mean(posterior$beta), col = 6, lw = 2)
plot(posterior$alpha, type = "l")
plot(posterior$beta, type = "l")
plot(posterior$sigma, type = "l")
fitbad <- stan(stan_model1, data = stan_data, warmup = 25, iter = 50, chains = 4, cores = 2, thin = 1)
## recompiling to avoid crashing R session
## Warning: There were 5 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low
## Warning: Examine the pairs() plot to diagnose sampling problems
posterior2 <- extract(fitbad)
plot(posterior2$alpha, type = "l")
plot(posterior2$beta, type = "l")
plot(posterior2$sigma, type = "l")
plot(y ~ x, pch = 20)
abline(lm_alpha, lm_beta, col = 4, lty = 2, lw = 2)
abline(mean(posterior2$alpha), mean(posterior2$beta), col = 3, lw = 2)
abline(mean(posterior$alpha), mean(posterior$beta), col = 36, lw = 3)